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Abstract

The representation of objects in images as tree structures
is of great interest to vision, as they can represent artic-
ulated objects such as people as well as other structured
objects like arteries in human bodies, roads, circuit board
patterns, etc. Tree structures are often related to the symme-
try axis representation of shapes, which captures their local
symmetries. Algorithms have been introduced to detect (i)
open contours in images in quadratic time (ii) closed con-
tours in images in cubic time, and (iii) tree structures from
contours in quadratic time. The algorithms are based on
dynamic programming and Single Source Shortest Path al-
gorithms. However, in this paper, we show that the problem
of finding tree structures in images in a principled manner
is a much harder problem. We argue that the optimization ~ Figure 1. A silhouette of a sketch of person
problem of finding tree structures in images is essentially ~ and a possible tree structure representing the
equivalent to a variant of the Steiner Tree problem, which  silhouette.
is NP-hard. Nevertheless, an approximate polynomial-time
algorithm for this problem exists: we apply a fastimplemen-
tation of the Goemans-Williamson approximate algorithm
to the problem of finding a tree representation after an im- lem is placing a known structure (a string of points) on the
age is transformed by a local symmetry mapping. Examplesimage plane so that certain quantity is optimized. Detecting
of extracting tree structures from images illustrate the idea closed contours is also important since a closed curve gives
and applicability of the approximate method. a segmentation of a region in the image. This problem can
also be formulated as an optimization problem explicitly.

As a structure to be found inimages, tree structure is also
of great interest to vision, as it can represent articulated ob-
jects such as people, as well as other structured objects like
arteries in human bodies, roads, circuit board patterns, etc

The problem of finding various structures in images has (see Figure 1). Tree structures are often related to the sym-
been a focus of major activities in computer vision. Gener- metry axis representation of shapes, which captures their
ally, local features such as edges are relatively easily foundlocal 2D symmetries. The importance of symmetry in locat-
but by themselves are not enough for producing useful de-ing useful information has been pointed out, and detection
scription of the image. One of the ways to extract useful in- of local symmetry, sometimes called the symmetry trans-
formation is trying to find certain larger structures by group- formation, has been pursued by many. Thus, tree structures
ing local features. Detecting open image contours was theare to local symmetries what contours are to local edges.
first of such efforts. Here, implicitly or explicitly, the prob- However, in contrast to the situation in contour detection,

1. Introduction



tree-finding has not been characterized as grouping of localarea to a generalized length, and use a “pinned ratio” algo-
clues of 2D symmetry. Instead, existing work on finding rithm to optimize it. [11] defines a form of energy func-
tree structures have focused on first finding a closed con-tional for the modelling and identification of regions and
tour and then computing the symmetry-axis of the shape,their boundaries in images, which can be globally optimized
although in most applications detecting the outline contour using polynomial-time graph algorithms.
itself is part of the problem. This inevitably loses most in- Detection of local symmetry, sometimes called the sym-
formation in the image in the early stages of the process: metry transformation, has been pursued by many, including
when the outline is being detected, the importance of the[17, 3, 27, 14, 5, 23]. These have not somehow lead to the
local edge for the purpose of finding tree structure is not explicit grouping of these features to comprise a tree struc-
being considered. Thus, directly linking local features and ture. For example, roads are usually defined by the pair of
more global structure is important and, should be the first boundary lines, with the line in the middle as the symmetry
formulation to consider at any rate, as in general it is a good axis. As the road bifurcates, the symmetry axis becomes a
idea to consider keeping all information available as late in tree structure. While the detection of roads through the mid-
the process as possible. dle line has been addressed by [3] using dynamic program-
We suggest in this paper that it is because of the inherentming, the problem of bifurcation of roads, and therefore the
complexity of finding tree structures by grouping local fea- extraction of tree structures, has not been addressed. In-
tures that prevented clear formulation of this problem as andeed, the dynamic programming approach cannot extend to
optimization problem. The optimization problem of finding the extraction of trees.
tree structures in images is essentially equivalent to a variant  Instead, existing work on finding tree structures have fo-
of the Steiner Tree problem, which is NP-hard. Neverthe- cused on first finding a closed contour. Given an outline
less, an approximate polynomial-time algorithm exists, and contour of a shape, one can apply the symmetry-axis com-
we use a fast implementation of the algorithm to illustrate putations to extract tree structures representing the symme-
an implementation. try axis. For instance, [21, 16, 18, 22, 28, 19]. In the work
It is interesting to note that at the same conference, of [24, 25] the awareness for the problem of detecting sym-
ICCV'87, in which Kass, Witkin and Terzopoulos pub- metry structure in images is raised, but not addressed as a
lished the “snake paper” [12], the same authors also re-graph problem to extract a tree structure.
ported the work [26] that addresses the fact that object in-  All the problems above, including finding the symmetry
formation contains symmetry information which is richer axis of a closed contour, can be solved exactly in a reason-
than just contour information. Somehow that work have not able (i.e., polynomial) time. [15] has shown that detecting
developed further, in part, we suspect, because of this com-open contours can be solved @n(n?) time and we have

