Algorithms for Model Checking

Having demonstrated the benefits of formal verification, we proceed to describe algorithms and methods by which such verification can be accomplished.

A run of D is a finite or infinite state sequence which satisfies the requirements of initiality and consecution but is not necessarily fair.

A run segment is a finite state sequence which satisfies the requirement of consecution.

A state s is D-accessible if it appears in some D-run.

System D is finite-state if it has only finitely many accessible states. An SPL program with a fixed number of processes such that all of its variables are declared to range over a finite domain (boolean or enumerated type) corresponds to a finite-state FDS.

We start by presenting algorithms for the verification over finite-state systems of the following two classes of properties:

- The invariance property $Inv(p)$, claiming that all D-accessible states satisfy the assertion p.
- The response property $p \rightsquircledast q$, claiming that every (D-accessible) p-state must be followed by a q-state.
The State-Transition Graph

A state-transition graph \((S, E)\) is a directed graph whose nodes \(S\) are states of some system \(\mathcal{D}\) and whose edges \(E\) connect state \(s\) to state \(\tilde{s}\) iff \(\tilde{s}\) is a \(\rho_{\mathcal{D}}\)-successor of \(s\).

The following algorithm constructs the state-transition graph \(G(S_0, \rho)\) which contains all the states reachable from the set \(S_0\) by \(\rho\)-transitions.

Algorithm CONSTRUCT-GRAPH\((S_0, \rho)\) —

construct the state-transition graph \(G(S_0, \rho)\)

- **Initially** place in \(S\) all states that are in \(S_0\).
- **Repeat** the following step until no new states or new edges can be added to \(G\).
 - **Step:** for some \(s \in S\), let \(s_1, \ldots, s_k\) be the \(\rho\)-successors of \(s\). Add to \(S\) all states among \(\{s_1, \ldots, s_k\}\) which are not already there and add to \(E\) edges connecting \(s\) to \(s_1, \ldots, s_k\).
- **Return** \((S, E)\)
Example: a Simpler MUX-SEM

Below, we present a simpler version of program MUX-SEM.

\[y: \text{natural initially } y = 1 \]

\[N_1 \]

release \(y \)

\[T_1 \]

request \(y \)

\[C_1 \]

\[N_2 \]

release \(y \)

\[T_2 \]

request \(y \)

\[C_2 \]

The semaphore instructions request \(y \) and release \(y \) respectively stand for

\[\langle \text{when } y = 1 \text{ do } y := 0 \rangle \quad \text{and} \quad y := 1. \]
The state-transition Graph for MUX-SEM

Following is the state-transition graph $G(\|\Theta\|, \rho)$ for MUX-SEM. This graph contains all the states accessible by MUX-SEM. Here and elsewhere, we denote by $\|p\|$ the set of states satisfying p. Thus, $\|\Theta\| = \{(N_1, N_2, 1)\}$ is the set of initial states of MUX-SEM.
Model Checking Invariance Properties

We may use the following algorithm to verify that system \mathcal{D} satisfies the invariance property $Inv(p)$.

Algorithm mc-inv(\mathcal{D}, p) — verify that p is an invariant of system \mathcal{D}

- Let $(S, E) :=$ CONSTRUCT-GRAPH($\|\Theta\|, \rho$)
- Search in S for a state s violating the assertion p.
- If no such state found, print “Property is Valid”.
- Otherwise, print the (shortest) path leading from some Θ-state to the violating state s, indicating “Property is Invalid”.

Using this algorithm, we can ascertain that program MUX-SEM satisfies the invariance property of mutual exclusion, given by $Inv(\neg(C_1 \land C_2))$.
Now to Response Properties

Next, we consider an algorithm for verifying response properties. A state s is defined to be pending if it is reachable by a q-free path from a state \tilde{s} which is an accessible p-state.

We start by forming the state-transition graph G_{pend} which consists of all the pending states. This can be done by the following operations:

$$\rho_{\neg q} := \rho \land \neg q \land \neg q'$$

$$(S, E) := \text{CONSTRUCT-GRAPH}(\|\Theta\|, \rho)$$

$$(S_{\text{pend}}, E_{\text{pend}}) := \text{CONSTRUCT-GRAPH}(S \cap \|p \land \neg q\|, \rho_{\neg q})$$

For example, considering program MUX-SEM under the response property $T_1 \leadsto C_1$, we obtain the following graph as capturing all the pending states:

A fair path in a state-transition graph is an infinite path which satisfies the two classes of fairness requirements.

