Concurrency Control

• Transaction = Sequence of Operations
• ACID = Atomic, Consistent, Isolated, Durable
• Interleaving of transactions can break Isolation
• Various concurrency-control mechanisms ensure Isolation
Example of Interfering Transactions

• Transfer $100 from Checking to Saving:
 1) \(c := \text{read(checking)} \)
 2) \(\text{write(checking, } c - 100) \)
 3) \(s := \text{read(savings)} \)
 4) \(\text{write(savings, } s + 100) \)

• Print the combined balance:
 a) \(x := \text{read(checking)} \)
 b) \(y := \text{read(savings)} \)
 c) \(\text{print } x + y \)
- Bad: 1 2 a b c 3 4
- Good: 1 2 3 4 a b c
- Good: a b c 1 2 3 4
- Good: a 1 b 2 3 c 4
- How can we distinguish the Good from the Bad?
Abstract View of Transactions

• Transfer from checking to saving:
 – $r_1(c)$, $w_1(c)$, $r_1(s)$, $w_1(s)$

• Calculate the combined balance:
 – $r_2(c)$, $r_2(s)$

• Bad: $r_1(c)$, $w_1(c)$, $r_2(c)$, $r_2(s)$, $r_1(s)$, $w_1(s)$

• Good: $r_1(c)$, $w_1(c)$, $r_1(s)$, $w_1(s)$, $r_2(c)$, $r_2(s)$

• Good: $r_2(c)$, $r_2(s)$, $r_1(c)$, $w_1(c)$, $r_1(s)$, $w_1(s)$

• Good: $r_2(c)$, $r_1(c)$, $r_2(s)$, $w_1(c)$, $r_1(s)$, $w_1(s)$

• Good: $r_2(c)$, $r_1(c)$, $r_2(s)$, $w_1(c)$, $r_1(s)$, $w_1(s)$
Serializable Histories

- History is *serial* if there is no interleaving:
 - \(w_1(x), w_1(y), r_2(x), w_2(y)\)
 - Can be abbreviated as \(T_1, T_2\)

- History is *serializable* if it has the same effect as a serial history

- For instance, these histories have the same effect:
 1. \(w_2(x), r_1(x), r_1(y), w_2(z)\)
 2. \(w_2(x), w_2(z), r_1(x), r_1(y)\)

- Since (2) is serial \(T_2, T_1\), then (1) is serializable
Equivalence between Histories

- What does it mean to say that two histories have the “same effect”?

- Suppose H and H’ are two histories that result from interleaving the transactions T_1, \ldots, T_k

- Then H and H’ are equivalent if:
 - Each read operation in H returns the same value as the corresponding read operation in H’
 - For each variable x that is written to, the final write to x in H and the final write to x in H’ are the same operation
Transaction Manager Must Ensure Serializability

- Since serializable history has the same effect as a serial and hence correct history:
 - Serializable = Correct

- The TM accepts read and write operations $r_i(x)$, $w_j(y)$ from various transactions

- To ensure that the history is serializable, it may:
 - Delay some of the operations
 - Abort some transactions

- How to determine if a history is serializable?
Conflicting Operations

- Suppose $o_i(x)$ is an operation in T_i, and $o_j(x)$ is in T_j, where $i \neq j$

- Because they operate on the same database element, $o_i(x)$ and $o_j(x)$ may “conflict”

- The operations conflict if $o_i(x)$, $o_j(x)$ has a different effect than $o_j(x)$, $o_i(x)$

- I.e., they conflict if they don’t commute

- Hence: $w_i(x)$ conflicts with both $w_j(x)$ and $r_j(x)$, while $r_i(x)$ and $r_j(x)$ do not conflict
The Serialization Graph

- Let H be a history for T_1, \ldots, T_k
- Directed graph with a node for each T_i
- Suppose that $o_i(x)$ and $o_j(x)$ conflict
- If $o_i(x)$ precedes $o_j(x)$ in H, edge goes from T_i to T_j
- Otherwise edge goes from T_j to T_i
- Example: $H = r_1(x), w_2(x), w_2(y), r_1(y)$
- SG has edge from T_1 to T_2, and from T_2 to T_1
Serializability Theorem

- Let H be a history for T_1, \ldots, T_k
- Let SG be the serialization graph for H
- If SG has no cycles, then:
 1. H is serializable
 2. A serial equivalent to H is given by any topological sort of T_1, \ldots, T_k
- Example: $r_1(x), r_3(z), w_3(x), w_1(y), w_2(y), w_2(z)$
- SG: $T_1 \rightarrow T_3, T_3 \rightarrow T_2, T_1 \rightarrow T_2$
- Serializable, with one topsort: $T_1 \ T_3 \ T_2$
Locking

