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Abstract. In this paper we develop a new limiter for linear reconstruction on non-coordinate-
aligned meshes in two space dimensions, with focus on Cartesian embedded boundary grids. Our
limiter is inherently two-dimensional and linearity preserving. It separately limits the x and y
components of the gradient, as opposed to a scalar limiter which limits all components simultaneously
with one scalar. The limiter is based on solving a tiny linear program (LP) on each cell, using
a very efficient version of the simplex method. A variety of computational results on triangular
and embedded boundary meshes are presented. They demonstrate that the LP limiter successfully
removes oscillations and significantly increases solution accuracy compared to a scalar limiter.
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1. Introduction. The goal of this research is to develop a robust and accurate
limiter for finite volume schemes on non-coordinate-aligned meshes, with focus on
Cartesian embedded boundary meshes. These meshes have cells that are cut by a
solid body at the edge of the domain in an essentially arbitrary fashion (see Fig. 3.1).
They are much more irregular than the triangles typically found in unstructured mesh
methods. For example, cut cells can have 3, 4 or 5 faces and neighboring cells can
differ by several orders of magnitude in size. A scalar limiter is typically used on these
cells. We will generalize this to compute a vector limiter suitable for use on cut cells.
In fact, we develop a limiter framework that can handle different types of constraints
while retaining the vector property.

The idea of scalar limiting for unstructured meshes was introduced by Barth and
Jespersen [5]: compute a trial gradient, then reduce it by a scalar φ ∈ [0, 1] applied
to all components of the gradient. Several authors have since developed variants of
scalar limiting to reduce diffusion. For example, Batten et al [6] construct several
trial gradients, limit each using a scalar limiter, and then choose the one with the
largest norm. Park et al [28] extended the multi-dimensional limiting process (MLP)
introduced in [24, 33] from structured to unstructured meshes, and use an enlarged
stencil in the limiting process.

For unstructered triangular grids, several approaches have been suggested to re-
place the scalar limiter with a more multi-dimensional approach, rather than simply
reducing the length of an initially constructed gradient [21, 22, 30, 12, 25]. Addition-
ally, ENO/WENO-type schemes have been used successfully on unstructured grids
[1, 14, 19, 27]. However, none of these methods can be easily extended to cut cells
without compromising the resolution of the solution or at great expense. To date, the
scalar limiter is typically used on cut cells, as well as remaining the most commonly
used limiter in practice for triangular grids.

In this paper we follow the suggestion in [8] and develop a two-dimensional limiter
suitable for cut cells and, more generally, any type of distorted cells. It limits the
components of the gradients in the x and y directions separately, leading to a less
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diffusive method than a scalar limiter provides. Note that such a vector limiter (φx, φy)
cannot be implemented using the standard method of sequentially limiting each edge
of a cell (or face in three dimensions), since changing the components of the gradient
individually rotates the gradient, whereas a scalar limiter just shortens its length.
After rotation the previously limited faces may no longer satisfy the monotonicity
requirements. Of course on the orthogonal (Cartesian) part of an embedded boundary
mesh the coordinate directions decouple, and limiting one direction has no effect on
the other.

To solve this problem we formulate the slope limiter as the solution to a linear
program (LP). In words, we try to retain as much of the initial gradient as possible
while satisfying monotonicity constraints. This is made precise in section 3. Overall,
this leads to many tiny LPs, whose efficient solution will be critical for this method
to be practical. The traditional LP usually has a very large number of unknowns. In
our case, i.e., in two space dimensions, the LP has only two unknowns φx and φy, but
we need to solve many of these small problems. We use the little known all-inequality
simplex algorithm1 that solves these tiny problems much more efficiently than the
simplex method for LPs in standard form, and is mathematically equivalent to it.
This more efficient variant is described in detail in Appendix B.

The idea of formulating a limiter as an optimization problem also shows up in
the work of others dealing with triangular and quadrilateral grids. Hubbard [20]
suggests using a quadratic program (QP) for limiting on triangular grids, enforcing
the reconstruction to stay within a designated ‘maximum principle region’. He finds
the optimal solution by evaluating all constraint intersections defining his maximum
principle region. In [21] Hubbard uses a similar approach of projecting the initial
gradient estimate onto a defined maximum principle region, but again he does not
provide a general solution algorithm.

Buffard & Clain [10] consider a least squares problem with the solution fulfilling
TVD constraints. They develop a solution strategy specific to their constraints on
a triangular grid which satisfies some minor geometric conditions. In [18], Hoteit et
al. develop a limiter for Discontinuous Galerkin methods on arbitrary unstructured
quadrangular and triangular grids based on [11]. They make use of least squares
problems with linear equality and inequality constraints and (unlike [20, 10]) suggest
a general optimization algorithm for their solution. However, solving a least squares
problem with (in-)equality constraints is significantly more expensive than solving an
LP – especially if the solution of the LP is achieved in the very efficient way suggested
in this work.

In this paper we reformulate and extend this optimization approach to slope
limiting to the more complicated geometry of a cut cell, and provide an efficient
solution algorithm. The paper is organized as follows. In section 2 we briefly review
the finite volume scheme and the cut cell method that provide the motivation for this
work. In section 3, we completely characterize the LPs used to enforce the limiting
and discuss how to solve them. We actually describe a family of limiters, depending
on the chosen monotonicity constraints. Sections 4 and 5 present computational
experiments in two space dimensions. We first show experiments for linear advection
on triangular meshes. The purpose of these results is to confirm general accuracy and
monotonocity properties and to be able to compare to well-known methods from the
literature. Then, in section 5 we present results solving the Euler equations on cut
cell meshes. The tests include a problem with an exact solution to be able to measure

1thanks to Margaret Wright for pointing us to it
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the error, and a non-linear problem with shocks to show robustness. For the problems
we tested, our method is two to five times more accurate than using a scalar limiter,
depending on the specific problem and the specific constraints used. We conclude
with some thoughts on extending this approach to three dimensions.

2. Embedded Boundary Finite Volume Schemes. Cut cells can have arbi-
trarily irregular shapes and aspect ratios, depending on how they are cut by a solid
object. Figure 3.3 shows cut cells with 2, 3, or 4 edge neighbors in addition to a
boundary segment. This makes finite volume schemes the method of choice, since
they are easily formulated independent of the shape of a cell, and so are often used
for meshes with heterogeneous cell types. The slope limited (rather than flux limited)
finite volume schemes are also preferred, since slope reconstruction and limiting has
a straightforward geometric interpretation: find a gradient that reconstructs a linear
function through the cell centroid without creating new extrema.

Many second-order finite volume schemes are based on the following steps:
1. Construct an initial gradient (Dx, Dy) on cell M .
2. Reduce the gradient to enforce monotonicity constraints (the limiting step):

• Scalar limiters reduce the gradient using the form φ(Dx, Dy).
• We will use a vector limiter giving a gradient of the form (φxDx, φyDy).

3. Compute left and right states at the midpoint of each edge, needed to solve
the Riemann problem.

4. Compute the numerical flux by solving the Riemann problem using these
states.

5. Evolve the solution to the next timestep (typically using a Runge-Kutta
method).

The particular details vary. For example, one can use a least squares approach
or a Green-Gauss method for the initial gradient construction. The gradient can be
based on the solution using face neighbors, vertex neighbors, or a combination of
both, usually depending on one’s choice of data structures and whether the scheme is
cell-centered or node-based. The choice of numerical flux function often depends on
the problem (van Leer is more robust, HLLC is less dissipative). TVD Runge-Kutta
schemes [16] have favorable non-linear stability properties and are finding increased
use. For a multi-stage Runge-Kutta scheme, steps 1-4 above are generally repeated
at every stage, but shortcuts can be taken where gradients and limiters are evaluated
less frequently (e.g. [21]). For steady-state solutions this shortcut is often taken.