Observation 1. System \mathcal{D} violates the response property $p \leadsto q$ iff the graph G_{pend} contains a fair path.

Thus, it is sufficient to check whether G_{pend} contains a fair path.
From Fair Paths to Fair Subgraphs

A subgraph \(S \subseteq G_{pend} \) is called a strongly connected subgraph (SCS) if, for every two distinct states \(s_1, s_2 \in S \), there exists a path from \(s_1 \) to \(s_2 \) which only traverses states of \(S \). For example, \(\{\langle N_1, N_2, 1 \rangle, \langle T_1, N_2, 1 \rangle, \langle C_1, N_2, 0 \rangle \} \), and \(\{\langle N_1, N_2, 1 \rangle \} \) are both SCS’s of the state-transition graph of MUX-SEM. An SCS is called singular if it consists of a single state which is not connected to itself.

A subgraph \(S \) is called just if it contains a \(J \)-state for every justice requirement \(J \in J \). The subgraph \(S \) is called compassionate if, for every compassion requirement \((p, q) \in C \), \(S \) contains a \(q \)-state, or \(S \) contains no \(p \)-state.

A subgraph \(S \) is fair if it is a non-singular strongly connected subgraph which is both just and compassionate.

Let \(\pi \) be an infinite path in \(G_{pend} \). We denote by \(Inf(\pi) \) the set of states which appear infinitely many times in \(\pi \).
Traversing Cycles within SCSs

Observation 2. Every strongly connected subgraph S contains a *traversing cyclic path* $\pi : s_0, s_1, \ldots, s_k = s_0$ which visits each state of S at least once.

Proved by construction. Start by $\pi : s_0$, where $s_0 \in S$ is an arbitrary state in S. Let $\text{last}(\pi)$ denote the last state in the path π.

While $S - \text{set}(\pi) \neq \emptyset$ do

- Choose $s \in S - \text{set}(\pi)$.
- Let κ be an S-path connecting $\text{last}(\pi)$ to s. Guaranteed to exists due to the strong connectedness of S.
- Append κ to the end of π

Finally, extend π by a path connecting $\text{last}(\pi)$ to s_0.
A necessary and Sufficient Condition

The following claim connects fair paths within G_{pend} with fair subgraphs of G_{pend}.

Claim 2. The graph G_{pend} contains a fair path iff it contains a a fair subgraph.

Fair path \implies fair subgraph

Let π be a fair path within G_{pend}. We will show that $S = \text{Inf}(\pi)$ is a fair subgraph.

Note that there exists a position $j \geq 0$ such that every state that appears in a p_i beyond position j belongs to $\text{Inf}(\pi)$ and, therefore appears infinitely many time beyond j.

Let $s^a, s^b \in S$. Since both states appear infinitely many times beyond j, there exists positions $j < k < m$, such that $s_k = s^a$ and $s_m = s^b$. The sequence $s_k, s_{k+1}, \ldots, s_{m-1}, s_m$ is a path within G_{pend} which only visits states occurring at positions beyond j. Therefore, it is a path within S leading from s^a to s^b. This shows that $S = \text{Inf}(\pi)$ is a non-singular strongly connected subgraph of G_{pend}.

Let J_i be one of the justice requirements. Since π is fair, it contains infinitely many J_i-states. In particular (since G_{pend} is finite) there must exists a particular J_i-state s^i which appears infinitely many times in π. Obviously $s^i \in \text{Inf}(\pi) = S$.

Let (p_i, q_i) be one of the compassion requirements. Since π is fair, it either contains only finitely many p_i-states or contains infinitely many q_i-states. In the first case, $S = \text{Inf}(\pi)$ contains no p_i-states. In the second case, $S = \text{Inf}(\pi)$ contains at least one q_i-state.
Fair Subgraph \implies Fair Path

Assume that $S \subseteq G_{\text{pend}}$ is a fair subgraph. Let κ be the cycle traversing all states of S. We denote by $\pi = \kappa^\omega$ the infinite path obtained by infinite repetition of the cycle κ.

We claim that π is a fair path. For every justice requirement J_i, S contains some J_i-state s^i. Since κ passes through s^i at least once, $\pi = \kappa^\omega$ visits s^i infinitely many times.

Similarly, let (p_i, q_i) be a compassion requirement. Either S contains no p_i-states at all, in which case, neither does π. Alternately, S contains some q_i-state s^i, in which case, $\pi = \kappa^\omega$ contains infinitely many copies of s^i.

Corollary 3. A system \mathcal{D} violates the response property $p \rightsquigarrow q$ iff G_{pend} contains a fair subgraph.