• Transactions acquire read locks and write locks on data items before using them

• Read locks are shared, i.e., can be many read locks on the same data item

• Write locks are exclusive, i.e., no other locks (read or write) can be held

• Transaction manager maintains a lock table, and delays operations that are blocked by locks
Two-Phase Locking (2PL)

• Standard method for TM to ensure serializability

• The 2PL condition:
 – Once a transaction releases a lock, then it cannot acquire any new locks

• So there are two phases:
 1. Lock acquisition
 2. Lock releasing

• The *lockpoint* is the moment when the last lock is acquired
Illustration of 2PL

• T_1: $r_1(c), w_1(c), r_1(s), w_1(s), w_1(t)$

• T_2: $r_2(c), r_2(s)$

• History, including locking operations:
 $rl_1(c), r_1(c), wl_1(c), w_1(c), rl_2(c)$ (delayed), $rl_1(s), r_1(s), wl_1(s), w_1(s), wl_1(t), ul_1(c), rl_2(c), r_2(c), rl_2(s), r_2(s), ul_1(s), ul_2(c), ul_2(s), w_1(t), ul_1(t)$

• History of read and write operations:
 $r_1(c), w_1(c), r_1(s), w_1(s), r_2(s), r_2(s), w_1(t)$

• SG is acyclic: $T_1 \rightarrow T_2$
Incorrectness without 2PL

- T_1: $r_1(c) \; w_1(c) \; r_1(s) \; w_1(s) \; w_1(t)$
- T_2: $r_2(c) \; r_2(s)$
- If locks are released right after the data is used, then any interleaving—including incorrect ones—can be achieved
- But this violates 2PL, because, e.g.,
 - $wl_1(x) \; w_1(x) \; ul_1(x) \; wl_2(x) \; w_2(x) \; ul_2(x)$
 - Not 2PL because $wl_2(x)$ comes after $ul_2(x)$
Theorem: 2PL Guarantees Serializability

Proof.

1. Suppose the transactions are T_1, \ldots, T_k, and that H is an execution of them that can be obtained by 2PL

2. Suppose that $T_i \rightarrow T_j$ in the SG

3. This means that some $o_i(x)$ and $o_j(x)$ conflict, and $o_i(x)$ came before $o_j(x)$ in H

4. Then T_i and T_j both performed on operation on x, the operations conflicted, and T_i did its operation first
5. Hence \(T_i \) held a lock on \(x \) before \(T_j \) held a lock on \(x \)
6. Because operations conflicted, these locks could not be held at the same time
7. Hence \(T_i \) must have released the lock on \(x \) before \(T_j \) acquired the lock on \(x \)
8. Hence, \(\text{lockpoint}(T_i) < \text{lockpoint}(T_j) \)
9. So, what we’ve shown is that \(T_i \rightarrow T_j \) implies that \(\text{lockpoint}(T_i) < \text{lockpoint}(T_j) \)
10. Therefore, a cycle in the SG would imply the impossible condition that \(\text{lockpoint}(T_i) < \text{lockpoint}(T_j) \)
11. Hence, SG is acyclic, and so the history is serializable
Deadlocking with 2PL

• $T_1 = w_1(x) \, w_1(y)$

• $T_2 = w_2(y) \, w_2(x)$

• A deadlocking history:
 1. $wl_1(x)$
 2. $w_1(x)$
 3. $wl_2(y)$
 4. $w_2(y)$
 5. $wl_1(y)$ (blocked)
 6. $wl_2(y)$ (blocked, deadlock)
The Wait-Graph

- TM can break deadlocks if it constructs the wait-graph
- Nodes are transactions, edges when one transaction waits for a lock held by another
- Cycles indicate deadlock
- The TM breaks cycles by aborting a sufficient number of transactions
Cascading Aborts

• Suppose \(T_1 \) reads a variable that \(T_2 \) wrote, and then \(T_2 \) aborts
• Then \(T_1 \) must also abort
• I.e., the abort of \(T_2 \) “cascades” to \(T_1 \)
• This becomes messy, because aborts can potentially cascade through long chains of transactions
Strict 2PL

- A stronger form of 2PL
- The strict 2PL condition:
 - Locks are only released after transaction commits
- Eliminates the problem of cascading aborts
- Throughput may be reduced, though, because locks are held for longer
SQL Support for Transactions

- Transaction is started implicitly, by executing an SQL statement
- Transaction is ended explicitly by issuing either a COMMIT or a ROLLBACK command
- If there was a COMMIT:
 - For every ASSERTION that was declared as DEFERRABLE (in the SQL DDL stage), and therefore was not being checked during the transaction, it is now automatically checked
– If there is a failure of such an assertion, the COMMIT is automatically converted to a ROLLBACK