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Abstract—We show how to verify the correctness of transactional
memory implementations with a model checker. We show how to
specify transactional memory in terms of the admissible interchange
of transaction operations, and give proof rules for showing that an
implementation satisfies this specification. This notion of an admissible
interchange is a key to our ability to use a model checker, and lets us
capture the various notions of transaction conflict as characterized by
Scott. We demonstrate our work using the TLC model checker to verify
several well-known implementations described abstractly in the TLA+

specification language.

Index Terms—Verification, transactional memory, model checking,
HTM, STM, TLA+, TLC.

I. INTRODUCTION

The most important development in processor architecture in the
last decade has been the shift from single-threaded, single-core
processors to multi-threaded, multi-core processors. Taking advantage
of these new processors, however, requires rewriting our applications
as multi-threaded programs, and multi-threaded programs are hard
to write, especially when several threads need to access the same
data. Conventional approaches employ locks to regulate access to
shared data, but locks are subtle and hard to use correctly. Some
well-known problems with locks are priority inversion, which can
occur when a low priority thread holds a lock needed by a higher
priority thread; and deadlock, which can occur when several threads
attempt to acquire the same set of locks in a different order.

Transactional memory [1] is a programming abstraction intended
to simplify the synchronization of conflicting memory accesses (by
concurrent threads) without the headaches associated with locks. A
transaction is a sequence of memory operations that appears to be
performed atomically with respect to other memory operations. The
idea is that if a concurrent program is written so that each access
to a shared data structure is encapsulated within a transaction, then
all reads and writes to the data structure will appear to occur in
isolation in some sequential order, and the established theory of
database serializability will help us reason about the correctness
of such programs. Early hardware implementations of transactional
memory were limited to relatively small transactions, but recent
software implementations (sometimes depending on limited hardware
support) have managed to remove this restriction.

Larus and Rajwar [2] survey nearly 40 implementations of trans-
actional memory in their comprehensive book on the subject, which
differ in many dimensions. An implementation may employ eager
version control (or direct update) in which a transaction modifies an
object in place and restores the object to its original value upon abort,
or may employ lazy version control (or deferred update) in which a
transaction modifies a private copy of the object and overwrites the
object with this private copy upon commit. An implementation may
support weak atomicity or strong atomicity depending on whether
the implementation guarantees transactional semantics only to object
references within transactions or to all object references (even those
outside of transactions). Different implementations may use very
different approaches to detecting conflicts among transactions such
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as lazy or eager invalidation, and support many different progress
conditions in the presence of contention such as wait freedom, lock
freedom, or obstruction freedom.

Scott [3] wrote a widely-cited paper that was the first to charac-
terize transactional memory in a way that captured and clarified the
many semantic distinctions among the most popular implementations.
His approach was to begin with classical notions of transactional
histories and sequential specifications, and to introduce two important
notions. The first was a conflict function which specifies when two
transactions cannot both succeed (a safety condition). The second
was an arbitration function which specifies which of two transactions
must fail (a liveness condition). Scott’s work went a long way
toward making sense of transactional memory semantics, but his work
was purely semantic and did not immediately facilitate mechanical
verification of implementations.

In this paper, we present an abstract model for specifying trans-
actional memory semantics inspired by Scott’s original work, and a
proof rule for verifying that an implementation satisfies a transac-
tional memory specification. The premisses of our proof rule can be
checked with a model checker, and we demonstrate the method by
modeling three well-known transactional memory implementations
in TLA+ and proving their correctness with the model checker TLC.
The essential contribution of this paper that enables mechanical
checking is the notion of an admissible interchange used to model
the approaches to conflict detection and resolution characterized by
Scott in his paper. The work we report here is preliminary, but we
hope it will form the basis for analysis of well-known issues like
privatization and granular lost update in addition to implementation
correctness, and for analysis of the interaction between hardware and
software support for transactional memory.

The rest of this paper is organized as follows. We begin with
preliminary definitions related to transactions and transaction se-
quences in Section II, and we define an admissible interchange
in Section III. This definition is the key to our ability to model
check transactional memory implementations, and we show how
Scott’s transaction conflict classes can be characterized in terms of
admissible interchanges. We give our specification of a transactional
memory and what it means for an implementation to be correct in
Section IV, and we give proof rules for verifying implementation
correctness in Section V. We sketch the correctness proofs for several
implementations of transactional memory in Section VI, and show
how to use a model checker to verify their correctness in Section VII.
Finally, in Section VIII, we end with some conclusions and open
problems.

II. TRANSACTIONAL SEQUENCES

Assume n clients that direct transactional requests to a
memory system, denoted by memory. The requests that can be issued
by client i are:

• �i – An open transaction request.
• Ri(x) – A read request from address x ∈ N.
• Wi(y, v) – A request to write the value v ∈ N to address y ∈ N.
• �i – A close transaction request.
The memory provides a response for each request. For requests

that are rejected (e.g., a �i request while client i has a pending
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transaction) the memory returns an error flag. For requests that are
accepted, and do not require a special response (e.g., �i when
there is no pending i transaction), the memory responds with some
acknowledgment. For accepted requests that require a response the
memory provides a return value. For Ri(x), it is a natural number
indicating the value of the memory at location x. For �i, the memory
responds with “commit” or “abort,” according to its decision on
whether the transaction should be committed or aborted.