If steady-state solutions are the goal, then the choice of integration scheme in time
is not as significant, since the order of accuracy in time will not matter. Furthermore,
one can use local time-stepping for steady-state flows, which allows a different ∆t
to be used in each cell, greatly accelerating the convergence to steady-state. This
is especially advantageous on a cut cell mesh. The straightforward scheme outlined
above can be used on the cut cells choosing ∆tj proportional to each cell volume Vj ,
and stability is retained without any extra work.

For time-dependent flows additional work must be done to preserve accuracy and
stability in the cut cells. The time-dependent computations with cut cells in section 5
use the h-box method [9] to retain stability for a full-sized ∆t based on the mesh size
h of the regular mesh cells. In other words, the CFL number is based on the stability
limit of the regular explicit finite volume scheme. This method uses special linear
combinations of the solution and gradient on the Cartesian mesh to populate the so-
called h-boxes. The h-box values are fed to the Riemann solvers for the cut cells, and
replace the standard left and right states usually taken from the cells adjacent to a
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cell edge.
For both the h-box simulations and the tests on triangular meshes, we need a

time-stepping scheme, for which we use a simple second-order TVD Runge-Kutta
method due to Gottlieb & Shu [16]. To solve ut = Lu, the two stage method is given
by:

u(1) = un + ∆tL(un),

un+1 =
1
2
un +

1
2

(
u(1) + ∆tL(u(1))

)
.

(2.1)

In all these variations of the basic finite volume method, our limiter works without
modification, once the choice of monotonicity constraints is made.

3. LP Limiting. This section contains the main contribution of this paper:
we formulate the two-dimensional LPs used for limiting and discuss their efficient
solution. Furthermore, we present two versions of the monotonicity constraints for
cut cells, which we call the standard formulation, and the relaxed formulation, and
discuss their pros and cons. We also present a positivity result. In the computational
experiments we also show results for some additional possibilities, demonstrating that
the LP limiter is really a limiter framework that can easily accomodate a variety of
constraints.

For concreteness, however, before we discuss the monotonicity constraints we dis-
cuss the formation of the initial pre-limited gradient. We use a standard least squares
approach [4], and solve an overdetermined linear system of equations. Consider a cut
cell M with centroid (xM , yM ) and cell value uM that has 3 neighbors with centroids
(xi, yi) and cell values ui, i = 1, . . . , 3, as shown in Figure 3.1. Then, the gradient
(Dx, Dx) is given by finding the least squares solution to min ‖r‖2 where

r =

x1 − xM y1 − yM
x2 − xM y2 − yM
x3 − xM y3 − yM

[Dx

Dy

]
−

u1 − uM
u2 − uM
u3 − uM

 . (3.1)

This formulation reconstructs linear functions exactly, and appears to be more accu-
rate on distorted meshes than the Green-Gauss approach [3, 2]. As noted above, we
would like to preserve the linearly exact property through the limiting step.

All edge neighbors of a cut cell are used in (3.1). However, if a cut cell has only
two edge neighbors, the diagonal neighbor is also used to compute the gradient.

Fig. 3.1. Slope reconstruction on yellow cell. Triangular cut cells with only two edge neighbors
use diagonal cell too.
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3.1. LP Formulation. To improve accuracy and reduce the numerical diffusion,
we limit the x and y components of the gradient (Dx, Dy) separately using scalars
φx, φy ∈ [0, 1]. The reconstructed solution in cell M can be written as linear function

u(x, y) = uM +
[
φxDx

φyDy

]
·
[
x− xM
y − yM

]
. (3.2)

Following [8], the limiter is formulated as a constrained optimization problem with
the goal of retaining as much of the unlimited gradient as possible while fulfilling the
monotonicity conditions. Using the l1-norm to measure the difference between the
limited and unlimited gradient, the objective function is given by

minimize |Dx − φxDx|+ |Dy − φyDy|
= (1− φx)|Dx|+ (1− φy)|Dy|
= −|Dx|φx − |Dy|φy + constant term,

(3.3)

where the constant term is |Dx|+ |Dy|. Formulating the constraints as linear inequal-
ities in (φx, φy), we very naturally end up with an LP of the form

min
φx,φy

−|Dx|φx − |Dy|φy subject to A

[
φx
φy

]
≥ b, (3.4)

with A ∈ Rk×2 and b ∈ Rk.
We investigate two different formulations for the constraints in the following.

3.1.1. Monotonicity Constraints – Standard Formulation. The standard
formulation can be viewed as a two-dimensional generalization of the minmod limiter.
In one space dimension minmod has the nice geometric interpretation of limiting the
gradient so that when reconstructing the solution in a cell to the neighboring centroid,
it should not exceed the neighboring cell average (for increasing data, or lie below it
for decreasing data).

Let j = 1, . . . , N be the neighbors of cell M where monotonicity conditions should
be enforced. These include all the edge neighbors, and in the case of the h-box scheme
on triangular cells, the diagonals too. Denote by (xj , yj) their centroid and by uj the
cell value. We want to enforce that the limited reconstruction when evaluated at the
neighboring centroid be bounded by uM and that centroid’s value, i.e.

min(uM , uj) ≤ uM +
[
(xj − xM )Dx

(yj − yM )Dy

]
·
[
φx
φy

]
≤ max(uM , uj), for j = 1, . . . , N. (3.5)

This situation is shown in Figure 3.1(left). This is equivalent to

if uM ≤ uj : −
[
(xj − xM )Dx

(yj − yM )Dy

]
·
[
φx
φy

]
≥ −(uj − uM ), (3.6a)[

(xj − xM )Dx

(yj − yM )Dy

]
·
[
φx
φy

]
≥ 0, (3.6b)

if uM > uj : −
[
(xj − xM )Dx

(yj − yM )Dy

]
·
[
φx
φy

]
≥ 0, (3.6c)[

(xj − xM )Dx

(yj − yM )Dy

]
·
[
φx
φy

]
≥ uj − uM . (3.6d)
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In other words, for every neighbor j we evaluate whether uM ≤ uj or whether uM > uj
and then add either inequalities (3.6a) and (3.6b) or inequalities (3.6c) and (3.6d) to
the constraints used in the LP (3.4). For example, if we assume uM ≤ u1, one row of
A is given by [−(x1−xM )Dx,−(y1− yM )Dy] with the corresponding entry in b equal
to −(u1 − uM ). In addition, A and b also capture the constraints 0 ≤ φx, φy ≤ 1.
The dimension of A and b in (3.4) depends on the number of constraints one wants
to enforce. Typically, k is on the order of 10 to 15.

3.1.2. Monotonicity Constraints – Relaxed Formulation. In one space
dimension, the monotonized central difference (MC) limiter [31] is less diffusive than
minmod. Geometrically, it reconstructs only to the cell edges, but still limits so that
the solution does not exceed the neighboring centroid. A two-dimensional general-
ization of this would reconstruct to the midpoint of a cell edge and then limit using
the neighboring centroid value. This is done e.g. in [6]. Note, however, on a non-
coordinate-aligned grid, this approach can potentially limit even linear solutions. For
example this can happen if the contour lines of the solution go from one cut cell center
to the neighboring centroid. On a non-aligned mesh the edge midpoint does not lie
on this line and is thus an extremum. Other situations where this can also happen
are depicted in Fig. 3.2.

