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Abstract

We describe our approach to computing accurate solutions for time dependent fluid flows
in complex geometry. We use regular, embedded, Cartesian grids wherever possible. We
describe our adaptive mesh refinement algorithm and our strategy for treating geometric
complexity using non-body-fitted Cartesian grids. The trade-offs of block-structured vs.
unstructured data structures are presented. Several open problems are discussed that need
to be resolved both to automate and improve the accuracy of computations.

1 Introduction

Time dependent fluid flows can be quite complex. Some of the complexity is due to the
nonlinear behavior of the fluid, and some is due to complexity of the geometry. Either source
makes it difficult to simulate the behavior of the fluid in an automatic way.

In this paper we describe our approach towards alleviating these computational difficulties.
Our point of view is that there are a number of advantages to working on regular grids. We
describe two components of our work to illustrate this. The first component is the adaptive
mesh refinement algorithm (AMR), which is based on the use of locally uniform grid patches
superimposed on an underlying coarse grid. AMR is extremely beneficial for resolving the many
scales in time dependent complex flows. The error estimator used to trigger mesh refinement
is an important piece of this algorithm and will be discussed in detail.

The second element of our work is our approach to complicated geometries. We use regular,
embedded, Cartesian grids to discretize the space surrounding solid objects. These objects are
not generally aligned with the grid, and their boundaries may cut arbitrarily through the
mesh. This type of representation greatly automates the volume grid generation, which would
otherwise be difficult for extremely complicated domains. The use of adaptivity is critical in
this approach. The issue of data structures also comes up in this context. We summarize with
a wish list of remaining issues which will lead to robust and accurate solvers.
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2 Accuracy: A Simple Example

As much as possible we prefer to work on uniform block structured grids because we believe
they are more accurate, more efficient, and more flexible than alternatives. Numerical accuracy
on irregular grids remains poorly understood, and we provide a simple example to illustrate
this point. Efficiency and flexibility issues will be addressed after the description of the AMR
algorithm.

Accuracy on regular and irregular grids can be compared in one dimension using a simple
finite volume scheme. Consider the scalar advection equation ut + ux = 0, 0 ≤ x ≤ 1,
with periodic boundary conditions. The first order upwind scheme (Godunov’s method) on a
uniform grid is

un+1
i = un

i −
∆t

h
(un

i − un
i−1). (1)

Suppose we generate an irregular grid by taking random mesh widths hi ∈ [.9h, 1.1h], where
h is the spacing used on the regular grid for comparison. The notation for the irregular grid is
shown below.
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Since the mesh width is no longer constant, eq. (1) is generalized to insure conservation
with

un+1
i = un

i −
∆t

hi
(un

i − un
i−1) = Qun

i . (2)

The local truncation error (LTE) is obtained by plugging in the exact solution, here denoted
u(x, t), into the difference scheme. We find that u(xi, t

n+1) − Qu(xi, t
n) = ∆t · LTE, where

LTE = ux(
hi + hi−1

2hi
− 1) + O(∆t + h). (3)

If the mesh is smooth (i.e. hi = hi−1 + O(h2)), then the first term in parentheses is O(h),
and the method is consistent. However, for non-smooth meshes, the leading term is only O(1).
It would seem that the usual convergence analysis, where you take n steps making an error
∆t each step, n∆t = constant, would lead to O(1) errors. Nevertheless, as has been shown by
[24], the scheme does converge and manages to remain first order accurate. It is however less
accurate than the corresponding scheme on a regular grid with the same number of points.
Table 1 shows the results of a simple computational experiment with a Gaussian pulse initial
condition integrated until time t = 0.8 with ∆t/h = .8.

The results on the nonuniform grid show first order convergence, with the magnitude of
the error approximately 50% higher than the uniform grid case. We also note that restricting
cell size perturbations to within 10% of each other represents fairly mild variation within the
grid. (This is especially so in higher dimensions where economy frequently demands increased
stretching). The effect is more pronounced as the perturbation size increases. Table 2 shows
a comparison with cell size variations up to 25% of the average size. To show that the loss in
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N Uniform Grid Errors Non-uniform Grid (Perturbation < .1h)

L1 L2 L∞ L1 L2 L∞

20 13% 12% 13% 18% 15% 17%
40 7.2% 6.4% 7.2% 9.7% 8.6% 9.7%
80 3.7% 3.3% 3.8% 5.1% 4.5% 5.2%

160 1.9% 1.7% 1.9% 2.7% 2.4% 2.7%

Table 1: Percent relative errors using uniform grid and perturbed grid with perturbation
≤ 10%.