Let Ei : {�i, Ri(x, u),Wi(x, v),�i, ��i} be the set of
observable events associated with client i, where ��i represents
the closing of a transaction that has been aborted (while �i

represents the closing of a transaction that has been committed).
We consider as observable only requests that are accepted, and we
include the memory’s response for Ri(x) and �i requests (rather
than the requests themselves). In this paper we also mandate that
the order in which the memory issues its commit responses (and
therefore the order of observable �i events) uniquely determines the
order of committed transactions. Let E be the set of all observable
events over all clients, i.e., E =

⋃n
i=1 Ei.

Note that we have defined Ri(x) to be the request corresponding
to the response Ri(x, u), and that we are abusing notation by writing
�i, Wi(y, v), �i to denote both a request and a corresponding
response when the meaning is clear from context. We will also denote
responses Ri(x, u) and Wi(x, v) by Ri and Wi when the exact
values of the parameters are unimportant or are clear from context.

Let σ : e0, e1, . . . , ek be a finite sequence of observable E-events.
The sequence σ is called a well-formed transactional sequence (TS
for short) if the following conditions hold:

1) For every client i, let σ|i be the sequence obtained by projecting
σ onto Ei. Then σ|i satisfies the regular expression T ∗

i , where
Ti is the regular expression �i (Ri+Wi)

∗(�i + ��i). For each
occurrence of Ti in σ|i, we refer to the first and last elements
as matching. The notion of matching is lifted to σ itself, where
�i and �i (or ��i) are matching if they are matching in σ|i;

2) The sequence σ is locally read-write consistent: i.e, for any
subsequence Wi(x, v)ηRi(x, u) in σ, where η contains no
event of the form �i, ��i, or Wi(x,w), we have u = v.

We denote by T the set of all well-formed transactional sequences,
and by pref (T ) the set of prefixes of such sequences.

Notice that the requirement of local read-write consistency can
be enforced by each client locally. To build on this observation, we
assume that, within a single transaction, there is no Ri(x) following a
Wi(x), and there are no two reads or two writes to the same address.
As a result, we can assume that the sequence of events constituting
a single i-transaction has the form

�i Ri(x1, u1) · · ·Ri(xr, ur)Wi(y1, v1)· · ·Wi(yw, vw){�i, ��i}

where the addresses in each of the sequences x1, . . . , xr and
y1, . . . , yw are pairwise distinct. With this assumption, the require-
ment of local read-write consistency is always (vacuously) satisfied.

The TS σ is called atomic if:

1) It satisfies the regular expression (T1 + · · · + Tn)∗. That is,
there is no overlap between any two transactions.

2) The sequence σ is globally read-write consistent: for any
subsequence Wi(x, v)ηRj(x, u) in σ, where η contains �i but
contains no event Wk(x, ·) followed by an event �k, it is the
case that u = v.

III. INTERCHANGING EVENTS

When is a TS σ a correct behavior of a transactional memory
implementation? It is natural to say that σ is correct if it can be
transformed into an atomic TS by first removing from it all events

that belong to aborted transactions, then freely interchanging adjacent
events that belong to committed transactions. This correctness crite-
rion is known as serializability. Since we require that the order of
�i events determines the order of committed transactions, we choose
to disallow the interchange of � events. This narrower criterion is
known as strict serializability, and we will further refine it throughout
the rest of this section.

Strict serializability, by itself, is far from a satisfactory correctness
criterion for TM implementations. Let us say that transactions Ti

and Tj overlap when �i precedes �j and �j precedes �i, and
suppose we wish to specify a class of implementations that forbid two
overlapping transactions to both commit. Strict serializability is much
too generous a specification, as many strictly serializable transactional
sequences contain overlapping transactions. Scott [3] introduced
conflicts to describe the TS’s characteristic of different classes of
implementations (in Scott’s terminology, our hypothetical class of
implementations avoids overlap conflicts). We will describe conflicts
by restricting which events can be exchanged during serialization.
To specify the class of implementations that forbid overlapping
transactions, for example, we will add the restriction that adjacent
� and � events cannot be interchanged during serialization: thus no
TS with overlapping events will be strictly serializable.

Before introducing our notion of admissible interchanges, we
briefly describe Scott’s six classes of conflicts. For a TS σ, let ≺σ

denote the precedence relation of events in σ, meaning that ei ≺σ ej

if ei occurs before ej in σ. We omit the σ subscript when its identity
is clear from the context.

1) A TS σ has an overlap conflict if for some transactions Ti and
Tj , we have �i≺�j and �j≺�i.

2) A TS σ has a writer overlap conflict if two transactions overlap
and one performs a write before the other terminates, i.e., for
some Ti and Tj , we have �i≺Wj ≺�i or Wj ≺�i≺�j .