Fig. 3.2. In the three situations depicted here, assuming linear data, if points A and B lie on the
same contour line, the edge midpoint C is an extremal point and will be limited (taken from [8]).

To reduce the likelihood of limiting a linear function, one could reconstruct to
the edge midpoints but limit using the max and min over all neighboring cells, not
just the solution from that edge neighbor as, e.g. suggested in [5]. Although this
variant can be less diffusive, it can still lead to limiting of a linear solution if the edge
midpoint does not lie in the convex hull spanned by the neighboring centroids. This
typically occurs for example in cut cells with triangular shape.

Therefore, instead of reconstructing to the edge midpoint, for the relaxed formu-
lation we will still reconstruct to the neighboring centroid but limit using the max
and min over all neighboring cells. Contrasting with (3.5) the constraints are

min(uM , u1, ... . . . , uN ) ≤ uM +
[
(xj − xM )Dx

(yj − yM )Dy

]
·
[
φx
φy

]
≤ max(uM , u1, . . . , uN ). (3.7)

These monotonicity constraints again lead to an LP of the form (3.4) with a different
matrix A of constraints. We will compare these two constraint formulations in the
computational experiments in section 5.
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3.1.3. Limiting at the boundary edge midpoint. In both formulations there
is still the question about whether to limit at the boundary segment. By definition,
a cut cell is at a boundary, so one has to deal with whether to apply a monotonicity
constraint and limit at the boundary edge midpoint. One possible approach is to
request that the reconstruction evaluated at the boundary edge midpoint lies in the
range of values given by the neighboring cells and the central cell, as in the relaxed
formulation. However, as succintly pointed out in [29], since the boundary edge
midpoint does not lie in the convex hull of these points this will surely lead to limiting
of linear functions.

We prefer not to put any constraints on the boundary edge midpoints other than
ensuring positivity for certain variables such as density and pressure when simulating
the Euler equations. For this purpose, the following inequality is added:

uM +
[
(xbdy − xM )Dx

(ybdy − yM )Dy

]
·
[
φx
φy

]
≥ 0, (3.8)

where (xbdy, ybdy) denotes the boundary edge midpoint. Later in this section and in
Appendix A we will discuss positivity more generally, and present a positivity result
for a two-dimensional problem with a planar boundary that relies on adding this
positivity constraint.

3.2. Solvability of LP (3.4). Following standard slope limiting practice, all
our LPs are formulated such that (φx, φy) = (0, 0) is a feasible point, i.e., that the
zero gradient fulfills all constraints. Therefore, there exists at least one feasible point.
Together with the fact that the feasible domain is bounded due to 0 ≤ φx, φy ≤ 1,
there must exist a bounded optimal solution to our LPs.

3.3. LP Solution. There is a considerable amount of literature on solving a
linear program. Most of it is aimed at LPs with hundreds of thousands of variables.
Our LP problems are small, but need to be solved fast, since they are solved on every
cut cell at every time step, or several times per step for a multi-stage scheme. Methods
designed for large problems may not be the best here.

Two standard methods for solving LPs are the simplex method and the inte-
rior point method (see e.g. Nocedal & Wright [26]). To be thorough we tried both
methods, but it is clear that the simplex method is more suitable, since:

• Starting point: For all monotonicity constraints considered here, the point
(φx, φy) = (0,0) is a corner of the admissible set and therefore a suitable
starting point for the simplex method. It is usually nontrivial, however, to
find a truly interior feasible starting point to be used for the interior point
method.

• Cost: Each iteration of interior point is considerably more expensive than an
iteration of the simplex method, and the interior point method did not take
fewer iterations than the simplex method in our tests.

The standard form for the simplex method in most textbooks is given by

min
x
dTx, subject to Fx = g, x ≥ 0. (3.9)

Eq. (3.4) can be transformed to this standard form by means of ‘slack variables’ and
the algorithm described in [26] can be used. However, this computation is fairly slow.

As suggested to us by Margaret Wright, there exists another version of the simplex
algorithm that can be used only if the constraints consist exclusively of inequality

7



constraints. This version is especially useful if the number of inequality constraints
is much larger than the number of variables, which is the case here. Mathematically,
the all-inequality form (3.4) and the standard form (3.9) are equivalent, but the
algorithm based on the all-inequality form is much faster for our problems. This
version is apparently not well known – the only description we know of is in Gill et
al. [15], which is currently out of print. Thus, we present the algorithm in Appendix
B, along with specific choices and pricing strategies used in our simulations.

3.4. Computational Cost of LP Limiter. The cost of the LP limiter is es-
sentially determined by the number of iterations needed to solve the linear program.
In all the two-dimensional cases we have run, including the standard and relaxed for-
muations as well as those in the next two sections, the average number of iterations
was between 2 and 3.5, and 2.5 iterations was typical. The maximum was always 6
or less, and we did not encounter any cycling issues for these small two-dimensional
problems. For both the scalar and LP limiter one first computes a least squares gra-
dient, so this part of the work is the same. For the problems we need to solve, one
iteration of the simplex method is very inexpensive: it requires the solution of two
two-by-two linear systems to determine the Lagrange parameter λ and the search di-
rection, and then computes the step length by checking each constraint for a possible
violation by the proposed step to be taken. This is more floating point computation
but is approximately equivalent in terms of data motion to the scalar limiter. Also,
the LP limiter is very cache friendly. Therefore we count one iteration of the simplex
method as roughly equivalent to the computational cost of the scalar limiter, and the
net cost of the LP limiter is 2.5 times the cost of the scalar limiter. Since our main
goal is to apply the LP limiter to cut cells, which are usually a small fraction of the
grid, this results in only a small increase in total computational time.

3.5. A Positivity Result. Since both the standard and the relaxed formulation
use the neighboring centroids for limiting and not the edge midpoints, we can not
conclude anything about the reconstructed value at the cell edges. One might worry
that the value at the edge midpoint might be lower than at the adjacent centroids, and
could therefore become negative. However, for cut cells in two dimensions, assuming
a planar surface for the solid body, a straightforward (but very tedious) geometric
analysis (not included here) shows that:

Lemma 1: All edge midpoints of a cut cell lie in the convex hull spanned by the
neighboring centroids and the cut cell’s boundary edge midpoint.

The setup for Lemma 1 is illustrated in Fig. 3.3(a). Since we use linear recon-
struction, the maximum and minimum value over this convex hull must be attained
at the corners. So for density and pressure for example, if all neighboring centroids
have positive values, and the boundary edge midpoint is positive due to constraint
(3.8), then the edge midpoints contained in the convex hull must also have positive
values.

The corners of the cut cells may not be positive. Edge midpoint positivity, how-
ever, is sufficient for the positivity result proved in Appendix A. There, if the cell
values at time tn are positive we show that under certain conditions the value in a
cut cell M is positive at time tn+1.

Note that the convex hull used in Lemma 1 includes the boundary edge midpoint,
since a positive constraint is applied there. Therefore this convex hull is different from
the one considered in section 3.1.2.
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(a) (b) (c)

Fig. 3.3. (a) shows a cut cell where the edge midpoints (marked in red squares) lie in the convex
hull spanned by neighboring centroids and the boundary edge midpoint (marked with black circles). (b)
shows a full Cartesian cell adjacent to a cut cell where the edge midpoint is not guaranteed to be positive
without special limiting. (c) illustrates the re-centering idea for limiting these cells.