N Uniform 1.25h N Non-uniform Grid (Perturbation < .25h)

L1 L2 L∞ L1 L2 L∞

16 16% 14% 16% 20 24% 21% 23%
32 8.8% 7.8% 8.7% 40 13% 12 % 13%
64 4.6% 4.1% 4.6% 80 7.4% 6.5% 7.4%

128 2.4% 2.1% 2.4% 160 3.9% 3.5% 4.0%

Table 2: Comparison using uniform grid with larger mesh width, versus non-uniform grid with
larger perturbations.

accuracy is not just due to the larger cell sizes allowed by the perturbation, table 2 also shows
results computed on a regular grid but using the largest cell size allowed in the perturbed grid.
Even with the larger cell size, the error is still smaller on the uniform grid, and with fewer
points it is less expensive to compute as well.

For problems with discontinuous solutions, the question of order of accuracy is even harder
to answer. Here too however we prefer uniform grids. There is evidence that a discontinuity
has smaller phase errors on uniform grids than on irregular grids, since it can relax into a
discrete traveling wave. See references [19],[25] for some examples of this.

3 Adaptive Mesh Refinement

AMR was originally developed for inviscid, compressible flow [8], [7]. It has been extended
to solve Navier-Stokes equations, reacting flow computations, incompressible and low Mach
number equations, phase-field models and more [3],[14],[4],[18]. It has been applied on mapped
grids in both 2 and 3 dimensions [6],[21] where the refinement is still regular when viewed
in the computational domain. In the cases it has been applied, it offers orders of magnitude
savings in computational and storage costs over an equivalent uniformly refined grid.

The key element in our adaptive mesh refinement algorithm is the use of block-structured
locally refined grid patches to increase the resolution of an underlying coarser grid only where
needed. In this approach, certain grid cells at one refinement level are tagged as needing to be
in a finer level grid. Cells are then organized into rectangular grid patches, typically containing
several hundred to several thousand grid points per patch. Figure 1, taken from [23], illustrates
this procedure on an example where tagged cells around a circle are organized into 8 refined
grid patches.
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Figure 1: The schematic on the left shows grid cells tagged for refinement, with the locations
of the new grid patches indicated. On the right is a sample calculation taken from [23].

Note that some cells not tagged for refinement are also included in new fine grid patches.
Typically, 70% of the cells contained within grid patches are tagged; the remaining 30% are un-
tagged but still lie within the new patch boundaries. Even with this additional 30% overhead,
the total amount of storage used in this grid-based approach is less than that required by
a cell-based (unstructured) data structure, where the grid connectivity and node locations
frequently take on the order of 30 to 50 words per cell. With the block-structured approach,
this information is stored on a per grid basis, using less than 20 words per grid. For a three
dimensional calculation with 1000 grids, this overhead is still negligible. Thus, at its most
basic level, AMR can be viewed as an efficient memory manager.

Two factors unique to transient calculations make the AMR approach especially robust.
First, with time dependent calculations some sort of refinement history is generally needed so
that when the phenomenon needing refinement moves on, the mesh can be easily de-refined
without skewness problems. Unstructured methods using point insertion and deletion with
re-triangulation have to be careful or the interpolations after each refinement pass can be
expensive and diffusive. Both these problems are trivial with the block-structured approach.
A second benefit of AMR’s organization is that it easily allows subcycling in time, permitting
different time steps to be taken on different grids. Finer grids can take a time step appropriate
both for the local flow conditions and local cell size without imposing an unduly small timestep
on the rest of the calculation.

A complete AMR algorithm contains the following components:

1. time step controller

2. inter-grid communication to

a. provide boundary conditions for interior grids

b. insure conservation at grid interfaces

c. initialize the solution on new grid patches

3. error estimator - cell tagging strategy
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4. grid generation/patching algorithm

There are still open questions remaining with this approach. For incompressible flow, how
does one define a divergence free flow field when there is no global mesh defining the solution
at intermediate times? The use of anisotropic refinement of the grid blocks is an interesting
area that has not been explored. Deciding what criteria should be used to trigger the mesh
refinement is also important, and is discussed in the following section.

3.1 Error Estimation

One of the least understood parts of any adaptive approach is the method used to decide when
to refine the grid. While many ad hoc methods often work quite well, problems frequently
require manual tuning. Unfortunately, a sound theoretical basis for mesh adaptation for flows
with shocks does not yet exist.

