
10TH IEEE INTERNATIONAL CONFERERNCE ONCOMPUTERV ISION (ICCV 2005), OCTOBER17–20, 2005, BEIJING, CHINA .

Finding Tree Structures by Grouping Symmetries

Hiroshi Ishikawa† Davi Geiger‡ Richard Cole‡

hi@nsc.nagoya-cu.ac.jp geiger@cs.nyu.edu cole@cs.nyu.edu

†Department of Information & Biological Sciences ‡Courant Institute of Mathematical Sciences
Nagoya City University New York University
Nagoya 467-8501, Japan New York, NY 10012, U.S.A.

Abstract

The representation of objects in images as tree structures
is of great interest to vision, as they can represent artic-
ulated objects such as people as well as other structured
objects like arteries in human bodies, roads, circuit board
patterns, etc. Tree structures are often related to the symme-
try axis representation of shapes, which captures their local
symmetries. Algorithms have been introduced to detect (i)
open contours in images in quadratic time (ii) closed con-
tours in images in cubic time, and (iii) tree structures from
contours in quadratic time. The algorithms are based on
dynamic programming and Single Source Shortest Path al-
gorithms. However, in this paper, we show that the problem
of finding tree structures in images in a principled manner
is a much harder problem. We argue that the optimization
problem of finding tree structures in images is essentially
equivalent to a variant of the Steiner Tree problem, which
is NP-hard. Nevertheless, an approximate polynomial-time
algorithm for this problem exists: we apply a fast implemen-
tation of the Goemans-Williamson approximate algorithm
to the problem of finding a tree representation after an im-
age is transformed by a local symmetry mapping. Examples
of extracting tree structures from images illustrate the idea
and applicability of the approximate method.

1. Introduction

The problem of finding various structures in images has
been a focus of major activities in computer vision. Gener-
ally, local features such as edges are relatively easily found
but by themselves are not enough for producing useful de-
scription of the image. One of the ways to extract useful in-
formation is trying to find certain larger structures by group-
ing local features. Detecting open image contours was the
first of such efforts. Here, implicitly or explicitly, the prob-

Figure 1. A silhouette of a sketch of person
and a possible tree structure representing the
silhouette.

lem is placing a known structure (a string of points) on the
image plane so that certain quantity is optimized. Detecting
closed contours is also important since a closed curve gives
a segmentation of a region in the image. This problem can
also be formulated as an optimization problem explicitly.

As a structure to be found in images, tree structure is also
of great interest to vision, as it can represent articulated ob-
jects such as people, as well as other structured objects like
arteries in human bodies, roads, circuit board patterns, etc
(see Figure 1). Tree structures are often related to the sym-
metry axis representation of shapes, which captures their
local 2D symmetries. The importance of symmetry in locat-
ing useful information has been pointed out, and detection
of local symmetry, sometimes called the symmetry trans-
formation, has been pursued by many. Thus, tree structures
are to local symmetries what contours are to local edges.

However, in contrast to the situation in contour detection,

1

tree-finding has not been characterized as grouping of local
clues of 2D symmetry. Instead, existing work on finding
tree structures have focused on first finding a closed con-
tour and then computing the symmetry-axis of the shape,
although in most applications detecting the outline contour
itself is part of the problem. This inevitably loses most in-
formation in the image in the early stages of the process:
when the outline is being detected, the importance of the
local edge for the purpose of finding tree structure is not
being considered. Thus, directly linking local features and
more global structure is important and, should be the first
formulation to consider at any rate, as in general it is a good
idea to consider keeping all information available as late in
the process as possible.

We suggest in this paper that it is because of the inherent
complexity of finding tree structures by grouping local fea-
tures that prevented clear formulation of this problem as an
optimization problem. The optimization problem of finding
tree structures in images is essentially equivalent to a variant
of the Steiner Tree problem, which is NP-hard. Neverthe-
less, an approximate polynomial-time algorithm exists, and
we use a fast implementation of the algorithm to illustrate
an implementation.