3) A TS has a lazy invalidation conflict if commitment of one
transaction may invalidate a read of the other, i.e., if for some
transaction Ti and Tj and some memory address x, we have
Ri(x),Wj(x) ≺�j≺�i.

4) A TS has an eager W-R conflict if it has a lazy invalidation
conflict, or if for some transactions Ti and Tj and some
memory address x, we have Wi(x) ≺ Rj(x) ≺�i.

5) A TS has a mixed invalidation conflict if it has a lazy invali-
dation conflict, or if for some transaction Ti and Tj , and some
memory address x, we have Ri(x) ≺Wi(x),Wj(x) ≺�i,�j .

6) A TS has an eager invalidation conflict if it has an eager W-R
conflict, or if for some transaction Ti and Tj and some memory
address x, we have Ri(x) ≺Wj(x) ≺�i.

Let c be some conflict (e.g., “write overlap”). We denote by Fc

the resolving predicate describing the interchanges that may resolve
a c-conflict. For a pair of events 〈ei, ej〉 that belong to transactions
Ti and Tj (where i �= j), we denote by 〈ei, ej〉 |= Fc the fact that
Fc implies that the interchange 〈ei, ej〉 may resolve a c-conflict. In
Fig. 1 we define |= Fc for each of Scott’s conflicts c and every pair
〈ei, ej〉. In the full version of this paper we describe the language
used to define the F ’s.

Given a conflict c and the resolving predicate Fc that corresponds
to it, a TS σ is said to be serializable with respect to Fc if it
can be transformed into an atomic TS by a sequence of admissible
interchanges (that do not satisfy Fc). Note that this definition is not
equivalent to Scott’s definition of c which, in some cases, may imply
interchanges that are not admissible (that is, that satisfy Fc).

The sequence σ̃ is called the purified version of TS σ if σ̃ is
obtained by removing from σ all aborted transactions, i.e., removing
the opening and closing events for such a transaction and all the read-
write events by the same client that occurred between the opening and
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Conflict (c) 〈ei, ej〉 |= Fc if:

Overlap (o) ei =�i ∧ej =�j

Writer Overlap (wo) ∃x, u.(ei =�i ∧ej = Wj(x, u) ∨ ei = Wi(x, u) ∧ ej ∈ {�j ,�j})
Lazy Invalidation (li) ∃x, u, v.(Wj(x, u) ∈ Tj ∧ ei = Ri(x, v) ∧ ej =�j)

Eager W-R (ewr) Fli ∨ (∃x, u, v.ei = Wi(x, u) ∧ ej = Rj(x, v))

Mixed Invalidation (mi) Fli ∨ ∃x, u, v.(ei = Ri(x) ∧ ej = Wj(x) ∧ ei ≺Wi(x, u) ≺�j ∧ej ≺�i ∨
ei = Wj(x, u) ∧ ej =�j ∧Ri(x, u) ≺Wi(x))

Eager Invalidation (ei) Fewr ∨ ∃x, u, v.(ei = Ri(x, u) ∧ ej = Wj(x, v) ∧ ej ≺�i ∨ ei = Wi(x, u) ∧ ej =�j ∧Rj(x, v) ≺ ei)

Fig. 1. Conflicts and Their Corresponding Predicates

closing events. When we specify the correctness of a transactional
memory implementation, only the purified versions of the implemen-
tation’s transaction sequences will have to be serializable.

IV. TM: SPECIFICATION AND IMPLEMENTATION

Let F be a resolving predicate which we fix for the remainder of
this section. We now describe SpecF – a specification of transactional
memory that generates all TSs serializable with respect to F and a
definition of a correct implementation of SpecF .

The specification SpecF can be formally presented as an FDS (fair
transition system, see Appendix). It uses the following data structures:

• spec mem : N 	→ N — A persistent memory, represented as an
array of naturals. For simplicity, we represent it as an infinite
array. Initially, for every i ≥ 0, spec mem[i] = 0;

• q : queue of E ∪
⋃n

i=1{mark i} — A queue of pending
events, initially empty;

• spec out: scalar in E⊥ = E ∪ {⊥} — an output variable
recording responses to clients, initially ⊥;

• doomed : array [1..n] of booleans — An array recording
which transactions are doomed to be aborted. Initially
doomed [i] = F for every i.

Let

tr : �i Ri(x1, u1), . . . , Ri(xr, ur),Wi(y1, v1), . . . ,Wi(yw, vw) �i

be a transaction. We say that tr is consistent with spec mem if, for
each j ∈ [1..r], spec mem[xj ] = uj . The update of spec mem by tr
is defined to be the memory spec mem′ such that, for each j ∈ [1..w],
spec mem′[yj ] = vj and, for all k �∈ {y1, . . . , yw}, spec mem′[k] =
spec mem[k].