We favor the use of local truncation error estimates as a basis for mesh refinement. There
is some theoretical foundation for this approach, since convergence results using smooth model
problems have shown rates that depend on the local truncation error. The recent work of
[20] contains a convergence result with mesh refinement and re-gridding that demonstrates the
dependence of global error on the local truncation error τ times a power of the mesh scale h.
Thus, reducing h where τ is large helps control the global error.

Our implementation of a local truncation error estimator is quite inexpensive and typically
accounts for less than a few percent of the total CPU time. The approach relies on the regularity
of structured grids, and is explained below assuming the difference scheme has the same order
of accuracy in space and time. (If this doesn’t hold, the estimator can be generalized to measure
each separately). In the example below, we illustrate the estimation of the local truncation
error for solving the scalar advection equation ut + ux = 0, 0 ≤ x ≤ 1 using Lax-Wendroff,

un+1
i = un

i −
∆t

2h
(un

i+1 − un
i−1) +

∆t2

2h2
(un

i+1 − 2 · un
i + un

i−1) = Qhun
i .

Here un
i represents the approximate solution at time t = n · ∆t at the point xi = i · h. The

exact solution will be denoted u(xi, t
n).

The local truncation error at time tn is

u(xi, t
n+1) − Qhu(xi, t

n) =
∆t3

6
uttt +

∆th2

6
uxxx + h.o.t. (4)

Note that if ∆t = Const · h, then the errors in time and space are the same order. (The same
holds true for second order upwind MUSCL-type schemes, but the form of the error is more
complicated). If two time steps are taken then to leading order the error is doubled,

u(xi, t
n+2) − QhQhu(xi, t

n) = 2 · (
∆t3

6
uttt +

∆th2

6
uxxx). (5)

The truncation error can be estimated without directly computing approximations to the
high order derivatives in (4), and in fact, without even knowing the exact form of the error.
First, a temporary grid coarsened by two in each space dimension is created and initialized
using cell-centered variables where xi+1/2 = xi+xi+1

2
and ūi+1/2 = ui+ui+1

2
. Let Q2h denote the

5



Lax-Wendroff operator on this grid with twice the mesh spacing. If the mesh ratio λ = ∆t
h

stays constant, then the truncation error of Q2h is

u(xi+1/2, t
n+2) − Q2hu(xi+1/2, t

n) = 8 · (
∆t3

6
uttt +

∆th2

6
uxxx) + h.o.t. (6)

The comparison

Q2
hu(xi, t

n) + Q2
hu(xi+1, t

n)

2
− Q2hu(xi+1/2, t

n) = 6 · (
∆t3

6
uttt +

∆th2

6
uxxx) (7)

is proportional to the leading term of the local truncation error. In words, the solution on the
fine grid is integrated twice and averaged, and then compared with one larger time step taken
on the averaged (coarsened) grid.

Eqn. (6) is implemented by calling the same integrator to take one step on a coarser
grid. Eqn. (5) is simply two steps of the usual scheme, applied to the usual grid. In our
implementation of this error estimator, one of the steps is the usual one used in the integration
of the pde; the second is thrown away. This makes the AMR program simpler, since for useful
integration steps other work is also performed (for example, boundary values are saved for
conservative matching with neighboring coarser grids, fine grids update coarser grids, etc.).

The reason this error estimator is inexpensive is that it is only applied on coarser level
grids. The finest level grid is not allowed to have any further refinements, so we don’t bother
to estimate the error there. Since coarser grids are much less work than the finer grids, this
adds little overhead. For example, for a typical refinement ratio of 4 in two dimensions, the
coarser grid has 1/16 the number of grid points and takes 1/4 as many time steps. If half the
domain were refined, the coarser level would take 1/32 the work of the finer level, or 3.2%.
Suppose the error were estimated every other coarse time step. For every 2 integration steps
on the coarse level, 1+1/4 wasted integration steps would be taken. The overhead would be
(5/8 × 1/32) = 1.8%.

Even with the Richardson error estimates, more choices need to be made. Which variable
should be examined in a system of equations? Should all variables use the same error threshold
in deciding whether to refine the mesh? How should this threshold be chosen? Typically, a
few time steps are taken to sample the magnitude of the error, and then the threshold can
be more reliably set. If the boundary difference scheme is not the same order as the interior
scheme, a separate procedure must be employed or the boundary cells will always be flagged.