It is interesting to note that at the same conference,
ICCV’87, in which Kass, Witkin and Terzopoulos pub-
lished the “snake paper” [12], the same authors also re-
ported the work [26] that addresses the fact that object in-
formation contains symmetry information which is richer
than just contour information. Somehow that work have not
developed further, in part, we suspect, because of this com-
plexity of the problem.

2. Related Work

In detecting open image contours, implicitly or explic-
itly, the problem is placing a known structure (a string of
points) on the image plane so that certain quantity is op-
timized. It is explicit in the work on snakes [12], which
clearly defines the problem as an optimization problem that
minimizes an energy that includes both the data terms that
favor contours passing through points of high intensity gra-
dient magnitude (local feature) and the regularizing terms
that tend to keep the contour short or smooth. The work of
Montanari [15] is the first to present the view that these edge
grouping computations can be best described by a graph
representation and solved by the use of graph algorithms. In
Montanari’s work, dynamic programming is used to glob-
ally optimize the criterion. Many others have followed it
(e.g., [3, 9, 20].)

In detecting closed contours, [8] developed a method
for finding closed contours using chains of tangent vectors.
This problem can also be formulated as an optimization
problem explicitly. [7] uses a ratio energy of a generalized

area to a generalized length, and use a “pinned ratio” algo-
rithm to optimize it. [11] defines a form of energy func-
tional for the modelling and identification of regions and
their boundaries in images, which can be globally optimized
using polynomial-time graph algorithms.

Detection of local symmetry, sometimes called the sym-
metry transformation, has been pursued by many, including
[17, 3, 27, 14, 5, 23]. These have not somehow lead to the
explicit grouping of these features to comprise a tree struc-
ture. For example, roads are usually defined by the pair of
boundary lines, with the line in the middle as the symmetry
axis. As the road bifurcates, the symmetry axis becomes a
tree structure. While the detection of roads through the mid-
dle line has been addressed by [3] using dynamic program-
ming, the problem of bifurcation of roads, and therefore the
extraction of tree structures, has not been addressed. In-
deed, the dynamic programming approach cannot extend to
the extraction of trees.

Instead, existing work on finding tree structures have fo-
cused on first finding a closed contour. Given an outline
contour of a shape, one can apply the symmetry-axis com-
putations to extract tree structures representing the symme-
try axis. For instance, [21, 16, 18, 22, 28, 19]. In the work
of [24, 25] the awareness for the problem of detecting sym-
metry structure in images is raised, but not addressed as a
graph problem to extract a tree structure.

All the problems above, including finding the symmetry
axis of a closed contour, can be solved exactly in a reason-
able (i.e., polynomial) time. [15] has shown that detecting
open contours can be solved inO(n2) time and we have
shown that this problem can indeed be solved inO(n log n)
time [9], wheren is the number of pixels in the image.
As we mentioned above, closed contours can be found in
O(n3) time ([11]). Finally, it has been shown that this prob-
lem can be solved ino(L2) whereL is the size of the con-
tour ([13]).

In contrast, directly finding tree structures by grouping
local features can be directly mapped to a known NP-hard
problem, as we show in this paper.

2.1 Our Contribution

The main contribution of this paper is to show that
the problem of detecting tree structures in images can be
mapped to a variant of the Steiner Tree problem. As this
problem is NP-hard, we also introduce an approximate
method and illustrate the algorithm with a fast implemen-
tation.

In order to formulate the problem, we create a graph
G(V,E) where each vertexv = (p, θ) represents a pixel
locationp and orientationθ, and graph edges represent geo-
metrical constraints between the vertices. Image responses
at each vertex are described by a quantityS(p, θ), which

2

possibly represent symmetry information.
In this graph, we define a nonnegative cost function on

both vertices and edges. The cost function gives a vertex
larger value when the resopnseS(p, θ) is stronger, i.e., the
larger the value is, the more likely it is to be part of the
tree solution. (Perhaps it should be called the benefit rather
than the cost; but we call it the cost as in “the cost of not
including in the tree.” See the algorithm below.)

