
Augmenting formal development

with use case reasoning

(abstract)

Alexei Iliasov

Newcastle University, UK

State-based methods for correct-by-construction software development rely
on a combination of safety constraints and refinement obligations to demonstrate
design correctness. One prominent challenge, especially in an industrial setting,
is ensuring that a design is adequate: requirements compliant and fit for purpose.
The paper presents a technique for augmenting state-based, refinement-driven
formal developments with reasoning about use case scenarios; in particular, it
discusses a way for the derivation of formal verification conditions from a high-
level, diagrammatic language of use cases, and the methodological role of use
cases in a formal modelling process.

The approach to use case reasoning is based on our previous work on a
graphical notation for expressing event ordering constraints [2, 1]. The extensions
is realised as a plug in to the Event-B modelling tool set - the Rodin Platform
[3] - and smoothly integrates into the Event-B modelling process. It provides
a modelling environment for working with graph-like diagrams describing event
ordering properties. In the simplest case, a node of such graph is an event of the
associated Event-B machine; an edge is a statement about the relative properties
of the connected nodes/events. There are three main edge kinds - ena, dis and
fis - defined as relations over Event-B events.

U = {f 7→ g | ∅ ⊂ f ⊆ S × S ∧ ∅ ⊂ g ⊆ S × S}
ena = {f 7→ g | f 7→ g ∈ U ∧ ran(f) ⊆ dom(g)}
dis = {f 7→ g | f 7→ g ∈ U ∧ ran(f) ∩ dom(g) = ∅}
fis = {f 7→ g | f 7→ g ∈ U ∧ ran(f) ∩ dom(g) 6= ∅}

where f ⊆ S × S is a relational model of an Event-B event (we treat an event
as a next-state relation). These definitions are converted into consistency proof
obligations. For instance, if in a use case graph there appears an ena edge
connecting events b and h one would have to prove the following theorem (see
[2] for a justification).

∀v, v′, pb · I(v) ∧ Gb(pb, v) ∧ Rb(pb, v, v′) ⇒ ∃ph · Gh(ph, v′) (1)

A use case diagram is only defined in an association with one Event-B model,
it does not exist on its own. The use case plug in automatically generates all the
relevant proof obligations. A change in a diagram or its Event-B model leads
to the re-computation of all affected proof obligations. These proof obligations
are dealt with, like all other proof obligation types, by a combination of au-
tomated provers and interactive proof. Like in the proofs of model consistency

f g f g f g

P(v)f g

f

D(v)

1) 2) 3)

4) 5) 6)

f

g

h

7)

f

f

g

h

8)

Q(v)
h

R(v)

1) f ena g 5) skip(C), C = {v | P (v)}
2) f dis g 6) f(C), C = {v | D(v)}
3) f fis g 7) f ena g ∨ f ena h

4) f ena q.g ∧ q.g ena r.h 8) f ena g ∧ f ena h

q = {v | Q(v)}, r = {v | R(v)}

Fig. 1. A summary of the core use case notation and its interpretation.

and refinement, the feedback from an undischarged use case proof obligation
may often be interpreted as a suggestion of a diagram change such as an ad-
ditional assumptions or assertion - predicate annotations on graph edges that
propagate properties along the graph structure. The example in the next section
demonstrates how such annotations enable the proof of a non-trivial property.

The use case tool offers a rich visual notation. The basic element of a diagram
is an event, visually depicted as a node (in Figure 1, f and g represent events).
Event definition (its parameters, guard and action) is imported from the associ-
ated Event-B model. One special case of node is skip event, denoted by a grey
node colour (Figure 1, 5). Event relations ena,dis,fis are represented by edges
connecting nodes ((Figure 1, 1-3)). Depending on how a diagram is drawn, edges
are said to be in and or or relation (Figure 1, 7-8). New events are derived from
model events by strengthening their guards (a case of symmetric assumption and
assertion) (Figure 1, 6). Edges may be annotated with constraining predicates
inducing assertion and assumption derived events (Figure 1, 4). Not shown on
Figure 1 are nodes for the initialisation event start (circle), implicit deadlock
event stop (filled circle) and nodes for container elements such as loop (used in
the coming example). To avoid visual clutter, the repeating parts of a diagram
may be declared separately as diagram aspects[2].

References

1. Alexei Iliasov. Augmenting Event-B Specifications with Control Flow Information.
In NODES 2010, May 2010.

2. Alexei Iliasov. Use case scenarios as verification conditions: Event-B/Flow approach.
In Proceedings of 3rd International Workshop on Software Engineering for Resilient

Systems, Septembre 2011.
3. The RODIN platform. Online at http://rodin-b-sharp.sourceforge.net/.