Intuitively, the stream of spec out’s is the sequence of observable
events. Pending transactions are partitioned to two categories. Active
transactions, whose events are maintained in q in the order they are
in spec out, and doomed transactions, that must be aborted, indicated
by doomed [i] = T. When a transaction is doomed, all its events are
removed from q, and subsequent events are echoes by spec out but
nowhere stored. When a pending transaction is committed, aborted,
or doomed, all its events (which may be none if the transaction
is doomed) are removed from q, and subsequent events are stored
nowhere and it is marked as “undoomed.” A transaction Ti is doomed
if doomed [i] = T; Ti is active if q has some Ei-event; Ti is inactive
if its neither active nor doomed.

For every active transaction Ti, we allow the queue q to include
a special symbol, mark i. The symbol mark i is added to the queue
when a Ti issues a close request, and some tests are done to determine
whether it can safely close. If the test is successful, spec out is set
to �i, otherwise, it is set to ��i, and then mark i as well as all the
Ei-events are removed from the queue. We say that q is marked
(unmarked) if it has some (no) mark i symbol.

Transaction a1–a5 are applicable only when q is unmarked. Note
that a4 and a5 do not set spec out to a value. For such cases we
assume that spec out is set to ⊥.

a1. For some i ∈ [1..n], if Ti is inactive, write �i to spec out and
append it to the end of the queue q.

a2. For some i ∈ [1..n], and x, u ∈ N, if Ti is active or doomed,
write Wi(x, u) to spec out. If Ti is active, then Wi(x, u) is
appended to the end of the queue q.

a3. For some i ∈ [1..n], and x, u ∈ N, if Ti is active or doomed,
write Ri(x, u) to spec out. If Ti is active, then Ri(x, u) is
appended to q. Moreover, in this case we also require that the
events of Ti are locally consistent.

a4. For some i ∈ [1..n] such that Ti is active, remove all of events
in Ei from the queue q and set doomed [i] to T.

a5 For some i ∈ [1..n] such that Ti is active, add mark i to the
end of q.

Transition a6–a8 deal with commits and aborts. It is a7 that
determines whether a transaction marked for commit can indeed
commit.

a6. For some i ∈ [1..n] such that Ti is active or doomed, write ��i

to spec out, and remove all of Ei- and mark i-events from the
queue q, and set doomed [i] to F.

a7. For some i ∈ [1..n] such that Ti is active, if Ti is consistent with
spec out, all of its events appear consecutively in the front of q,
and mark i is in q, then write �i to spec out, update spec mem
according to Ti, and remove all Ei- and mark i-events from the
queue.

a8. Interchange the order of two contiguous events ei, ej in q
belonging to different transactions Ti and Tj , respectively, if
mark j is in q, and 〈ei, ej〉 �|= F . We treat mark j as if it is a
�j and assume a hypothetical �i appended at the end of q.

a9. An idling transition which does not modify spec mem, q or
doomed .

Note that the updates of the queue in a4, a6, and a7 are not standard
queue operations.

The specification has n associated justice requirements, namely,
for every i = 1, . . . , n:

there are infinitely many states in which q|i is empty.

A sequence σ over E∗ is compatible with SpecF if σ can be
obtained by the sequence of spec out which SpecF outputs, once
all the ⊥’s are removed. We then have:

Claim 1: For every sequence σ over E, σ is compatible with
SpecF iff σ is serializable with respect to F .

An implementation TM : (read, close) of a transactional memory
consists of a pair of functions

read : pref (T ) × [1..n] × N → N and

close : pref (T ) × [1..n] → {commit, abort}

For a prefix σ of a TS, read(σ, i, x) is the response (value) of the
memory to an accepted Ri(x) request immediately following σ, and
close(σ, i) is the response (commit or abort) of the memory to a �i

request immediately following σ.
A TS σ ∈ T is said to be compatible with the memory TM if:
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1) For every prefix ηRi(x, u) of σ, read(η, i, x) = u.
2) For every prefix η �i of σ, close(η, i) = commit .
3) For every prefix η ��i of σ, close(η, i) = abort .

An implementation TM : (read, close) is a correct implementation
of a transactional memory with respect to F if every TS compatible
with TM is also compatible with SpecF .

V. VERIFYING IMPLEMENTATION CORRECTNESS

In this section we present proof rules for verifying that an imple-
mentation satisfies the specification Spec. The approach is an adapted
version of the rule presented in [4].

To apply the underlying theory, we assume that both the implemen-
tation and the specifications are represented as a fair discrete system
(FDS) of the form D : 〈V,O,Θ, ρ,J , C〉. We refer the reader to
the appendix for additional details about this presentation of reactive
systems.

In the current application, we prefer to adopt an event-based view
of reactive systems, by which the observed behavior of a system is
a (potentially infinite) set of events. Technically, this implies that the
set of observable variables consists of a single variable O, to which
we refer as the output variable. It is also required that the domain
of O always includes the value ⊥, implying no observable event. In
our case, the domain of the output variable is E⊥ = E ∪ {⊥}.

Let η : e0, e1, . . . be an infinite sequence of E⊥-values. The E⊥-
sequence η̃ is called a stuttering variant of the sequence η if it can be
obtained by removing or inserting finite strings of the form ⊥, . . . ,⊥
at (potentially infinitely many) different positions within η.