The edges can also have costs. In addition to an optional
measureS(p, θ) (for example representing the symmetry
axis) a measure of geometrical constraint/consistency be-
tween the two vertices it connects gives rise to this cost.
The cost in the case of edges is defined so that edges with
larger cost are less likely to be included in the extracted tree.

Once the cost is defined, we would like to extract a tree
out of this graph as a subset of vertices and edges, so as to
minimize the sum of the cost of the edges in the tree and the
cost of verticesnot included in the tree.

Unfortunately, this is a known NP-hard problem. Nev-
ertheless, there are polynomial-time algorithm that approx-
imates the optimal solution with precise error bounds. In
particular we consider the Goemans-Williamson approxi-
mate algorithm.

To illustrate how this algorithm may be used for com-
puter vision, we consider the following application: we first
apply a symmetry transformation to produce local clues for
the presence of 2D symmetries. The symmetry transforma-
tion is a map from an image to its “symmetry map,” which
represents the symmetry strength and orientation at each lo-
cation:

I(p) → S(p, θ) , (1)

whereS(p, θ) is the strength of the symmetry. A precise
description is presented in Section 4.1. Once the symmetry
transformation is applied, we create a graphG(V,E) where
each vertexv = (p, θ) represents a pixel locationp and
orientationθ, and edges represent geometrical constraints
between the vertices.

Even though our mapping of the problem of extracting
tree structures to the Steinner problem does not require any
specific representation of the information at the vertex, it
is more intuitive we exemplify with the symmetry transfor-
mation. Thus the rest of the paper is organized as follows:
The next section is the heart of the work, the approach and
graph method to extract tree structures. In section 4 we first
discuss an example of local features, the symmetry trans-
formation, in more detail; then we give our initial results of
expriment. Section 5 concludes the paper.

3. Extracting Tree Structures

We first assume that we have local featuresS(p, θ) com-
puted. As in the case of object boundaries, it is not enough

to have local features. We would like to somehow group
the features into more structured entity. Here, we group the
pixels into a tree structure in the hope that the resulting tree
represents the symmetry axis of the object shape.

We build an undirected graph with the vertices corre-
sponding to all pixel-orientation pairs(p, θ). The connec-
tivity of the graph is such that two vertices corresponding
to pixel-orientations(p, θ) and(q, φ) are connected if (a)p
andq are neighboring pixels, or (b)p = q andθ andφ are
neighboring orientations.

Each vertex has a nonnegative cost. For vertexv corre-
sponding to the pixel-orientation pair(p, θ), we useS(v) =
S(p, θ) for its cost.

Edges shall have the following cost:

C(e(u, v)) = C(e((p, θ), (q, φ))) = h(|θ − φ|) , (2)

with a functionh(d) that decreases withd, so that the pair of
vertices at both ends of the edge have consistent orientations
and the tree is as smooth as possible.

We then define the total cost of any tree solution, T, in
the graph by

E(T) =
∑

e(u,v)∈T

C(e(u, v)) +
∑
v 6∈T

S(v) . (3)

Note that the sum of the symmetry strength is over the
vertices not in the tree solution. The symmetry strength
can be called the prize of the vertices. In this way a bal-
ance occurs between choosing a large tree T (so that very
few remaining vertex prizes contribute to the total cost) and
choosing a small tree (so that the cost of the edges is small).

The problem is then defined as how to extract tree struc-
tures from this graph that minimizes the total EnergyE(T)
of the tree. Let us discuss how this problem is formulated
as a variant of the Steiner Tree problem.

3.1 Steiner Tree Problem and Variants

LetG = (V,E) be an undirected graph havingn vertices
andm edges together with nonnegative edge lengthsduv.
(We use the word “length” instead of “cost” in accordance
with the tradition of the problem; the name also has certain
intuitive significance.)

In thePrize Collecting Steiner Tree Problem, each ver-
tex u of G has an associated nonnegative penaltypu. The
aim is to find a tree in the graph such that the sum of the
length of the edges in the tree plus the penalties of the ver-
tices not in the tree is minimized.

