SMT-Based Array Invariant Generation™

Daniel Larraz, Enric Rodriguez-Carbonell, and Albert Rubio
Universitat Politecnica de Catalunya, Barcelona, Spain

Discovering loop invariants is an essential task for verifying the correctness
of programs or computer systems in general. In this talk we present a technique
for generating universally quantified loop invariants over array variables.

Namely, programs are assumed to consist of unnested loops and contain linear
expressions in assignments, if and while conditions, as well as in array accesses.
Now, let @ = (Ay, ..., A,,) be the array variables of a program. Given a positive
integer k£ > 0, our method generates invariants of the form

Va : 0 S (&% S C(ﬁ) —1: Ei’zlﬂf:laij/li[dija + 5”(@)] + B(@) + baOL S 0

where C, &;; and B are linear polynomials with integer coefficients over the
scalar variables of the program ¥ = (v1,...,v,) and a;;,dij, b € Z, for all
ie{l,...,m}and j € {1,...,k}. This family of properties is quite general and
allows us to handle a wide variety of programs for which we can automatically
generate non-trivial invariants.

Unlike previous approaches based on abstract interpretation or first-order
theorem proving, our method builds upon the so-called constraint-based invariant
generation approach. This method produces linear invariants, i.e., invariants
expressed as linear inequalities over scalar variables, by transforming the problem
of the existence of an inductive invariant for a loop into a satisfiability problem in
propositional logic over non-linear arithmetic, thanks to Farkas’ Lemma. Despite
the potential of the method, its application has been limited so far due to the
lack of good solvers for the obtained non-linear constraints.

However, recently significant progress has been made in SMT modulo the
theory of non-linear arithmetic. In particular, the Barcelogic SMT solver has
shown to be very effective on finding solutions in the presence of non-linear inte-
ger arithmetic. It can also combine integers and reals, which is very useful when
handling the constraints generated by the constraint-based invariant generation
approach.

Our techniques have been successfully implemented in the Cpplnv tool. By
using the Barcelogic SMT solver as a back-end, it automatically generates in-
ductive loop invariants (both linear scalar invariants as well as array invariants)
for programs written in a subset of the C++ language. We believe that the
combination of our tool with some static analysis to infer the set of potentially
interesting invariants for proving some given property would be very useful in
the automation of the verification process.

* This work has been partially supported by the Spanish MEC/MICINN under grant
TIN 2010-68093-C02-01