3.6. Treatment of Neighboring Cartesian Cells. The first uncut Cartesian
cell adjacent to a cut cell has an irregular stencil and also needs special attention.
Using the LP limiter on these cells is possible but not optimal. First, the same
geometric analysis as used for Lemma 1 shows that for uncut Cartesian cells the edge
midpoints are not always contained in the convex hull of neighbors. An example is
given in Fig. 3.3(b). Therefore, additional positivity constraints would be needed.
Second, solving an LP on these cells would roughly double the number of LPs to solve,
since each cut cell is adjacent to a full Cartesian cell.

Instead, we use a re-centering idea [8, 23] to limit these cells and maintain pos-
itivity. We limit the cut cells first, and use the limited gradient in formulating the
constraints for the adjacent full cell. We refer now to Fig. 3.3(c). To limit the y com-
ponent of the gradient we treat the North and South face neighbors separately. Since
the North face is uncut the centroids align, and we can build the standard one-sided
difference quotient (uN − uA)/∆y. On the South face, however, the centroid S of the
cut cell is not aligned with A. Instead of using S for limiting we would like to use the
point S′ which has the same x coordinate as A. To recenter from S to S′ we make use
of the already known and fully limited reconstruction in the cut cell. Then we can
use the one-sided difference quotient (uA−uS′)/(y(A)−y(S′)) and apply the minmod
limiter to define the limited y-slope as

minmod

(
uN − uA

∆y
,

uA − uS′

y(A)− y(S′)

)
.

Even in the most extreme case of the slimmest triangle, the location of the re-
centered point S′ that aligns with the edge midpoint is inside the triangle and in
particular within the convex hull that guarantees positivity (again assuming a planar
boundary). Thus the solution at S′ is positive, since the cut cells have already been
limited. Since A and S′ are both positive, the edge midpoint will be too. Note that
this procedure does not guarantee that the solution at A when reconstructed to S will
not overshoot, only that the reconstructed edge value is positive. In this way it is
akin to the MC limiter at the cell edge rather than minmod. This procedure is also
linearity preserving.

3.7. Monotonicity Constraints for the H-Box Method. The h-box method
[17, 9] is an explicit time-dependent, fully second order finite volume scheme that
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allows the use of a time step appropriate for the regular cells even when updating an
arbitrarily small cut cell volume. Essentially it enlarges the domain of dependence
by increasing the stencil of a cut cell update in a very particular way to maintain
stability. Because of this increase in stencil, a cut cell can be used to compute the
flux for a cell that is not an edge neighbor but is diagonally adjacent on a regular
grid. Triangular cells in particular have only one neighbor in the x and y direction,
so it often happens that the cut cell has not been limited in the direction in which it
is used.

Fig. 3.4. The stencil for limiting the triangular cut
cell M in the h-box method is enlarged to include neigh-
bors D and E, even though they are not edge neighbors.
This is because M and its gradient is used to compute
the tangential component of the flux at the edge marked
with x in cell E, and so more effective limiting than what
is provided by cells A and C needs to be performed in
that direction.

For example, in Fig. 3.4 the edge
marked with an x uses the h-box state
QLξ in solving the Riemann problem to
compute the flux. This state is com-
puted from a linear combination of the
solution on the underlying Cartesian
grid, in this case from cells A and M.
The gradient ∇QLξ is also determined
from a linear combination of the gradi-
ents in A and M. The problem is that
the gradient in cell M only has one x
face (shared with cell C) in the neg-
ative x direction that provides (most
of) the limiting for the x component
of the gradient. This is not sufficient
to guarantee positivity at the flux edge
between cells A and E, which is further
away and in the positive x direction.

As a consequence, when using the
h-box method on triangular cells in conjunction with the LP limiter and the standard
formulation constraints, some of our tests did not maintain positivity. We note that
the much more diffusive scalar limiter did maintain positivity at the edge midpoints
of cell E. To ensure positivity at x, we add monotonicity constraints to the LP at
triangular cut cells for any neighbor in the 3 by 3 neighborhood of cells surrounding
cell M. In Fig. 3.4 this means that monotonicity equations for cells B, D and E are
added to the constraints for cell M. The additional equations are of the same form as
(3.6), exactly analogous to the conditions used for neighbors A and C. Note that cells
D and E do not participate in the initial computation of the least squares gradient.
This extra limiting for triangular cells works robustly in practice and was very easy
to incorporate into our flexible LP framework.

4. Computational Results on Triangular Meshes. In this section we present
numerical results on triangular meshes. The purpose of these tests is to confirm gen-
eral accuracy and monotonicity properties of the LP limiter as well as to compare
to some well-known methods from the literature [6, 21, 28]. The tests in section 4.1
demonstrate how the LP limiter can be viewed as a framework for a class of limiters
rather than as one specific limiter. For the case of cut cell constraints, we have already
discussed in sections 3.1.1 and 3.1.2 what choice we consider most suitable. Although
we have not done as extensive tests, we believe that for triangular meshes a suitable
choice of constraints depends strongly on the regularity of the grid. Thus, in this
section we show the performance of the LP limiter for a variety of constraints.
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(a) Grid A (b) Perturbed grid

Fig. 4.1. Two different grid types used in the triangular mesh tests - Grid A (from [21]), and a
randomized version with interior vertices perturbed by 15%× the mesh width.

4.1. Smooth Test Case. We first examine the accuracy of the LP limiter. We
solve the linear advection equation ut + λ1ux + λ2uy = 0 on the unit square [0, 1]2

with periodic boundary conditions using the smooth test function

u(x, y) = sin(2πx) sin(2πy). (4.1)

on what is called Grid A in the literature [21] (see Figure 4.1(a)). Following these
references, we choose λ = (−1, 2) and integrate until time T = 1. We use ∆t = 0.16∆x
with ∆x denoting the length of a horizontal or vertical triangle edge. This time step
constraint does not satisfy the assumptions for the maximum principles in [6, 28],
but it is stable and works fine for this smooth test case. (Results for ∆t = 0.05∆x
are qualitatively very similar). We use the second order TVD RK scheme (2.1) for
all tests, but point out that the Hancock scheme was used in [21] and a third order
TVD RK scheme was used in [28]. In tests with the Hancock scheme we had the same
qualitative results, but the latter results were more accurate since that scheme is less
diffusive. In all calculations we use the least squares approach (3.1) to calculate the
unlimited gradient.

We compare several variations of the scalar and LP limiter. To generalize our
notation slightly, we test both the standard and relaxed formulation of the limiter
using the adjacent centroid. In addition, we also test limiting at the edge midpoints,
using both standard and relaxed formulations, since this is a commonly used limiting
option. For this option the constraints are

ulower ≤ uM +
[
(xj,edgemid − xM )Dx

(yj,edgemid − yM )Dy

]
·
[
φx
φy

]
≤ uupper (4.2)

where triangle j shares an edge with triangle M , and (xj,edgemid, yj,edgemid) are the
coordinates of the edge midpoint. For the standard formulation ulower = min(uM , uj),
and for the relaxed formulation ulower = min(uM , u1, u2, u3) for all 3 neighbors. The
upper bound takes the max instead of the min.