The Goemans-Williamson clustering technique approx-
imately solves this problem inO(n2 log n) time and with
the approximation factor guaranteed to be at most2− 1

n−1
[10]. It is at the core of several approximation algorithms,
including those for Generalized Steiner Trees, Prize Col-
lecting Travelling Salesman, 2-Edge Connected Subgraph.

3

Several improvements have been made since this algorithm
was proposed. In our application, the graph is very sparse
since each vertex has very few edges compared to the size
of the graph. The most efficient algorithm is due to [6].
The implementation gives an approximate solution within a
factor2 + 2

nk of the optimal inO
(
k(n + m) log2 n

)
time,

for any constantk. This time bound is a substantial im-
provement on other algorithms for graphs which are not too
dense. However, it suffers a slight1

nk additive degradation
in the approximation factor, wherek can be made as large
as required; the running time increases linearly ink.

3.2 Goemans-Williamson Clustering Technique

Although the following algorithm is essentially the same
as the one in the reference above, it is specialized for the
Prize Collecting Steiner Tree Problem for the convenience
of the reader.

The algorithm proceeds in two steps. The first, Cluster-
ing Step, has several rounds, each of which identifies one
new edge; the step returns the set of the edges, which is a
forest. The second step, called the Pruning Step, considers
for each vertex inV a tree that contains the vertex as the
root by discarding some of the edges in the forest; then it
returns the best tree.

Clustering Step. In each round, the algorithm maintains
a partition ofV into disjoint subsets; some of these sub-
sets areactiveand the rest areinactive. We denote the set
containing vertexu by Su. The algorithm also maintains a
residual potentialP (S) for each subsetS, a lengthdu for
each vertexu, and a setF of edges that will be the output of
this step. A subsetS is active if and only ifP (S) is positive.

At the beginning of the first round, the subsets and values
are as follows. Each vertexu is in a singleton subset:Su =
{u}. The residual potential is defined asP (Su) = pu. The
lengthdu is initially set to0 for all verticesu. The setF
begins empty.

In a general round, the lesser of the following is found:

1. The least value ofduv−du−dv

fu+fv
for an edgee = (u, v)

such thatSu 6= Sv, wherefu = 1 if and only if Su is
active in this round.

2. The least value ofP (S) for an active subsetS.

We denote the resulting value byε. Then, we decrease the
residual potentialP (S) by ε for each active subsetS, and
increase the lengthdu for each vertexu contained in an ac-
tive subset byε. Next, if the valueε has been found by the
case 1 above, the edgee is now added to the setF . Also,Su

andSv are now replaced bySu∪Sv, which is given the sum
of the residual potentials ofSu andSv as its residual poten-
tial and designated as active for the next round according
to the new residual potential. Ifε has rather come from the

case 2 above, we make the subsetS inactive. The rounds
continue until there are no more active subsets remaining.

Definition. Given a forestF and a partition of the vertices
V into subsets, the forest induced inF by this partition is
defined as the forest obtained fromF by shrinking each sub-
set into a single vertex and removing self-loops.

Pruning Step. For each vertexr in V , a tree that contains
r is produced by discarding some of the edges in the forest
F as follows.

For each edgee in F , we decide whether or not to delete
it as follows, in reverse order in which it was added. Con-
sider the subsets into whichV is partitioned just beforee
was added. Consider the forest induced inF by this parti-
tion. This forest has a vertex for each subset at the timee
was added and hase and other edges that are added aftere
in Step A. Now we remove those edges that have already
been deleted in Step B. Edgee is removed if and only if one
of its endpoints in this forest is an inactive leaf (inactivity is
with respect to the round which addede) that does not con-
tain r. Finally, after each edge is considered, the connected
component containingr is returned as the tree forr.

After we have performed the above procedure for each
r, we evaluate the sum of tree-edge lengths and the sum of
non-tree vertex penalties for each tree forr. After all the
vertices are considered, we choose the tree with the mini-
mum sum.