Let σ : s0, s1, . . . be a computation of FDS D. The observation
corresponding to σ is the E⊥ sequence s0[O], s1[O], . . . obtained by
listing the values of the output variable O in each of the states. We
denote by Obs(D) the set of all observations of system D.

Let DC and DA be two systems, to which we refer as the concrete
and abstract systems, respectively. We say that system DA abstracts
system DC (equivalently DC refines DA ), denoted DC � DA if, for
every observation η ∈ Obs(DC ), there exists η̃ ∈ Obs(DA), such
that η̃ is a stuttering variant of η. In other words, modulo stuttering,
Obs(DC ) is a subset of Obs(DA).

A. A Verification Rule Based on Abstraction Mapping

Based on the abstraction mapping of [5], we present in Fig. 2
a proof rule that reduces the abstraction problem into a ver-
ification problem. There, we assume two comparable FDS’s, a
concrete DC : 〈VC ,OC ,ΘC , ρC ,JC , CC 〉 and an abstract DA :
〈VA ,OA ,ΘA , ρA ,JA , CA〉, and we wish to establish that DC � DA .
Without loss of generality, we assume that VC ∩ VA = ∅, and that
there exists a 1-1 correspondence between the concrete observables
OC and the abstract observables OA .

The method assumes the identification of an abstraction mapping
α : (VA = Eα(VC )) which assigns to each abstract variable X ∈ VA

an expression Eα
X over the concrete variables VC . For an abstract

assertion ϕ, we denote by ϕ[α] the assertion obtained by replacing
each abstract variable X ∈ VA by its concrete expression Eα

X . We
say that the abstract state S is an α-image of the concrete state s,
written S = α(s), if the values of Eα in s equal the values of the
variables VA in S.

Premise A1 of the rule states that if s is a concrete initial state,
then S = α(s) is an initial abstract state.

Premise A2 states that if concrete state s2 is a ρC -successor of
concrete state s1, then the abstract state S2 = α(s2) is a ρA -
successor of S1 = α(s1). The box ( ) is the (linear time) temporal
operator for “from here onwards.” Together, A1 and A2 guarantee
that, for every run s0, s1, . . . of DC there exists a run S0, S1, . . .

of DA , such that Sj = α(sj) for every j ≥ 0. Premise A3
states that the observables of the concrete state s and its α-image
S = α(s) are equal. Premises A4 and A5 ensure that the abstract
fairness requirements (justice and compassion, respectively) hold in
any abstract state sequence which is a (point-wise) α-image of a
concrete computation. Here, is the (linear time) temporal operator
for “eventually,” thus, means “infinitely often.” It follows that
every α-image of a concrete computation σ obtained by applications
of premises A1 and A2 is an abstract computation whose observables
match the observables of σ. This leads to the following claim:

Claim 2: If the premises of rule ABS-MAP are valid for some
choice of α, then DA is an abstraction of DC .

B. A Rule Based on an Abstraction Relation

It is not always possible to relate abstract to concrete states by
a functional correspondence which maps each concrete state to a
unique abstract state. In many cases, we cannot find an abstraction
mapping, but can identify an abstraction relation R(VC , VA) (which
induces a relation R(s, S)).

In Fig. 3, we present proof rule ABS-REL which only assume an
abstraction relation between the concrete and abstract states.

Premise R2 of the rule allows a single concrete transition to be
emulated by a sequence of abstract transitions. This is done via the
transitive closure ρ+

A
which is defined as follows:

Let S0, S1, . . . , Sk, k > 0, be a sequence of abstract states, such
that 〈Si, Si+1〉 |= ρA for every i ∈ [0..k−1], and for some � ∈ [1..k],
for every i ∈ [1..k], if i �= � then Si[O] = ⊥. Then 〈S0, S̃k〉 |= ρ+

A
,

where S̃k = Sk[O := S�[O]] is obtained from Sk by assigning
the variable O (the single output variable) the value that it has in
state S�. This definition allows to perform first some “setting up”
transitions that have no externally observable events, followed by a
transition that produces a non-trivial observable value, followed by a
finite number of “clean-up” transitions. The observable effect of the
composite transition is taken to be the observable output of the only
observable transition in the sequence.

Premise R1 of the rule states that for every initial concrete state
s, it is possible to find an initial abstract state S |= ΘA , such that
〈s, S〉 |= R.

Premise R2 states that for every pair of concrete states, s1 and s2,
such that s2 is a ρC -successor of s1, and an abstract state S1 which
is a R-related to s1, it is possible to find an abstract state S2 such
that S2 is R-related to s2 and is also a ρ+

A
-successor of S1. Together,

R1 and R2 guarantee that, for every run s0, s1, . . . of DC there exists
a run S0, . . . , Si1 , . . . , Si2 , . . . , of DA , such that for every j ≥ 0,
Sij is R-related to sj and all abstract states Sk, for ij < k < ij+1,
have no observable variables. Premise R3 states that if abstract state
S is R-related to the concrete state s, then the two states agree on
the values of their observables. Premises R4 and R5 ensure that the
abstract fairness requirements (justice and compassion, respectively)
hold in any abstract state sequence which is a (point-wise) R-related
to a concrete computation. It follows that every sequence of abstract
states which is R-related to a concrete computation σ and is obtained
by applications of premises R1 and R2 is an abstract computation
whose observables match the observables of σ. This leads to the
following claim:

Claim 3: If the premises of rule ABS-REL are valid for some
choice of R, then DA is an abstraction of DC .