plexity of the problem. shown that this problem can indeed be solve@{m log n)
time [9], wheren is the number of pixels in the image.
2. Related Work As we mentioned above, closed contours can be found in

O(n?) time ([11]). Finally, it has been shown that this prob-
lem can be solved in(L?) whereL is the size of the con-
tour ([13]).

In contrast, directly finding tree structures by grouping
local features can be directly mapped to a known NP-hard
problem, as we show in this paper.

In detecting open image contours, implicitly or explic-
itly, the problem is placing a known structure (a string of
points) on the image plane so that certain quantity is op-
timized. It is explicit in the work on snhakes [12], which
clearly defines the problem as an optimization problem that
minimizes an energy that includes both the data terms that o
favor contours passing through points of high intensity gra- 2-1  Our Contribution
dient magnitude (local feature) and the regularizing terms
that tend to keep the contour short or smooth. The work of  The main contribution of this paper is to show that
Montanari [15] is the first to present the view that these edgethe problem of detecting tree structures in images can be
grouping computations can be best described by a graphmapped to a variant of the Steiner Tree problem. As this
representation and solved by the use of graph algorithms. Inproblem is NP-hard, we also introduce an approximate
Montanari’s work, dynamic programming is used to glob- method and illustrate the algorithm with a fast implemen-
ally optimize the criterion. Many others have followed it tation.

(e.q.,[3,9, 20].) In order to formulate the problem, we create a graph

In detecting closed contours, [8] developed a method G(V, E) where each vertex = (p, ) represents a pixel
for finding closed contours using chains of tangent vectors. locationp and orientatiod, and graph edges represent geo-
This problem can also be formulated as an optimization metrical constraints between the vertices. Image responses
problem explicitly. [7] uses a ratio energy of a generalized at each vertex are described by a quanfity, 8), which



possibly represent symmetry information. to have local features. We would like to somehow group
In this graph, we define a honnegative cost function on the features into more structured entity. Here, we group the
both vertices and edges. The cost function gives a vertexpixels into a tree structure in the hope that the resulting tree
larger value when the resopnSép, 0) is stronger, i.e., the  represents the symmetry axis of the object shape.
larger the value is, the more likely it is to be part of the  We build an undirected graph with the vertices corre-
tree solution. (Perhaps it should be called the benefit rathersponding to all pixel-orientation paif®,d). The connec-
than the cost; but we call it the cost as in “the cost of not tivity of the graph is such that two vertices corresponding
including in the tree.” See the algorithm below.) to pixel-orientationgp, 8) and(q, ¢) are connected if (&)
The edges can also have costs. In addition to an optionalandq are neighboring pixels, or () = ¢ andd and¢ are
measureS(p,#) (for example representing the symmetry neighboring orientations.
axis) a measure of geometrical constraint/consistency be- Each vertex has a nonnegative cost. For veutenrre-
tween the two vertices it connects gives rise to this cost. sponding to the pixel-orientation pdjp, §), we useS(v) =
The cost in the case of edges is defined so that edges witht (p, 6) for its cost.
larger cost are less likely to be included in the extracted tree.  Edges shall have the following cost:
Once the cost is defined, we would like to extract a tree
out of this graph as a subset of vertices and edges, so as to Cle(u,v)) = Cle((p,9), (¢, 9))) = h(l6 = 9l),  (2)