This error estimation procedure assumes a smooth solution. To determine its behavior at
discontinuities, we consider a piecewise constant solution that jumps from a left state uL to
uR. Assume the discontinuity is aligned so that on the coarsened grid there is a middle state
uM = (uL + uR)/2.
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The coarsened grid integration step yields Q2huM = uM + λ
2
(uL − uR). Two steps on the

fine grid for the cells adjacent to the jump yield

Q2
h uL = uL + (λ − 5/4λ2

− λ3/2 + 3/4λ4) (uL − uR)
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Q2
h uR = uR + (λ + 5/4λ2

− λ3/2 − 3/4λ4) (uL − uR)

The error estimation procedure gives an estimate proportional to the discontinuity,

Q2h −
(Q2

huL + Q2
huR)

2
= (

−λ

2
+

λ2

2
) (uL − uR).

For strong shocks this will always trigger the refinement. Since it is not always necessary to
refine to the maximum level at shocks, a procedure to turn off the refinement must be included.
For the nonlinear Euler equations however, if a planar stationary shock is aligned with the grid
then (7) will predict no error, which is the case. If there is a reason to refine the shock it will
have to be triggered by some additional criteria.

Other procedures for deciding where to refine the grid, such as measuring the gradient of
the solution, are also easily seen to fail in certain cases. For example, in a simple test using a
shock tube, gradient estimates overly refine the majority of the rarefaction wave, whereas it is
the corners of the wave that need the extra resolution.

We conclude that the how-to of mesh adaptation is well-enough understood to be used
routinely. (Unfortunately, the software infrastructure for this is not as far along, but is im-
proving). A better understanding of where to refine the grid to control the error in the region
of interest is still a pressing issue.

4 Cartesian Non-Body-Fitted Grids

As with the adaptation algorithm, our approach to treating complicated geometry is based on
the use of regular grids as much as possible. We use a Cartesian mesh, rather than the body-
fitted alternatives of either structured hexahedral or unstructured tetrahedral grids [17], [2]. In
this approach, a physical object is simply ‘cut out’ from the underlying Cartesian grid, leaving
a border of irregularly shaped cells at the intersection between the grid and the geometry.
We call this a non-body-fitted grid because the faces of the intersected cells do not conform
to the surface but instead intersect it in an arbitrary manner. By sticking to Cartesian grids
and well-understood algorithms from computational geometry, very complex configurations
can be handled without the labor-intensive case-by-case analysis usually required [16]. Since
a Cartesian grid lacks the inherent resolution of a specially-constructed mapped coordinate
system, the use of mesh refinement (both solution adaptive and to accurately represent details
of the geometry) is crucial to the success of this approach. Figure 4 shows an example of
the type of complicated geometry that is representable with this approach. This particular
geometry was specified by 320,000 triangles in 82 separate components. The preprocessing
step of intersecting the separately defined components, retriangulating them, and removing
those in the interior of the geometry took under 4 minutes on an R4000 workstation (see [1]
for details).

Away from solid boundaries the Cartesian mesh is regular and locally uniform. Finite
difference/volume schemes are easily implemented and retain their full order of accuracy (in
smooth flow). Special difference formulas are used only at the solid boundaries and cut cell
faces, along with easy to compute geometric quantities such as cell face and volume centroids.
Since the grid is not smooth, it is very difficult to determine the order of accuracy of schemes
near the wall, as discussed in section 2. In [11] a model problem with a known solution is
used to numerically determine the order of accuracy. The results show that close to second
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Figure 2: Time dependent shock reflection from a double ramp using h-box method with
Cartesian grids. Density contours are shown.

order accuracy can be achieved. By improving the numerical accuracy at the cut cells near the
surface and developing anisotropic refinement strategies, further improvement in the efficiency
of this approach is possible.

Time dependent problems have an important additional requirement. Since cut cells may
be several orders of magnitude smaller than a regular cell, schemes that are stable using a
time step based on a full cell volume must be devised. Three approaches have been proposed
to date, but none of them is completely satisfactory. These approaches are the h-box method
[10], flux redistribution [12], and cell merging [22]. In [5] the Cartesian grid method was
extended to handle moving objects using an alternate form of cell merging. The h-box method
is the most accurate (somewhat less than second order) but is the most complicated, and has
only been implemented in two dimensions. It involves constructing auxiliary cells normal and
tangential to the boundary of the object in each cell, and intersecting these auxiliary cells with
the Cartesian mesh. A promising development along these lines is an operator split version
of the scheme, which appears to be much simpler to implement [15]. The second and third
approaches to time dependent problems are only first order, but they are easier to program.
Flux redistribution can also be viewed as a way to implement cell merging; however it is based
on a very diffusive first order method of computing the fluxes. Development of a fully second
order time dependent scheme that is stable at cut cells remains an open problem.

Figure 2 shows a computation of shock reflection off a double ramp using the h-box approach
with AMR. Three levels of grid refinement were used; the grids are outlined. This test problem
was part of the 1994 ICASE Workshop on Adaptive Methods.