Finally, we include the MLP limiter (version u1) [28] as a representative example
of newer limiters geared to triangles that fulfills a maximum principle. Using the above
terminology, the MLP limiter evaluates the linear reconstruction at the 3 vertices of
a triangle, and limits at each vertex using a scalar limiter so that it does not exceed
the max or min of the solution in all triangles sharing that vertex. The final scalar
limiter for the triangle is then chosen as the min of the three vertex limiters. This
results in a relatively large neighborhood used in the limiting process.
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Table 4.1
Results for grid A. Methods are ordered by performance. ‘Sc’ stands for scalar. ‘Peak’ of the

solution is given as an indication of accuracy and numerical diffusion.

Scheme Grid L1 order L∞ order Peak

Sc-standard-edgemid 642 × 2 4.07e-02 0.95 1.59e-01 0.66 0.8745
1282 × 2 2.17e-02 0.91 1.07e-01 0.56 0.9372
2562 × 2 1.19e-02 0.86 8.19e-02 0.39 0.9669

LP-standard-edgemid 642 × 2 5.62e-03 1.86 4.20e-02 1.25 0.9634
1282 × 2 1.42e-03 1.98 1.66e-02 1.34 0.9856
2562 × 2 3.54e-04 2.01 6.42e-03 1.37 0.9944

MLP 642 × 2 4.23e-03 2.10 3.40e-02 1.46 0.9648
1282 × 2 9.78e-04 2.11 1.25e-02 1.44 0.9878
2562 × 2 2.31e-04 2.08 4.38e-03 1.51 0.9958

Sc-relaxed-edgemid 642 × 2 3.55e-03 1.97 1.54e-02 1.54 0.9842
1282 × 2 8.85e-04 2.01 5.32e-03 1.53 0.9947
2562 × 2 2.19e-04 2.01 1.90e-03 1.48 0.9982

LP-relaxed-edgemid 642 × 2 3.53e-03 1.97 1.44e-02 1.54 0.9849
1282 × 2 8.82e-04 2.00 5.05e-03 1.51 0.9948
2562 × 2 2.19e-04 2.01 1.81e-03 1.48 0.9982

unlimited 642 × 2 3.42e-03 1.99 5.52e-03 2.01 0.9979
1282 × 2 8.57e-04 2.00 1.38e-03 2.00 0.9996
2562 × 2 2.14e-04 2.00 3.45e-04 2.00 0.9999

Table 4.1 shows the results for various limiters on grid A. We only show results
for reconstruction to the edge midpoint (except for the MLP limiter) since on this
regular grid all edge midpoints lie on the lines connecting neighboring centroids. We
note:

• ‘LP-standard-edgemid’ is significantly more accurate than ‘Sc-standard-edgemid’.
In particular the order of convergence differs,

• ‘LP-relaxed-edgemid’ is only slightly better than ‘Sc-relaxed-edgemid’ – but
the latter is already very close to the unlimited case,

• the LP limiter is at least as accurate as the MLP limiter.

To make the grid less regular we randomly perturb all interior nodes: we shift
their x- and y-coordinates by 0.15 · h· rand[-1,1] with rand[-1,1] denoting a random
uniformly distributed number from the interval [-1,1]. A very coarse example of the
resulting grid is shown in Figure 4.1(b). As a result of the pertubation, the edge
midpoints typically no longer lie on the lines connecting neighboring centroids.

The results of all the same experiments on the perturbed grid are shown in Table
4.2. We note:

• ‘LP-standard-edgemid’ is no longer 2nd order, since the limiter is no longer
linearity-preserving. But it is still significantly more accurate than ‘Sc-standard-
edgemid’,

• ‘LP-standard-centroid’ is linearity-preserving and shows close to 2nd order
convergence on finer grids. Note that on grid A, reconstructing to the centroid
to limit was worse than the edge midpoint since the distances were about twice
as large. Here, on the finer grids it is better to reconstruct to neighboring
centroids and preserve linearity,

• both ‘Sc-standard-edgemid’ and ‘Sc-standard-centroid’ are only 1st order,
• both ‘Sc-relaxed-edgemid’ and ‘LP-relaxed-edgemid’ are 2nd order indicating
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Table 4.2
Results for randomly perturbed grid. Methods are ordered by performance. ‘Sc’ stands for

scalar. ‘Peak’ of the solution is given as an indication of accuracy and numerical diffusion.

Scheme Grid L1 order L∞ order Peak

Sc-standard-centroid 642 × 2 6.60e-02 0.84 2.01e-01 0.76 0.8145
1282 × 2 3.70e-02 0.83 1.12e-01 0.85 0.8947
2562 × 2 2.07e-02 0.84 8.11e-02 0.46 0.9471

Sc-standard-edgemid 642 × 2 4.60e-02 0.83 1.52e-01 0.72 0.8732
1282 × 2 2.55e-02 0.85 1.17e-01 0.38 0.9295
2562 × 2 1.44e-02 0.82 7.80e-02 0.59 0.9661

LP-standard-edgemid 642 × 2 7.40e-03 1.60 4.25e-02 1.22 0.9625
1282 × 2 3.08e-03 1.26 1.99e-02 1.09 0.9841
2562 × 2 1.56e-03 0.98 1.29e-02 0.62 0.9936
5122 × 2 8.49e-04 0.87 8.99e-03 0.52 0.9972

LP-standard-centroid 642 × 2 2.03e-02 1.47 8.50e-02 1.18 0.9170
1282 × 2 6.74e-03 1.59 3.64e-02 1.23 0.9645
2562 × 2 1.96e-03 1.78 1.51e-02 1.27 0.9853
5122 × 2 5.95e-04 1.72 6.20e-03 1.29 0.9940

MLP 642 × 2 4.37e-03 2.10 3.54e-02 1.45 0.9637
1282 × 2 1.00e-03 2.12 1.33e-02 1.42 0.9874
2562 × 2 2.37e-04 2.08 4.83e-03 1.46 0.9957

Sc-relaxed-edgemid 642 × 2 3.64e-03 1.96 1.67e-02 1.57 0.9833
1282 × 2 9.07e-04 2.01 6.01e-03 1.47 0.9943
2562 × 2 2.24e-04 2.02 2.07e-03 1.54 0.9980

LP-relaxed-edgemid 642 × 2 3.64e-03 1.95 1.61e-02 1.59 0.9837
1282 × 2 9.06e-04 2.01 5.71e-03 1.50 0.9945
2562 × 2 2.24e-04 2.01 2.00e-03 1.51 0.9981

unlimited 642 × 2 3.50e-03 1.98 6.21e-03 1.98 0.9983
1282 × 2 8.76e-04 2.00 1.57e-03 1.98 0.9997
2562 × 2 2.19e-04 2.00 4.10e-04 1.94 1.0000

that all edge midpoints are contained in the convex hull of the neighboring
triangles’ centroids. The results are again very similar for these two limiters,

• MLP has a similar place in the ranking as for grid A.
In sum, these tests confirm that the LP limiter results in 2nd order convergence

for suitable choices of constraints. It gives significantly better results than the scalar
limiter for the relatively restrictive constraints (compare the ‘standard’-versions). For
the relaxed constraints, for which the scalar limiter is already relatively close to the
unlimited case on these relatively regular grids, we only see a slight improvement
using the LP limiter.

4.2. Discontinuous Test Case. For a discontinuous test case we advect a two-
dimensional square wave function

u(x, y) =

{
1 if (0.25 ≤ x ≤ 0.75) & (0.25 ≤ y ≤ 0.75),
0 otherwise.

(4.3)

The test setup is exactly the same as for the smooth test function. We use a time step
that satisfies the maximum principle in [6] of ∆t = 0.08∆x. We only show results
for grid A here. The results for the randomly perturbed grid are qualitatively very
similar.
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Table 4.3
Results for grid A. Methods are ordered according to performance. ‘Sc’ stands for scalar.