minimize the sum of the cost of the edges in the tree and theyyity a functionh(d) that decreases with so that the pair of
cost of verticesiotincluded in the tree. vertices at both ends of the edge have consistent orientations
Unfortunately, this is a known NP-hard problem. Nev- 4nq the tree is as smooth as possible.
ertheless, there are polynomial-time algorithm that approx- e then define the total cost of any tree solution, T, in
imates the optimal solution with precise error bounds. In the graph by
particular we consider the Goemans-Williamson approxi-
mate algorithm. E(T)= Y Cle(wv))+> S). ®3)
To illustrate how this algorithm may be used for com- e(u,0)€T veT
puter vision, we consider the following application: we first .
apply a symmetry transformation to produce local clues for Note that .the sum of the Sy mmetry strength is over the
the presence of 2D symmetries. The symmetry transforma-vertices not in the tr.ee solution. _The symm_etry strength
tion is a map from an image to its “symmetry map,” which can be called the prize of the vertices. In this way a bal-

represents the symmetry strength and orientation at each |p&nce oceurs between c_hoosmg a large tree T (so that very
cation: few remaining vertex prizes contribute to the total cost) and

choosing a small tree (so that the cost of the edges is small).
I(p) — S(p,9), 1) The problem is then defined as how to extract tree struc-
tures from this graph that minimizes the total Enefgiyl")

whereS(p, 0) is the strength of the symmetry. A precise ot e tree. Let us discuss how this problem is formulated
description is presented in Section 4.1. Once the symmetry < o variant of the Steiner Tree problem.

transformation is applied, we create a graptV, E') where

each vertexo = (p,#) represents a pixel locatiop and 3.1 Steiner Tree Problem and Variants
orientationd, and edges represent geometrical constraints

between the vertices. , LetG = (V, E) be an undirected graph havingertices
Even though our mapping of the problem of extracting g4, edges together with nonnegative edge lengths
tree structures to the Steinner problem does not require anY\ve use the word “length” instead of “cost” in accordance

specific representation of the information at the vertex, it | i the tradition of the problem: the name also has certain
is more intuitive we exemplify with the symmetry transfor- ;. jiive significance.)

mation. Thus_the_rest of the paper is organized as follows: | theprize Collecting Steiner Tree Problem each ver-
The next section is the heart of the work, the a_pproach "fmdteXu of G has an associated nonnegative penalty The
graph method to extract tree structures. In section 4 we first; 1, is to find a tree in the graph such that the sum of the

discuss an example of local features, the symmetry ransqength of the edges in the tree plus the penalties of the ver-
formation, in more detail; then we give our initial results of ;o not in the tree is minimized.

expriment. Section 5 concludes the paper. The Goemans-Williamson clustering technique approx-

imately solves this problem i®(n?logn) time and with

3. Extracting Tree Structures the approximation factor guaranteed to be at most-—1
[10]. Itis at the core of several approximation algorithms,
We first assume that we have local featus¢s, §) com- including those for Generalized Steiner Trees, Prize Col-

puted. As in the case of object boundaries, it is not enoughlecting Travelling Salesman, 2-Edge Connected Subgraph.



Several improvements have been made since this algorithntase 2 above, we make the subSehactive. The rounds
was proposed. In our application, the graph is very sparsecontinue until there are no more active subsets remaining.
since each vertex has very few edges compared to the siz
of the graph. The most efficient algorithm is due to [6].