3.3 The implementation details

The most time-consuming part of the algorithm is in the
Clustering Step. In the original Goemans-Williamson im-
plementation [10], it tookO(n2 log n) time. This is short-
ened in the implementation by [6] using a technique called
the Dynamic Edge Splitting. Consult [6] for the reasoning
behind the algorithm details in the following.

The algorithm keeps a heapheap(Su) maintaining for
each active subsetSu the edges that has an end in the subset,
with the key valueduv − du for an edge(u, v). We denote
the heap structure as a whole byH. The heaps inH can
be melded when the corresponding subsets are united. The
heap supports a Findkey operation that gives the key value
for an edge. It also supports an Offset operation that reduces
the key values for all edges at the same time. We also keep
a Union-Find Structure to maintain the active subsets and
the value of residual potential for the subset. In the course
of the algorithm, edges are split by adding a vertex, which
is called the s-vertex and has no penalty.

The algorithm begins by splitting each edge into two
pieces, making each vertex a singleton subset, each vertex
with positive penalty active, and initializing the heap struc-
tureH with each edge piece having key value equal to its
length.

4

In each round the algorithm performs the following
tasks.

Step 1: Choosing the Next Edge.First, it performs Delete-
Mins fromH repeatedly until an edge piece connecting dis-
tinct subsets is found. It also finds the active subset with the
least residual potential. If the latter value is smaller, the
subset is made inactive, the value is subtracted from the key
values ofH by the Offset operation, and this round is con-
cluded. Otherwise, this edge piecee′ = (v′, w′) is now
added to the forestF . Let key(e′) be the key (obtainable
using the Findkey operation) ofe′ in eitherheap(Sv′) or
heap(Sw′), whichever is active (if both are active, take the
smaller of the two keys) and OffsetH by key(e′). Then the
setsS′

v′ andS′
w′ are united.

Step 2: Splitting Edges. At most one ofv′ andw′ can
have the property that it is an s-vertex and is contained
in an inactive singleton set at the beginning of the current
round. If neitherv′ or w′ has this property, then we skip
this step. Otherwise, without loss of generality, letv′ have
this property. Being an s-vertex,v′ has exactly one edge
piece other thane′ incident on it. We will split this edge
piecef = (u′, v′) as follows.

To splitf , the value ofdu′ is needed. This is not directly
available, but can be computed using the Findkey opera-
tion on f , Su′ and then using the relation that the key for
f in heap(Su′) is du′v′ − du′ . Oncedu′ is determined,f
is repeatedly split by adding a sequence of vertices onf
at distancesdu′v′

2 , du′v′
4 , . . . , du′v′

2i from v′, wherei is the

least number such that one ofdu′v′ − du′v′
2i > du′ and

du′v′
2i ≤ duv

2k hold, where(u, v) is the original graph edge of
which f is a part. (Ifi = 0, we don’t splitf .) Call the last
vertex in the sequenceu′′′. One new singleton inactive sub-
set{u′′′} is added to the Union-Find Structure and the heap
structure, and the two new edge pieces incident onu′′′ are
added to the heap structure; all other new s-vertices created
are made part ofSu′ and all other new edge pieces created
are added to the forest to be output. The edge piecef itself
is removed from all the structures.

Step 3: Melding Heaps. If neither v′ nor w′ have the
above property required for edge splitting, thenheap(Sv′)
andheap(Sw′), are melded, the active status ofSv′ ∪ Sw′

is determined.

4. Illustration: Experiments

We now describe an example of actual local symmetry
feature and then the result of tree-extraction using it.

4.1 Symmetry Transformation

As an example of “off the shelf” local symmetry fea-
tures, here we describe a simple “symmetry transform” that

gives a representation of the image that captures symme-
try information. In most applications the symmetries are
between pairs of intensity edges. However, sometimes the
symmetries can be directly related to the image intensity
value itself: in the medical imaging domain, for example,
arteries are usually darker in the center and brighter as one
moves outwards towards the boundaries.