‘Min/Max’ of the solution is given as an indication of numerical diffusion and robustness.

162 × 2 322 × 2
Scheme min max min max

unlimited -0.1030 1.1727 -0.1139 1.1678

Sc-standard-edgemid 0.0004 0.8867 0.0000 0.9948

MLP 0.0003 0.9628 0.0000 0.9998

LP-standard-edgemid 0.0000 0.9836 0.0000 1.0000

Sc-relaxed-edgemid 0.0000 0.9984 0.0000 1.0000

LP-relaxed-edgemid 0.0000 0.9990 0.0000 1.0000

(a) exact solution (b) sc-strict-edgemid (c) LP-strict-edgemid

(d) MLP (e) sc-mm neigh-edgemid (f) LP-mm neigh-edgemid

Fig. 4.2. Solutions for discontinuituous test case on grid A with 2 · 642 grid cells. Contour lines go
from .1 to .9 by .1.

Table 4.3 shows the minimum and maximum value we observed for a variety of
limiters on grid A. All limiters satisfy (as expected) the maximum principle (except
of course the unlimited case which has large overshoots). The ‘LP-standard-edgemid’
leads to slightly better extrema than ‘MLP’. These results support the same ordering
of the limiters by performance as in the previous experiments.

Finally, Fig. 4.2 shows contour lines of the solution at T = 1 on a 642×2 grid for
the same set of limiters. As expected, ‘LP-standard-edgemid’ is significantly better
than ‘Sc-standard-edgemid’. The plots for ‘MLP’, ‘Sc-relaxed-edgemid’, ‘LP-relaxed-
edgemid’ are very comparable.
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5. Computational Results on Cut Cell Meshes. This section presents tests
using the embedded boundary method described in section 2, solving the two-dimensional
Euler equations. First we show results for a smooth steady-state test case, again com-
paring the accuracy of the LP limiter to the scalar limiter. We then use the LP limiter
in a time-dependent simulation of shocked flow diffracting around a cylinder. For this
case we use the h-box method in the cut cells, with the LP limiter applied on the
underlying Cartesian grid cut cells. In both cases the limiting is performed on the
primitive variables, not the conserved variables, and the van Leer Riemann solver is
used.

5.1. Smooth Test Case: Supersonic Vortex. We consider the case of invis-
cid, isentropic, supersonic flow between concentric arcs as presented in Aftosmis et al.
[2]. Since the flow is shock free and there is an analytic solution, we use this problem
to measure the accuracy of the LP limiter in the cut cells.

The cut cell grid is shown in Fig. 5.1. The simulations are initialized with
the exact solution and run to steady state using a multi-stage Runge-Kutta scheme
with local time stepping, so the scheme is stable in the cut cells. We use the same
parameters as [2], Mi = 2.25, inner radius 1.0, outer radius 1.43, and CFL number .9.

Fig. 5.1. The circular boundary is approx-
imated by a single line segment in each cut cell.
Only the interior cut cells are limited in the fol-
lowing tests, using either scalar or LP limiting.

This problem does not actually need to
be limited. We use it to measure how much
the solution accuracy degrades when lim-
iters are turned on. We only limit at the cut
cells. If all the Cartesian cells were limited
the interior error would dominate, and we
would not be able see the effect of using dif-
ferent limiters in the cut cells. Also, since
the solution is determined completely from
the inflow conditions, we specify the exact
fluxes into the first column of cells, and do
not limit these either. For the gradient re-
construction on fully regular Cartesian cells
with only Cartesian neighbors we use a cen-
tral difference formula. On Cartesian cells
adjacent to cut cells the least squares for-
mulation is used.

For the shaded cut cells of Fig. 5.1 we use either the scalar or LP limiter, and
compare to the unlimited results. Two different sets of constraints are again tested
for both the scalar and LP limiter:

• the ‘standard’ formulation, defined by (3.5),
• the ‘relaxed’ formulation, defined by (3.7).

We also include a positivity constraint at the boundary segment. Thus, when
applying the LP limiter, each LP has 4 + 2N + p constraints, where N is the number
of neighboring cells used for limiting and p is 1 for density and pressure and 0 for the
velocity variables.

Figure 5.2 shows the results in the L1 norm and L∞ norm. In both norms, the LP
limiter is considerably better than the scalar limiter using the same set of constraints.
The ‘LP-standard’ version is about 4-5 times more accurate than the ‘scalar-standard’
version. The ‘LP-relaxed’ version is on average about twice as accurate as the ‘scalar-
relaxed’ version in L1 and 4 times more accurate in L∞. Figure 5.2 also shows that
the ‘LP-relaxed’ version is very comparable to the unlimited version. Note in the error
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(b) L∞ error

Fig. 5.2. Error in density over the domain for standard and relaxed formulation of LP limiter. The
mesh width h on the horizontal axis denotes the length/height of a Cartesian cell. The unlimited results
show second order convergence in L1, and h3/2 in the max norm.

(a) scalar limiter (b) LP limiter

Fig. 5.3. Error in density using the scalar limiter (a) and LP limiter (b) in the standard formulation.
Only the cut cells (except first inflow cell) are limited. The grid uses h = (1.43/244) ≈ 0.0059. Red
represents overshoot, blue undershoot and green negligible error.

plots how the error is not smooth, which is expected since the grid is not smooth, and
there is no asymptotic error expansion for cut cells.

Figure 5.3 shows the actual error distribution for density for the scalar and LP
limiters, both using the ‘standard’ formulation. Red represents overshoots, blue un-
dershoots and green is negligible error with the same scale being used for both pictures.
As one can clearly see, the errors bounce between the two arcs with the error for the
scalar being considerably bigger than for the LP limiter version.

A frequently discussed issue with limiters for steady-state problems is the problem
of limiter chatter. When limiters start rattling convergence is stalled. Unfortunately,
the LP limiter still suffers from limiter chatter, although it kicks in later than for
the scalar limiter. (In previous work [8] we also found that more accurate numerics
somewhat improves convergence and delays the onset of chatter). The paper by
Venkatakrishnan [32] attributes limiter chatter to a conflict between monotonicity and
convergence to a steady-state. We see some of this with the LP limiter. If we loosen
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Table 5.1
Error in density using reconstruction to either the neighboring centroid or edge midpoint, both using

the ‘standard’ formulation.

h = 1.43/48 h = 1.43/60
Scheme L1 L∞ L1 L∞

LP – recon. to neighboring centroid 5.08e-04 1.27e-02 3.97e-04 1.55e-02

LP – recon. to edge midpoint 1.21e-03 8.30e-02 5.78e-04 5.65e-02

the constraints and allow some relative overshoot of the order of 10−3 convergence
improves, but at the cost of allowing new extrema. Also the LP limiter is not smooth.

We perform one final test comparing reconstruction to neighboring centroids vs.
edge midpoints. Table 5.1 shows results on two grid sizes, both showing that recon-
structing to centroids is somewhat better than reconstructing to edge midpoints. On
the coarser grid the difference is actually more pronounced.