VI. TRANSACTIONAL MEMORY IMPLEMENTATIONS

We now demonstrate how our proof rules can be used to
verify three popular transactional memory implementations. Larus
and Rajwar [2] classify transactional memory implementations in
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A1. ΘC → ΘA [α]
A2. DC |= (ρC → ρA [α][α′])
A3. DC |= (OC = OA [α])

A4. DC |= J [α], for every J ∈ JA

A5. DC |= p[α] → q[α], for every (p, q) ∈ CA

DC � DA

Fig. 2. Rule ABS-MAP.

R1. ΘC → ∃VA : R ∧ ΘA

R2. DC |= (R ∧ ρC → ∃V ′
A

: R′ ∧ ρ+
A

)

R3. DC |= (R → OC = OA )

R4. DC |= (∀VA : R → J), for every J ∈ JA

R5. DC |= (∃VA : R ∧ p) → (∀VA : R → q), for every (p, q) ∈ CA

DC � DA

Fig. 3. Rule ABS-REL.

terms of several properties. We focus on two of these properties,
conflict detection and version control, both of which can be either
“eager” or “lazy,” depending when conflicts are detected and when the
memory is updated. Since one cannot have eager version management
with lazy conflict detection, there are three possibilities left. We give
a detail description of the proof of the lazy conflict detection and
lazy version control, and sketch the remaining two.

A. Lazy Conflict Detection, Lazy Version Control

Denote this class by ll. A representative of this class is TCC [6],
and we give a simple implementation from this class that we refer
to as TM1.

The implementation uses the following data structures:

• imp mem : N → N — A persistent memory. Initially,
imp mem[j] = 0 for all j ∈ N;

• trans : array[1..n] of list of E — An array of lists. For each
i ∈ [1..n], trans[i] is a sequence over Ei that lists the events
of the currently pending transaction of client i, if such exists.
Initially, every trans[i] is empty;

• imp out: scalar in E⊥ = E ∪ {⊥} — an output variable
recording responses to clients, initially ⊥.

The implementation reacts to possible requests by the clients. It
accepts a request of �i (“open transaction”), and rejects any other
request if trans[i] is empty. An accepted Ri(x) request is responded
by u, where u is such that Wi(x, u) is the last Wi(x) event in trans[i],
or, if no such event exists, by imp mem[x]; Upon an accepted �i

request, TM1 checks whether the transaction trans[i] is consistent
with imp mem. If it is, TM1 returns to Client i a “commit”, updates
imp mem according to trans[i], and resets trans[i] to be empty. If
trans[i] is not consistent with imp mem, TM1 returns an “abort,” and
resets trans[i] to empty.

Finally, the events corresponding to accepted requests are written
to imp out, which is set to ⊥ with steps that don’t produce a response.
Each of these events (with the exception of � and ��), is appended
to the appropriate trans[i].

The specification, described in Section IV, specifies not only the
behavior of the Transactional Memory but also the combined behavior
of the memory when coupled with a typical clients module. A generic
clients module, Clients(n), may, at any step, issue the next request
for client i, i ∈ [1..n], provided the sequence of Ei-events issued so
far (including the current one) forms a prefix of a well-formed TS.
The justice requirement of Clients(n) is that eventually, every open
transaction must be closed by issuing a �i-request.

Combining modules TM1 and Clients(n) we obtain the complete
implementation, defined by:

Imp1 : TM1 ‖| Clients(n)

where ‖| denote the synchronous composition operator defined in
the appendix. We interpret this composition in a way that combines
several of the actions of each of the modules into a single transition.

The possible actions of Imp1 are the following:

t1. Set imp out = trans[i] =�i if trans[i] = Λ;
t2. Set imp out to Ri(x, u) and append it to trans[i] if trans[i] is

non-empty, and the last Wi(x) event in it is Wi(x, u), or if
trans[i] contains no Wi(x) event and u = imp mem[x];

t3. Set imp out to Wi(y, v) and append Wi(y, v) to the end of
trans[i] if trans[i] is non-empty;

t4. Set imp out to �i, update imp mem according to trans[i], and
reset trans[i] to empty if trans[i] is non-empty and consistent
with imp mem;

t5. Set imp out to ��i and set trans[i] to empty if trans[i] is non-
empty and is inconsistent with imp mem;

t6. Set imp out to ⊥ and leave all other variables unchanged.

Since Clients(n)’s justice requires every transaction to eventually
issue a � request, and since t4 and t5 guarantee that each � request
empties the corresponding trans[i], it follows that module Imp1 has a
justice requirement: for each i = 1, . . . , n, trans[i] is empty infinitely
many times.