The implementation gives an approximate solution within a V into subsets, the forest induced nby this partition is
P 9 gv napp 2 : defined as the forest obtained frdby shrinking each sub-
factor2 + -2 of the optimal inO (k(n + m) log” n) time,

le I i 1 -
for any constant. This time bound is a substantial im- setinto a single vertex and removing self-loops.

provement on other algorithms for graphs which are not too Pruning Step. For each vertex in V, a tree that contains
dense. However, it suffers a sliglfjf additive degradation  r is produced by discarding some of the edges in the forest
in the approximation factor, wherdecan be made as large F as follows.
as required; the running time increases linearlj.in For each edge in F', we decide whether or not to delete

it as follows, in reverse order in which it was added. Con-
3.2 Goemans-Williamson Clustering Technique sider the subsets into whidi is partitioned just before

was added. Consider the forest inducedity this parti-

A|th0ugh the fo”owing a|gorithm is essentia”y the same tion. This forest has a vertex for each subset at the time
as the one in the reference above, it is specialized for thewas added and hasand other edges that are added after

Prize Collecting Steiner Tree Problem for the conveniencein Step A. Now we remove those edges that have already
of the reader. been deleted in Step B. Edgés removed if and only if one
The algorithm proceeds in two steps. The first, Cluster- Of its endpoints in this forest is an inactive leaf (inactivity is
ing Step, has several rounds, each of which identifies oneWith respect to the round which addejthat does not con-
new edge; the step returns the set of the edges, which is 4ainr. Finally, after each edge is considered, the connected
forest. The second step, called the Pruning Step, consider§omponent containingis returned as the tree for
for each vertex i/ a tree that contains the vertex as the  After we have performed the above procedure for each
root by discarding some of the edges in the forest; then it”, we evaluate the sum of tree-edge lengths and the sum of

Definition. Given a forest?” and a partition of the vertices

returns the best tree. non-tree vertex penalties for each tree forAfter all the
. . o vertices are considered, we choose the tree with the mini-
Clustering Step. In each round, the algorithm maintains ., ,m sum.

a partition of V' into disjoint subsets; some of these sub-
sets areactiveand the rest armactive We denote the set
containing vertex: by S,,. The algorithm also maintains a
residual potentialP(S) for each subse$, a lengthd,, for
each vertex:, and a sef” of edges that will be the output of
this step. A subsef is active if and only ifP(S) is positive.

At the beginning of the first round, the subsets and values
are as follows. Each vertexis in a singleton subsef, =
{u}. The residual potential is defined 8%S,,) = p,. The
lengthd,, is initially set to0 for all verticesu. The setF’
begins empty. The algorithm keeps a hedgap(.S,,) maintaining for

In a general round, the lesser of the following is found: each active subsét, the edges that has an end in the subset,
with the key valued,,,, — d,, for an edggu, v). We denote
1. The least value of«~2=< for an edge: = (u,v) the heap structure as a whole B¥. Tr?(e he)aps i can

such thats, # S, wheref, = 1 if and only if 5, is be melded when the corresponding subsets are united. The

active in this round. heap supports a Findkey operation that gives the key value
for an edge. It also supports an Offset operation that reduces
the key values for all edges at the same time. We also keep
We denote the resulting value by Then, we decrease the a Union-Find Structure to maintain the active subsets and
residual potentialP(S) by e for each active subset, and the value of residual potential for the subset. In the course
increase the lengttd, for each vertex: contained in an ac-  of the algorithm, edges are split by adding a vertex, which
tive subset by. Next, if the valuec has been found by the is called the s-vertex and has no penalty.
case 1 above, the edgés now added to the sét. Also, S, The algorithm begins by splitting each edge into two
andsS, are now replaced by, U S,,, which is given the sum  pieces, making each vertex a singleton subset, each vertex
of the residual potentials &, andS,, as its residual poten-  with positive penalty active, and initializing the heap struc-
tial and designated as active for the next round accordingture H with each edge piece having key value equal to its
to the new residual potential. ¢fhas rather come from the length.