4.2 Intensity representation

In cases such as the artery images where the darker pixel
is more likely to be located on the symmetry axis, a function
of the form

S(p, θ) =
1
Z

e−α[I(p)+I(p+δ)] (4)

measures how likely the pixel atp with orientationθ be-
longs to the symmetry axis. The vectorδ brings a pixel lo-
cationp to its immediate neighbor in the direction ofθ. The
parameterα controls the relative strength of different grey-
scale values. The largerα is, the sharper the “symmetrical”
difference is among grey value pixels.

4.3 Edge/Contour representation

Many images contain intensity edges that form object
shape boundaries when they are appropriately grouped.
These intensity edges are characterized by their large mag-
nitude of the intensity gradient vector, represented as
~∇I(p). The gradient vector is large where there is a
large change in intensity and points normal to the intensity
boundary. The symmetry axis is the locus of the symmet-
ric points. Often, a good characterization of the symmetry
axis location is: a point-orientation pair(p, θ) belongs to
the symmetry axis if there is a pair of pixels in the object
boundary with their normal vectors mirror symmetric with
respect to(p, θ). More precisely, given two points on the
object boundary located atp1 andp2 with normal vectors
~θ1 and~θ2 respectively (see Figure 2 a.), then the midpoint
p = 1

2 (p1 + p2) is on the symmetry axis with orientation
~θ = ~θ1 + ~θ2, if

(p1 − p2) ⊥ (~θ1 + ~θ2) and (p1 − p2) ‖ (~θ1 − ~θ2) . (5)

We can define the symmetry transformation via a voting
scheme for each pixelp and orientationθ (also defined by
the vector~θ) as the measure

S(p, θ) =∑
p1∈l(p,θ)

∑
θ1

|~θ1 · ~∇I(p1)||~θ2 · ~∇I(p2)|g(|p1 − p|), (6)

wherep2 = 2p−p1, ~θ2 = ~θ−~θ1, andl(p, θ) is the line per-
pendicular to the vector~θ passing throughp. Also, we have

5

θ1 θ2

p
θ

p2p1 p
θ

p2p1

l(p,θ)

(a) (b)

Figure 2. (a) Points on the object boundary
that are symmetric. (b) the voting scheme
contributors to the strength S(p, θ).

used the constraint that the pixelp2 = 2p−p1 with angleθ2,
must be mirror symmetric toθ1 atp1, i.e.,~θ1 + ~θ2 = ~θ. The
quantity|~θ · ~∇(p)| gives the intensity edge response at pixel
p and at orientationθ. The linel(p, θ) can be extended to
infinity, i.e., until reaching the end of the image frame. We
also include a functiong(|p1 − p|) that decreases with the
distance between points, so that the strength of the contribu-
tions is diminished as pairs of points are further away from
the center of the symmetry (atp). Thus, the measureS(p, θ)
given by (6), or symmetry transform, is given by the inten-
sity edge strength of pair of candidates to object boundaries
that are mirror symmetric, factored by a term that decreases
with the distance between the symmetric boundary points.

To give an idea of these quantities, Figure 3(b) shows
the edge responses of image Figure 3(a) and Figure 3(c)
displays the edge symmetry strength function.

4.4 Experiments

In order to illustrate the effect of the algorithm and to
show that it is possible to extract objects by extracting
the tree structures that best represent the objects, we ap-
plied the method to an image. Figure 3 shows the result.
Oriented edges were extracted and thenS(p, θ) was com-
puted according to the formula (6). In order to demonstrate
the results on an image, we showS(p) = maxθS(p, θ).
This quantity illustrates how the symmetry strength at every
pixel can be captured by this transformation.

Once the symmetry transform was obtained and the con-
struction of the graphG(V,E) complete, we assigned the
valuesS(p, θ) to each vertexu in the graph and assigned
the smoothness constraint on the edgese(u, v) of the graph.
Then we applied the approximate tree finding algorithm to
extract optimal tree structures of the image. The tree struc-
ture captures the symmetry axis of the objects, even though
no representation of the object was given a priori. It takes
about 15 minutes to process the image shown on a 3GHz
machine withk = 1.