A subgraph S is called a maximal strongly connected subgraph (MSCS), if S is strongly connected and is not properly contained in any larger SCS.

There exists an algorithm (due to Tarjan), which decomposes a given graph into a list of MSCSs,

$$G_{\text{pend}} = S_1 \cup S_2, \cup \cdots \cup S_k,$$

such that an edge can connect a state in S_i with a state in S_j only if $i \leq j$.
In Search of Fair Subgraphs

The following recursive algorithm accepts as input an sscs S and returns a fair subgraph of S if one exists, or the empty set if S contains no fair subgraph. Here and elsewhere, we denote by $\|p\|$ the set of all p-states.

Algorithm $\text{FAIR-SUB}(S : \text{set}) : \text{set}$ — Find a fair subgraph within S

- if S is singular then return \emptyset
- failure
- if S is not just then return \emptyset
- failure
- if S is compassionate then return S
- success
- S is just but not compassionate. Let $\tilde{C} \subseteq C$ be
 - the set of all compassion requirement (p_i, q_i) such
 - that S contains no q_i-states.
- let $U = S - \bigcup_{(p_i, q_i) \in \tilde{C}} \|p_i\|$.
- Decompose U into MSCS's U_1, \ldots, U_k.
- let $V = \emptyset$, $i = 1$
- while $V = \emptyset$ and $i \leq k$ do
 - let $V = \text{FAIR-SUB}(U_i)$
 - $i := i + 1$
- return V
Example

Reconsider the pending graph G_{pend} for the response property $T_1 \leadsto C_1$ over program MUX-SEM.

Applying algorithm FAIR-SUB to this graph, we find that G_{pend} is non-singular and just. However, it is not compassionate w.r.t requirement $(T_1 \land y > 0, C_1)$.

We therefore remove from the graph all states which satisfy $T_1 \land y > 0$. This leaves us with

which is non-singular but unjust towards the justice requirement $\neg C_2$. We conclude that G_{pend} contains no fair subgraphs and, therefore, the property $T_1 \leadsto C_1$ is valid over MUX-SEM.
Model Checking Response Properties

Finally, we present the algorithm that checks whether a given FDS D satisfies a response property $p \Rightarrow q$. This is achieved by the following algorithm which accepts as input an FDS D and two assertions p and q, returning an empty set (graph) iff D satisfies $p \Rightarrow q$.

Algorithm \(MC-\text{RESP}(D : \text{FDS}; p, q : \text{assertion}) : \text{set} \) — Check whether FDS D satisfies $p \Rightarrow q$

- Invoke algorithm \(CONSTRUCT-\text{GRAPH} \) to compute G_{pend} the pending graph for system D
- Decompose G_{pend} into MSCs’s S_1, \ldots, S_k
- let $V = \emptyset$, $i = 1$
- while $V = \emptyset$ and $i \leq k$ do
 - let $V = FAIR-\text{SUB}(S_i)$
 - $i := i + 1$
- return $V
Example

As an example, consider the following FDS:

```
  x: 0 → x: 1 → x: 2 → x: 4 → x: 3
```

with the fairness requirements:

- \(J_1 : \ x \neq 1 \)
- \(C_1 : \ (x = 3, x = 5) \)
- \(C_2 : \ (x = 2, x = 1) \)

The initial decomposition into MSCS's yields the partition

\[\{s_0\}, \ \{s_1\}, \ \{s_2, s_3, s_4, s_5\} \]

Applying FAIR-SUB to these subgraphs, we get

- FAIR-SUB(\(\{s_0\}\)) = \(\emptyset\) because \(\{s_0\}\) is singular
- FAIR-SUB(\(\{s_1\}\)) = \(\emptyset\) because \(\{s_1\}\) is unjust

Applied to \(\{s_2, s_3, s_4, s_5\}\), FAIR-SUB finds that \(\{s_2, s_3, s_4, s_5\}\) is non-singular, just, and compassionate w.r.t \(C_1\). However, it is in-compassionate w.r.t \(C_2\).

Therefore, we remove \(s_2\) and proceed to apply FAIR-SUB to the decomposition of \(\{s_3, s_4, s_5\}\), which is \(\{\{s_3, s_4\}, \ s_5\}\).

SCS \(\{s_3, s_4\}\) is in-compassionate towards \(C_1\) which causes us to remove \(s_3\). We are left with \(\{s_4\}\) which is non-singular, just and compassionate towards both \(C_1\) and \(C_2\). Therefore, the algorithm returns \(\{s_4\}\) as a fair subgraph of the system.