We now sketch a proof, using Rule ABS-REL, that Imp1 � Spec.
The application of rule ABS-REL requires the identification of a

relation R which holds between concrete and abstract states. We use
the relation R defined by:

spec out = imp out ∧ spec mem = imp mem ∧
n∧

i=1

(q|i = trans[i])

The relation R stipulates equality between spec out and imp out – the
output of the implementation, and between spec mem and imp mem,
and that, for each i ∈ [1..n], the projection of q on the set of events
pertinent to Client i equals trans[i].

To simplify the proof, we assume (see the end of Section II) that
all transactions have the form

�i Ri(x1, u1) · · ·Ri(xr, ur)Wi(y1, v1) · · ·Wi(yw, vw){�i, ��i}
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It is not difficult to see that premise R1 of rule ABS-REL holds, since
the two initial conditions are given by

ΘC : imp out = ⊥ ∧ imp mem = λi.0 ∧
∧n

i=1(trans[i] = Λ)
ΘA : spec out = ⊥ ∧ spec mem = λi.0 ∧ q = Λ

and the relation R guarantees equality between the relevant variables.
The R-conjunct spec out = imp out guarantees the validity of

premise R3.
We will now examine the validity of premise R2. This can be done
by considering each of the concrete transitions t1, . . . , t6.

t1. Transition t1 appends the event �i to an empty trans[i] and
outputs it to imp out. This can be emulated by an instance of
abstract transition a1 which output �i to spec out and places
this event at the end of q. It can be checked that this joint action
preserves the relation R, in particular, the relevant conjunct∧n

j=1(q|j = trans[j]).
t2. Transition t2 appends to trans[i] (and outputs) the event Ri(x, u)

where, due to the simplifying assumption, u = imp mem[x].
This can be matched by another instance of abstract transition
a3.

t3. Transition t3 appends to trans[i] (and outputs) the event
Wi(y, v), which is matched by an instance of abstract transition
a2.

t4. Transition t4 closes and commits the current transaction con-
tained in trans[i] while outputting the event �i. This is possible
if the transaction pending in trans[i] is consistent with imp mem.
The transition also updates imp mem according to trans[i], and
then clears trans[i].
The emulation of this transition begins by the instance of
a5 which appends mark i to q, followed by a sequence of
applications of abstract transition a8 which attempts to move
all the elements of trans[i] to the front of the queue q, where
F is the trivial predicate F (thus, allowing any interchange).
If successful, we apply abstract transition a7 which confirms
that trans[i] is consistent with spec mem (must be true due
to the R-conjunct spec mem = imp mem), updates spec mem
according to trans[i] (thus making it again equal to imp mem),
and removes all elements of trans[i] from q, thus reestablishing
the R-conjunct

∧n
j=1(q|j = trans[j]).

t5. Transition t5 closes and aborts the transaction pending in trans[i]
while outputting the event ��i. This is possible only if the
transaction pending in trans[i] is inconsistent with imp mem.
The transition also clears trans[i].
The transition t5 is matched with the abstract transition a6 which
outputs the event ��i and removes from q all elements of the
aborted transition trans[i]. Note that Spec does not require an
aborted transaction to be “uncommitable,” thus, we don’t have
to (though we can) ensure that Spec cannot commit trans[i].

t6. The idling concrete transition t6 may be emulated by the idling
abstract transition a9.

It remains to verify premise R4. This premise requires showing that
any concrete computation visits infinitely many times states satisfying
∀VA : R → JA , where Ji : q|i = Λ, characterizes the set of abstract
states in which the queue contains no Ei event. Since R requires that
q|i = trans[i], we obtain that Premise R4 is valid.

Premise R5 is vacuously valid since Spec has no compassion
requirements.

Note that ABS-MAP does not suffice to construct step t4, where the
power of ABS-REL is demonstrated. We obtained a similar proof for
a bounded instantiation using TLC, however, there Spec is defined as
performing “meta-steps,” without which TLC, that uses an ABS-MAP-
like rule, cannot construct the relations ABS-REL does.

B. Eager Conflict Detection, Lazy Version Control

Denote this class by el. A representative of el is LTM of [7].
Its definition of “conflict” is slightly stronger than “eager invalida-
tion” by having writes to the same object as a conflict, thus, its
forbidden interchange set consists of Fei and all pairs of the form
(Wi(x),Wj(x)). In case of a conflict, the transaction that requests
the second “offensive” memory access is aborted.

The main difference between el and the prior implementation TM1

is the conflict detection: upon receiving a Ri(x) such that Wj(x) is
in some open transaction, or a Wi(x, v) such that Wj(x) or Rj(x)
is in some open transaction, the transaction of client i is aborted.
The system performs two steps – the first returns the result of the
operation, and the second aborts the transaction. Thus, an abort is
not only a possible response to a non-close transaction request, but
every transaction that requests to be closed is committed. For our
higher level description of this implementation, we add a new variable
toabort ∈ [0..n], that holds the id of the client whose transaction is
to be aborted (0 indicates no such client exists).