In order to make a real computer vision application, one
needs to further study alternative symmetry maps (there are
many variations in the literature) and one needs to further
study the parameters of the cost functions to extract the op-
timal tree. The focus here is only to illustrate that this algo-
rithm can be further developed.

5. Conclusion

We have addressed the problem of extraction of objects
in images as tree structures. Tree structures are often related
to the symmetry axis representation of shapes, which cap-
tures their local symmetries. The applications of this idea
to computer vision includes the detection of articulated ob-
jects such as people as well as other structured objects like
arteries in human bodies, roads, circuit board patterns, etc.

Previously, many authors including us have introduced
graph algorithms to detect in a principal manner (i) open
contours in images ino(n2) (n is the number of pixels in
the image) (ii) closed contours in images inO(n3), (iii) tree
structures from (closed) contours of sizeL pixels, ino(L2).

We here have shown that the problem of finding tree
structures in images in a principal manner is comparable
to an NP-hard problem. We show that by mapping the tree
detection problem to a variant of the Steiner Tree problem.

Despite this result, we introduced an approximate
polynomial-time algorithms to the Steiner Tree problem.
In particular, we have applied a fast implementation of the
Goemans-Williamson approximate algorithm to the prob-
lem of finding a tree representation after an image is trans-
formed by a local symmetry mapping. We illustrate the idea
and applicability of the approximate method with some sim-
ple examples.

AcknowledgmentsThis work was partially supported by
NSF ITR grant 25-74100-F5366 (Ishikawa and Geiger) and
NSF grants CCR0105678 and CCF0515127 (Cole).

References

[1] A. Agrawal, P. Klein, R. Ravi. When trees collide: An
approximation algorithm for the generalized steiner
problem on networks.SIAM Journal on Computing,
24(3):440–456, 1995.

[2] J. August, K. Siddiqi, and S.W. Zucker. Contour frag-
ment grouping and shared, simple occluders.Com-
puter Vision and Image Understanding76(2):146–
162, 1999.

[3] M. Barzohar and D. B. Cooper. Automatic Finding of
Main Roads in Aerial Images by Using Geometric-
Stochastic Models and Estimation.IEEE Transac-

6

(b)(a) (d)(c)

Figure 3. (a) Image example. (b) The oriented edges. We show here the gradient vector colored by
the orientation. (c) The application of the symmetry transform to the image. We show the values
of S(p) = maxθS(p, θ), which illustrates the strength of the symmetry at each pixel p. (d) Finally the
extraction of the tree structure from images. Note that objects are extracted without any a priori
object representation.

tions on Pattern Analysis and Machine Intelligence
18(7):707–721, 1996.

[4] H. Blum, Biological Shape and Visual Science.Jour-
nal of Theoretical Biology, 38:205–287, 1973.

[5] C.A. Burbeck, S.M. Pizer. Object representation by
cores: Identifying and representing primitive spatial
regionsVision Research, 1995.

[6] R. Cole, R. Hariharan, M. Lewenstein, and E. Porat.
A Faster Implementation of the Goemans-Williamson
Clustering Algorithm. InProc. of the 12th annual
ACM-SIAM symposium on Discrete algorithms, pp.
17–25, Washington, D.C., 2001.

[7] I. J. Cox, S. B. Rao, and Y. Zhong,Ratio regions: a
technique for image segmentation, Proc. Int’l Conf.
Patt. Rec., vol. 2, 1996, pp. 557–564.

[8] J. Elder and S. W. Zucker,Computing contour closure,
Proc. Euro. Conf. Comp. Vis., June 1996, pp. 399–
412.

[9] D. Geiger, A. Gupta, L.A. Costa, and J. Vlontzos.
Dynamic programming for detecting, tracking and
matching elastic contours.IEEE Transactions on Pat-
tern Analysis and Machine Intelligence17(3):294–
302 1995.