3.3 The implementation details

The most time-consuming part of the algorithm is in the
Clustering Step. In the original Goemans-Williamson im-
plementation [10], it tookO(n? log n) time. This is short-
ened in the implementation by [6] using a technique called
the Dynamic Edge Splitting. Consult [6] for the reasoning
behind the algorithm details in the following.

2. The least value aP(S) for an active subse.



In each round the algorithm performs the following gives a representation of the image that captures symme-
tasks. try information. In most applications the symmetries are
between pairs of intensity edges. However, sometimes the
symmetries can be directly related to the image intensity
value itself: in the medical imaging domain, for example,
arteries are usually darker in the center and brighter as one
Jnoves outwards towards the boundaries.

Step 1: Choosing the Next EdgeFirst, it performs Delete-
Mins from H repeatedly until an edge piece connecting dis-
tinct subsets is found. It also finds the active subset with the
least residual potential. If the latter value is smaller, the
subset is made inactive, the value is subtracted from the ke
values ofH by the Offset operation, and this round is con-
cluded. Otherwise, this edge pieee = (v',w’) is now
added to the forest’. Let key(e’) be the key (obtainable . )
using the Findkey operation) ef in either heap(S,) or _ In cases such as the artery images where the darker plxel
heap(S,), whichever is active (if both are active, take the is more likely to be located on the symmetry axis, a function
smaller of the two keys) and Offséf by key(e'). Thenthe ~ Of the form
setsS;, andS;,, are united.

4.2 Intensity representation

S(p, 0) = L e—oll@)+1(+5) )
Step 2: Splitting Edges. At most one ofv’ andw’ can Z
have the property that it is an s-vertex and is contained measures how likely the pixel atwith orientationé be-
in an inactive singleton set at the beginning of the current jongs to the symmetry axis. The vectbbrings a pixel lo-
round. If neitherv’ or w’ has this property, then we skip cationp to its immediate neighbor in the direction@fThe
this step. Otherwise, without loss of generality,déhave  parameter: controls the relative strength of different grey-

this property. Being an s-vertex; has exactly one edge scale values. The largeris, the sharper the “symmetrical”
piece other thar’ incident on it. We will split this edge  difference is among grey value pixels.

piecef = (u/,v’) as follows.
To split f, the value ofl,, is needed. Thisis notdirectly 4.3 Edge/Contour representation
available, but can be computed using the Findkey opera-

tion on f, S,v and then using the relation that the key for  Many images contain intensity edges that form object

fin heap(Sw) is duwr — dur. Onced,, is determinedf  shape boundaries when they are appropriately grouped.
is repeatedly spIiEi by addindg a sequence of verticeson  These intensity edges are characterized by their large mag-
at distances’y+, fue . Syt from o/, wherei is the  nitude of the intensity gradient vector, represented as
least number such that one df,,, — dgff/ > d, and VI(p). The gradient vector is large where there is a

dzé < d2ukv hold, where(u, v) is the original graph edge of  large change in intensity and points normal to the intensity
which f is a part. (Ifi = 0, we don't splitf.) Call the last ~ boundary. The symmetry axis is the locus of the symmet-
vertex in the sequencg”’. One new singleton inactive sub- ic points. Often, a good characterization of the symmetry
set{w""} is added to the Union-Find Structure and the heap axis location is: a point-orientation pa(p, #) belongs to
structure, and the two new edge pieces incident/6rare  the symmetry axis if there is a pair of pixels in the object
added to the heap structure; all other new s-vertices createdpoundary with their normal vectors mirror symmetric with
are made part of,, and all other new edge pieces created respect ta(p,¢). More precisely, given two points on the

are added to the forest to be output. The edge pjeitgelf ~ object boundary located at andp, with normal vectors
is removed from all the structures. f, andd, respectively (see Figure 2 a.), then the midpoint