5.2. Discontinuous Test Case: Shock Diffraction from a Cylinder. We
next consider the behavior of the LP limiter with discontinuities. We consider shock
reflection from a cylinder using the same setup described in [17]. The domain is [0, 1]2,
the cylinder has a radius of r = 0.15 and is centered at (0.5, 0.5). A Mach 2 shock
starts at x = 0.2. The state in front of the shock is given by ρ = 1.4, u = v = 0,
p = 1. The mesh for this computation was 302 by 302, and there were 364 cut cells
around the cylinder. For this problem all cells must be limited. We use MC limiter
in the regular Cartesian cells, and compare the use of scalar and LP limiter in the
cut cells employing the ‘standard’ constraints for both. The positivity constraint is
included for density and pressure in the cut cells.

Figure 5.4 shows contour lines of density at t=0.30 using the LP limiter. Overall,
the flow field looks identical since the MC Leer limiter is used over most of the domain,
and only the cut cell limiting differs. For a more detailed comparison, we plot the
values of density as a function of arc length around the boundary of the cylinder, on
two grid sizes. The curve starts at the high density region in front of the cylinder
and goes clockwise until it loops back to the starting cell. The fine grid results are
shown in the middle of Fig. 5.4, where both the LP and scalar limiter are plotted.
The maximum value at the peak in the LP solution is 4.11. For the scalar limiter it
is 3.90. This is an improvement of over 5%, for this small highly-peaked feature. The
figure on the right shows results from a coarser grid with mesh width h ≈ .008. Here
the difference between the limiters is even greater, and is slightly over 6%.

We also notice that the minimum density in the LP computations is also slightly
lower than the scalar versions. The high density in front of the cylinder would appear
to be the only place that the scalar limiter attains a higher value. However, comparison
to results from [17] as well as with results using even finer grids shows that the LP
solution is more accurate in this region too, and the scalar version converges to the
lower value of the maximum density here, with the single peak symmetrically located.

6. Conclusions. We have developed a vector limiter in two space dimensions
for non-coordinate-aligned meshes based on solving a tiny LP in every cell. The all-
inequality simplex method suggested in this paper is a very efficient way of solving
LPs with this structure. Overall, the LP limiter is roughly 2-3 times as expensive
as the scalar limiter. Limiting the x and y slope independently instead of using a
scalar limiter significantly increases the accuracy of the solution. In our tests, the
errors using the LP limiter are a factor of 2-5 times smaller than when using the
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(a) density contours (b) fine grid (c) coarse grid

Fig. 5.4. Simulation of shock diffraction around a cylinder: (a) shows density contours for the LP
limiter on a fine grid. (b) and (c) show the density as a function of arc length around the cylinder on a
fine and coarse grid, respectively. The LP limiter gives density at the sharp peak that is 5% higher than
the scalar limiter on the fine grid, and 6% higher on the coarser grid.

scalar limiter depending on the specific test and the monotonicity conditions chosen.
The main application for the LP limiter is to the highly irregular cut cells arising
for Cartesian embedded boundary meshes. For this case, we also proved a positivity
result for a planar boundary. Nevertheless, we have shown that the LP limiter works
well on triangular grids, too. One of the main strengths of the new LP limiter is
its flexibility in choice of monotonicity constraints, since it easily permits changing
constraints and adjusting the degree of limiting to the specific problem at hand.

The next step is to extend this to three space dimensions. In principle this should
be straightforward since we only increase the number of variables from two to three in
our LPs and add constraints for the additional neighbors. We can still use the same
all-inequality simplex method for their solution. Initial tests have found occasional
problems with cycling, however, which did not arise in two dimensions. The literature
has strategies (such as ‘Bland’s rule’ [13, 15]) for dealing with this, which we will
investigate. Also, since cut cell geometry in three dimensions is significantly more
complicated than in two dimensions, we might need to add additional constraints to
guarantee positivity. Fortunately, our framework is general enough to do this at little
additional cost. We expect the resulting improvement in accuracy, due to limiting
each of the three coordinate directions separately, to easily compensate for these
complications.

Acknowledgments. The authors would like to thank Margaret Wright for very
helpful discussions and introducing us to the all-inquality simplex method.

Appendix A. Sketch of Positivity Proof for Cut Cells.
Following the approach of Batten et al. [6] showing positivity for linear advection

on triangular grids, we sketch a positivity result for cut cells with LP limiting. We
consider the two-dimensional linear advection equation ut + λ1ux + λ2uy = 0. Let M
be a cut cell, where

(i) the gradient on cell M is limited using:
• the positivity constraint (3.8) at the boundary edge midpoint,
• neighboring centroids (not edge midpoints) using either the ‘standard’ or

the ‘relaxed’ version discussed in sections 3.1.1 and 3.1.2,
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(ii) the embedded boundary is planar,
(iii) the time step satisfies the CFL-like condition

∆t ≤ VM
6
∑
j:λ·nj≥0 λ · nj∆ej

, (A.1)

where VM denotes the volume of cell M , nj denotes the unit normal vector of
the j-th edge of cell M and ∆ej the length of that edge.

Then we can show:

Lemma 2: If the data at time tn are positive, i.e. uni ≥ 0 ∀ i, then un+1
M ≥ 0.

Proof. We show this in two parts, and make use of Lemma 1, which states that
the LP limiting procedure results in positive values at the edge midpoints for the
limited linear reconstruction ûM (x, y) = uM + (x− xM )φxDx + (y − ym)φyDy.
Part 1: We show

ML := max
i
ûM (mi) ≤ 6 unM , i = 1, . . . , k, (A.2)

where mi is the midpoint of the ith edge, and cell M has k edges including the
boundary edge.
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Fig. A.1. Geometric arguments lead to a
bound for maxi ûM (mi). The linear function
ûM is non-negative at all red squares and black
circles by assumption. Therefore its gradient
cannot be too step or it will violate one of the
positivity constraints in the other direction.

The main idea for deducing this (non-
optimal) bound becomes clear when consid-
ering Fig. A.1: We know by assumption and
Lemma 1 that the reconstruction ûM is posi-
tive at all neighboring centroids and all edge
midpoints, including the boundary edge mid-
point. If ûM (mi) grew too big for one of the
edge midpoints, then ûM would become neg-
ative on the ‘opposite’ side and would violate
a positivity constraint. For example, we can
deduce from centroids u2 and u3 that the re-
construction is positive at the left upper cor-
ner of the cut cell. Together with the values
at points m2 and m3 being positive, this im-
plies that the reconstruction is positive at the
line marked in yellow. For a 5-sided cell as
shown in the figure (3- and 4-sided cells are
treated similarly) xM−x(m2) ≥ 1

3∆x, where
xM and x(m2) are the x-coordinates of the
cut cell centroid and the point m2 respec-
tively. Furthermore, y(m3) − yM ≤ 1

2∆y,
i.e., when projecting the cut cell centroid onto the left cell edge, it would lie on the
yellow line. Therefore, the x-component of the gradient is bounded above by 3uM/∆x,
since otherwise the positivity on the yellow line would be violated. Similarly, we can
bound the y-component of the gradient from below by −3uM/∆y. Getting a lower
bound on the x slope and upper bound on the y slope is more tricky and usually
requires considering several constraints at the same time (e.g., m1 and m5). Contin-
uing in this fashion with a detailed analysis of the 3-, 4-, and 5-sided cut cells, the
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bound (A.2) can be derived.

Part 2: The standard finite volume update for scalar advection is

un+1
M = unM −

∆t
VM

k∑
j=1

Fj(ûM (mj), ûj(mj))

where ûM and ûj denote the limited reconstruction on cell M and neighboring cell j,
and

Fj(uL, uR) =

{
uL λ · nj∆ej if λ · nj ≥ 0,
uR λ · nj∆ej otherwise.