At present, Cartesian non-body-fitted grids are used to compute only inviscid flow. A first
step towards extending this approach to viscous flow was taken in [13]. The development of a
viscous capability would greatly extend the applicability of the method.
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5 Data Structures

Non-body-fitted Cartesian grids are a natural extension of our philosophy of using regular
grids for purposes of adapting the mesh. An obvious question arises: are block-structured grid
patches still a natural data structure for realistic three dimensional geometries? The require-
ment of representing an inherently two-dimensional surface, which may be quite convoluted,
using three dimensional isotropic refinements blocked into patches may lead to storage ineffi-
ciencies. By comparison, one might initially think a code using cell-by-cell refinement along
with an unstructured data structure should have less overhead. In this section, we review
the algorithm used to generate the grid blocks and present results of numerical experiments
comparing the memory overhead of the two approaches.

The grid patch algorithm takes as input a set of tagged cells at a given level of refinement.
These cells are next grouped into clusters. Each cluster will become a grid patch at the next
level of refinement. The algorithm does not depend on how the cells were tagged: gradient
estimates, error estimates, geometry curvature, or a combination of the above can be used. The
patching algorithm uses a recursive bisection procedure. Initially, all tagged cells are enclosed
in one patch. If the patch is inefficient, the grid is divided in two by a plane parallel to a
coordinate direction. The efficiency of a patch is easily measured as

Efficiency =
# tagged cells

total # cells
.

The best subdivision is determined using a fast procedure based on signatures and edge
detection algorithms from computer vision [9]. In general, the signature of a function f in a
coordinate direction x is defined as

Σx =

∫
y

f(x, y)dy.

In our case, f can be viewed as a discrete binary function which is 0 or 1 depending on whether
the cell is flagged or not. The signature is then the number of flagged cells in each coordinate
direction. The rectangle is divided at an “edge” of the function f . Intuitively this is a transition
from a flagged cell region to a unflagged region. In the computer vision literature, edges are
detected as zeros of the second derivative of the signature. In a typical time dependent problem
where new grids are generated every few time steps, the grid generation algorithm takes less
than 1% of the total CPU time. The procedure is illustrated in figure 3.

We performed the following experiment to compare the overhead of the patched-based
refinement with the one that refines the grid on a cell-by-cell basis. Block structured grids
were generated by taking the grid produced by the cell-by-cell method as input, then processing
it with the blocking algorithm. All cells in the original mesh were refined to the same level
in the blocked case. Table 3 contains ratios of the total number of cells generated by the
blocking algorithm to the number of cells in the input mesh. Three cell-by-cell meshes were
used as input. Two of the input cases were from coarse and fine meshes generated for a simple
ONERA M6 wing, while a third mesh came from a more complex and realistic transport
aircraft configuration that included wings, flaps, and nacelles. The original input data set for
the M6 wing contained 280,000 cells in the coarser case and 1,200,000 in the finer grid case.
The complete aircraft has 2,000,000 cells. The input data had 8, 9 and 10 levels of refinement
respectively.
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Figure 3: Illustration of algorithm that subdivides an inefficient grid patch. Tagged cells are
marked with an “x”. The best location and direction to subdivide the cluster is shown with a
dotted line.

These results show that approximately twice as many cells are refined by the blocking algo-
rithm as in the cell-by-cell case. Since the storage overhead for the blocked grids is negligible,
and the overhead in the cell-by-cell case is at least 10 words per cell (and often on the order
of 50), the total storage is still less. Of course other factors impact any comparison of overall
efficiency. The blocked grids have twice as many cells to integrate, but the cell-by-cell mesh is
hindered by indirect addressing, which is approximately twice as slow. Vector lengths will also
play a role in the patch case. In future investigations we plan a more detailed investigation
to quantify these trade-offs. However, these results make it clear that the block structured
approach to AMR remains quite competitive for realistically complex problems.

6 Conclusions

In this paper we have surveyed our approach to adaptive mesh refinement and to Cartesian
grid generation for complex configurations. Our goal in both these efforts is to perform high
quality computations in as automatic a fashion as possible. While the last ten years have seen
a lot of progress in this direction, we have tried to sketch the many difficulties remaining.

Efficiency ONERA M6 (coarse) ONERA M6 (fine) Full Aircraft

45% 2.3 2.2 2.1
50% 2.1 2.0 2.0
55% 2.0 1.7 1.8

Table 3: Ratio of total number of cells as a function of blocking efficiency parameter.
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