Step 3: Melding Heaps. If neither v/ nor w’ have the 2~ é(plf fDQ) Is on the symmetry axis with orientation
above property required for edge splitting, therap(.S,/) 0 =01 +0if
_and heap(_Sw/), are melded, the active status ®f U S, (p1 — p2) L (51 T 52) and (p1 —p2) | (51 _ 52). (5)
is determined.
We can define the symmetry transformation via a voting
4. |llustration: Experiments scheme foI each pixel and orientatiord (also defined by
the vector) as the measure

We now describe an example of actual local symmetry S(p,0) =

feature and then the result of tree-extraction using it. L L
, > D160 Vip)lfs - VI(p2)lg(lpr —pl), (6)
4.1 Symmetry Transformation p1EL(p,0) 61

As an example of “off the shelf” local symmetry fea- Whereps = 2p—py, b = 6 — 6, andi(p, ) is the line per-
tures, here we describe a simple “symmetry transform” that pendicular to the vectdt passing through. Also, we have



In order to make a real computer vision application, one
needs to further study alternative symmetry maps (there are
many variations in the literature) and one needs to further
study the parameters of the cost functions to extract the op-
timal tree. The focus here is only to illustrate that this algo-
rithm can be further developed.

@ (b) 5. Conclusion

Figure 2. (a) Points on the object boundary
that are symmetric. (b) the voting scheme
contributors to the strength  S(p, 9).

We have addressed the problem of extraction of objects
in images as tree structures. Tree structures are often related
to the symmetry axis representation of shapes, which cap-
tures their local symmetries. The applications of this idea
to computer vision includes the detection of articulated ob-
jects such as people as well as other structured objects like
used the constraint that the pixel = 2p—p, with anglef,, arteries in human bodies, roads, circuit board patterns, etc.
must be mirror symmetric té; atpy, i.e.,0h + 0, = 6. The Previously, many authors including us have introduced
quantity|d - V(p)| gives the intensity edge response at pixel graph algorithms to detect in a principal manner (i) open
p and at orientatio. The linel(p,#) can be extended to  contours in images in(n2) (n is the number of pixels in
infinity, i.e., until reaching the end of the image frame. We the image) (ii) closed contours in imagesin?), (i) tree
also include a function(|p: — pl) that decreases with the  structures from (closed) contours of sizeixels, ino(L?).
distance betWeen pOintS, SO that the Strength Of the ContribU' We here have shown that the prob'em of f|nd|ng tree
tions is diminished as pairs of pOintS are further away from structures in images in a principa| manner is Comparab|e
the center of the symmetry (gt. Thus, the measurg(p, ¢) to an NP-hard problem. We show that by mapping the tree
given by (6), or symmetry transform, is given by the inten- detection problem to a variant of the Steiner Tree problem.
sity edge strength of pair of candidates to object boundaries Despite this result, we introduced an approximate
that are mirror symmetric, factored by a term that decreasesp0|ynomia|_time algorithms to the Steiner Tree problem.
with the distance between the symmetric boundary points. |n particular, we have applied a fast implementation of the

To give an idea of these quantities, Figure 3(b) shows Goemans-Williamson approximate algorithm to the prob-
the edge responses of image Figure 3(a) and Figure 3(Clem of finding a tree representation after an image is trans-

displays the edge symmetry strength function. formed by a local symmetry mapping. We illustrate the idea
] and applicability of the approximate method with some sim-
4.4 Experiments ple examples.

In order to illustrate the effect of the algorithm and to Acknowledgments This work was partially supported by
show that it is possible to extract objects by extracting NSF ITR grant 25-74100-F5366 (Ishikawa and Geiger) and
the tree structures that best represent the objects, we apNSF grants CCR0105678 and CCF0515127 (Cole).
plied the method to an image. Figure 3 shows the result.
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