Using that ûj(mj) ≥ 0, j = 1, . . . , k, and the bound (A.2) on ML we get

un+1
M ≥ unM −

∆t
VM

k∑
j=1

Fj(ûM (mj), 0)

= unM −
∆t
VM

∑
j:λ·nj≥0

ûM (mj) λ · nj∆ej

≥ unM −ML
∆t
VM

∑
j:λ·nj≥0

λ · nj∆ej

≥ unM

1− 6
∆t
VM

∑
j:λ·nj≥0

λ · nj∆ej

 .
The time step constraint (A.1) on ∆t then guarantees that un+1

M ≥ 0.
The theorem given in [6] for triangles is overall very similar to Lemma 2 but uses

limiting at the edge midpoints and has the time step constraint

∆t ≤ V

3 maxj |λ · nj∆ej |
. (A.3)

The main differences in the proofs are:
• Bound for maxi û(mi): [6] exploits the midpoint quadrature rule for triangles

(i.e., that for a linear function the average of the values at edge midpoints
equals the cell average, and the fact that û(mi) ≥ 0 for all i) to deduce
maxi û(mi) ≤ 3 unM . For cut cells we have to go through a complicated
geometric analysis;

• Sum: by the divergence theorem, the term
∑
j:λ·nj≥0 λ · nj∆ej in the time

step constraint can be replaced by maxj |λ · nj∆ej | for triangular cells. This
is not possible for cut cells, which can have 4 or 5 sides as well.

Appendix B. All-inequality Simplex Method. A wonderful, detailed de-
scription of the all-inequality simplex method is found in Gill et al. [15]. Since that
book is out of print, and since this version of the simplex algorithm is not well known,
we summarize the steps of the method and give specifics about our implementation.

The idea is the same as in the regular simplex algorithm: If there is a (bounded)
solution to the linear program, then there must exist a vertex in the feasible region
that achieves that solution. We start examining a vertex, and go from vertex to
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vertex until we end up at the optimal one. The objective function value has to be non-
increasing during that procedure. The all-inequality form (3.4) can be mathematically
transformed to the standard form (3.9) using slack variables, but this greatly increases
the size of the matrix to be inverted at each iteration. It is this smaller matrix size
that makes the all-inequality version more efficient.

Consider an LP in the all-inequality standard form:

min
x

cTx subject to Ax ≥ b,

where c, x ∈ Rn, A ∈ Rm×n, b ∈ Rm, n ≤ m, and rank(A) = n. In our case n=2 and
m is typically 10–15. The simplex method is an iterative algorithm with

xk+1 = xk + αk pk, (B.1)

where the step length αk and the descent direction pk need to be determined. To
explain the algorithm, we introduce some notation:

• Working set Wk: Set of (exactly) n indices, each of which is the index of a
constraint that is active at xk.

• Working set matrix Ak: n×n matrix consisting of rows numbered ω1, . . . , ωn
of A, where Wk = {ω1, . . . , ωn}. We denote this

Ak =

a
T
ω1
...
aTωn

 , and bk =

bω1

...
bωn

 ,
where aTi denotes the ith row of A. Ak needs to be nonsingular.

• Set of decreasing constraints: For a given descent direction pk, the set of
decreasing constraints Dk is defined by

Dk = {i : aTi pk < 0}.

A vertex of the feasible set is nondegenerate if exactly n constraints are active at
this vertex. In that case, the working set Wk is uniquely determined. If more than
n constraints are active the vertex is degenerate. This is the case for our LPs, and it
can lead to problems. We discuss this issue later.

One iteration of the all-inequality simplex algorithm is given by:
Algorithm B.1. Let xk be a vertex of the feasible set satisfying Axk ≥ b and

let Wk be a working set such that Ak is nonsingular and Akxk = bk.
1. Calculate the Lagrange multipliers λk ∈ Rn by solving ATk λk = c.
2. If λk ≥ 0, STOP. In this case, the point xk is optimal.
3. Otherwise select q such that (λk)q < 0. This constraint will be removed from
Wk. (Details on which q to choose are given below.)

4. Calculate the descent direction pk from Akpk = eq, eq = qth coordinate vector.
5. Choose the step length αk to be taken along pk:

(a) Find the set of decreasing constraints along pk

Dk ← {i : aTi pk < 0}

(Note that by the definition of pk : aTi pk = 0 ∀i ∈ Wk, i 6= q.)
(b) If Dk = ∅, STOP. In this case, the problem is unbounded. (This will

never be the case for our special LPs, since the constraints 0 ≤ φx, φy ≤ 1
guarantee a bounded feasible domain.)

21



(c) For all i ∈ Dk calculate the maximum step length γi one can take before
violating constraint i:

γi ←
aTi xk − bi
−aTi pk

.

(d) Calculate the largest step length possible that doesn’t violate any con-
straints as

αk ← min
i∈Dk

(γi)

6. Update the working set
(a) xk+1 ← xk + αkpk
(b) Determine the set of blocking constraints Sk which contains all indices i

for which γi = αk.
(c) From Sk, choose a constraint t to be added to Wk

(d) Update the working set: Wk+1 ←Wk − {q}+ {t}
(e) Update the working set matrix: Ak+1 ← Akwith row t replacing row q of A.
(f) Update iteration count: k ← k + 1

To fully specify the algorithm we need to include:
• Starting point: Usually, it is non-trivial to find a starting point for this itera-

tion. For our specific LPs, however, we know that x0 = (0, 0), corresponding
to the fully limited, zero gradient, (i.e. a first order update), is a valid start-
ing point. We initialize W0 with the indices corresponding to the conditions
x1

0, x
2
0 ≥ 0. The corresponding matrix A0 is therefore the identity matrix and

in particular regular. Note that depending on how we define the monotonicity
constraints, we might start out at a degenerate vertex. Any constraint of the
form (assume WLOG uM ≤ uj)[

(xj − xM )Dx

(yj − yM )Dy

] [
φx
φy

]
≥ 0 (B.2)

will be active at this starting point.
• Constraint deletion/addition: For the constraint deletion, we take the index

corresponding to the most negative component of λk. The constraint addition
is uniquely defined if the vertex xk+1 is non-degenerate. However, this is in
general not the case for us. So if several constraints (that are currently not in
Wk) happen to block the step at exactly the same maximum step length αk,
we choose the one with the lowest index to enter the working set for Wk+1.

• Cycling/Degenerate vertices: The main problem with degenerate LPs is that
they could encounter ‘cycling’: The search direction is computed such that it
does not violate any of the constraints in the working set Wk \ q. However,
if a constraint j is active but not in the working set (which happens for a
degenerate vertex), one can end up with a search direction violating that
constraint. Therefore αk will be determined to be zero, j will be added to the
working set and one index will be removed. This can lead to a cycle. We note
that even though our LPs are degenerate, we have not seen any instances of
cycling in our two-dimensional test problems.

• Numerical issues: The search direction in Step 4 of Algorithm B.1 math-
ematically guarantees that aTi pk = 0 for i ∈ Wk, i 6= q. Consequently,
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i ∈ Wk, i 6= q, should never qualify for the set Dk calculated in Step 5a. Nu-
merically, however, aTi pk = δ with δ small but not identically zero. When cal-
culating the set Dk, we therefore don’t check whether aTi pk < 0 but whether
aTi pk < −10−11. For all two-dimensional test problems, this was sufficient to
ensure that an index i ∈ Wk that was supposed to stay in the working set
does not qualify for the set Dk.
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