[10] M. Goemans, D. Williamson. A general approxima-
tion technique for constrained forest problems.SIAM
Journal on Computing, 24(2):296–317, 1995.

[11] I. Jermyn and H. Ishikawa. Globally Optimal Regions
and Boundaries as Minimum Ratio Cycles.IEEE
Transactions on Pattern Analysis and Machine Intelli-
gence23(10):1075–1088, 2001.

[12] M. Kass, A. Witkin, D. Terzopoulos. Snakes: Active
contour models.International Journal of Computer
Vision, 1(4):321–331, 1987.

[13] T.-L. Liu, D. Geiger, and R. V. Kohn. Representation
and self-similarity of shapes.IEEE Transactions on
Pattern Analysis and Machine Intelligence25(1):86–
99, 2003.

[14] T-L. Liu, D. Geiger, and A. Yuille. Segmenting by
Seeking the Symmetry Axis. InProc. of Intl. Conf. on
Pattern Recognition. pp.994–998, Sidney, Australia,
1998.

[15] U. Montanari. On the Optimal Detection of Curves
in Noisy Pictures. Communication of the ACM,
14(5):335–345, 1971.

[16] M . Pelillo, K. Siddiqi,and S. W. Zucker. Matching Hi-
erarchical Structures Using Association Graphs.IEEE
Transactions on Pattern Analysis and Machine Intelli-
gence21(11):1105–1120, 1999.

[17] D. Reisfeld, H. Wolfson, and Y. Yeshurun. Detection
of Interest Points Using Symmetry. InProc. Intl. Conf.
in Computer Vision, pp.62–65, Osaka, Japan, 1990.

7

[18] H. Rom and G. Medioni. Hierarchical Decomposi-
tion and Axial Shape Description.IEEE Transac-
tions on Pattern Analysis and Machine Intelligence
15(10):973–981, 1993.

[19] T.B. Sebastian, P.N. Klein, and B.B. Kimia. Recogni-
tion of shapes by editing shock graphs.IEEE Trans-
actions on Pattern Analysis and Machine Intelligence
26(5):550–571, 2004.

[20] A. Shaashua and S. Ullman. Structural saliency: The
detection of globally salient structures using a locally
connected network. InProc. Intl. Conf. in Computer
Vision, pp. 321-327, Tampa, FL, 1988.

[21] K. Siddiqi and B. B. Kimia. Parts of visual form:
Computational aspects.IEEE Transactions on Pat-
tern Analysis and Machine Intelligence17(3):239–
251, 1995.

[22] K. Siddiqi, A. Shokoufandeh, S. J. Dickinson, and
S.W. Zucker. Shock graphs and shape matching.Int.
Journal of Computer Vision35(1):13–32, 1999.

[23] S.G. Tari, J. Shah, H. Pien. Extraction of shape skele-

tons from grayscale images. Computer Vision and Im-
age Understanding, 1997.

[24] H. Tek and B. Kimia. Symmetry Maps of Free-Form
Curve Segments via Wave Propagation.International
Journal of Computer Vision54(1-3):35–81, 2003.

[25] H. Tek and B. Kimia. Perceptual organization via sym-
metry map and symmetry transforms. InProc. IEEE
Conf. Computer Vision and Pattern Recognition, Vol.
II. pp. 471–477, Fort Collins, CO, 1999.

[26] D. Terzopoulos, A. Witkin, M. Kass. Symmetry-
seeking models and 3D object reconstruction.Inter-
national Journal of Computer Vision1(3):211–221,
1987.

[27] H. Zabrodsky, S. Peleg, and D. Avnir. Symmetry as
a Continuous Feature.IEEE Transactions on Pattern
Analysis and Machine Intelligence17(12):1154-1166,
1995.

[28] S.C. Zhu and A.Yuille, FORMS: a Flexible Ob-
ject Recognition and Modeling System.International
Journal of Computer Vision, 20(3):187–212, 1996.

8