The combination of an el memory and Clients(n) is the module
Iel whose possible actions are:

t1. If toabort = i > 0, then set imp out to ��i, empty trans[i],
and set toabort to 0;

Else, do one of the following:

t2. Set imp out = trans[i] =�i if trans[i] is empty;
t3. Set imp out to R(x, u), and append it to trans[i], if

trans[i] �= Λ, u = imp mem[x] or Wi(x) ∈ trans[i] and the
most recent such event is Wi(x, u), and for every j �= i,
W (x) �∈ trans[j], ;

t4. Set imp out to R(x, imp mem[u]), append it to trans[i], and
set toabort to i if trans[i] �= Λ, and for some j �= i, or
Wj(x) ∈ trans[j];

t5. Set imp out to Wi(x, v) and append it to trans[i], if
trans[i] �= Λ and for every j �= i, W (x), R(x) �∈ trans[j];

t6. Set imp out to Wi(x, v), append it to trans[i], and set
toabort to i, if trans[i] �= Λ and for some j �= i, Rj(x) or
Wj(x) ∈ trans[j];

t7. Set imp out to �i, update imp mem according to trans[i]
and reset trans[i] to Λ, if trans[i] is not empty;

t8. Set imp out to ⊥ and leave all other variables unchanged;

Module Iel has a justice requirement for each i = 1, . . . , n, requiring
that trans[i] = Λ infinitely many times.

To prove that Iel satisfies the specifications of Section IV, we
use the same R used to verify TM1, with respect to the admissible
interchange associated with el.

STM of [8] is also an el implementation. There, clients must first
obtain write locks on all memory locations they are likely to access
in a transaction (the locks are requested in increasing order, to avoid
deadlocks), which are released when the transaction completes. The
locking mechanism can be accomplished by adding to each memory
location an “owner” in the range [0..n] indicating which client
currently has a write-lock on it, and refining Iel to accommodate
the needs of STM.

C. Eager Conflict, Eager Version Control

Denote this class by ee. A representative of ee is LogTM of [9].
Its definition of “conflict” and their resolution are exactly like those
of el. Being eager-version, however, ee protocols update the memory
upon a write. If later it is necessary to abort the transaction, then
the memory is rolled back to its previous value. Since the protocol
does not allow for more than one overlapping write, there is no need
to record any information but the previous value of W ’s in pending
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transactions. To thus add a set committed ⊆ n× N × N where n is
a client id. committed stores, for every memory address x that was
written by a currently pending transaction, the previous value written
to it (by a committed transaction). Initially, committed = ∅.

The combined implementation of ee memory and Clients(n) is the
module Iee whose possible actions are similar to that of Iel, but for
t1, t5 and t7, that are now:

t1. If toabort = i > 0, then

1) set imp out to ��i;
2) for every (i, x, v) ∈ committed , set imp mem[x] to v

and remove (i, x, v) from committed ; set trans[i] =
Λ and toabort = 0;

t5. Set imp out to Wi(x, v), append it to trans[i], add
(i, x, imp mem[x]) to committed , and set imp mem[x] to
v, if trans[i] �= Λ, and for every j �= i, W (x), R(x) �∈
trans[j];

t7. Set imp out to �i, reset trans[i] to Λ and remove from
committed every (i, x, v), if trans[i] is not empty;

Module Iee has the same justice requirement as its predecessors.
To prove that Iee satisfies the specifications of Section IV, we

cannot use the same R used to verify TM1; rather, we look at the
“rolled back” version of memory values, which can be determined by
committed . Formally, for each memory address x ∈ N, we define

rolled back [x] =




v for some j,
(j, x, v) ∈ committed

imp mem[x] otherwise

For the memory imp mem, rolled back(imp mem) is imp mem
where every entry is replaced by its rollback entry. Then the relation
RSTM is defined by:

RSTM : spec out = imp out ∧
∧n

i=1(q|i = trans[i]) ∧
spec mem = rolled back(imp mem)

VII. VERIFICATION WITH TLC

We verified the correctness of all implementations above by the
explicit-state model checker TLC, the input of which are TLA+

programs. See [10] for a thorough discussion of TLC and TLA+.
Based on the similarity between TLC and the FDS model, we verified
that all the implementations above indeed implement our trivial
specification of Section IV.

To verify that an implementation correctly implements its specifi-
cation, one has to provide TLA+ modules for both specification and
implementation, and a mapping associating each of the specification’s
variables with an expression over the implementation’s variables.
With these, TLC verifies that the mapping is a refinement mapping
satisfying the premises of Rule ABS-MAP. (In fact, the rule TLC

uses is somewhat different, but suffices for our needs.) Since TLC

can handle only finite-state systems, all parameters – memory size,
number of clients, bound on pending transactions, etc. – have to be
bounded.

A. Specification Module

The specification module is constructed from two submodules,
Spec and Driver. Submodule Spec is the core of the specification and
is uniform for all TM specifications. It is essentially the specification
module of Section IV. Driver defines features that are unique to each
transactional memory by means of a resolving predicate F . Driver
can only restrict the next state relation and cannot introduce new
transitions that are not defined in Section IV.

B. Implementation Module

All implementations include a module Imp that consists of a
synchronous composition of the memory and the clients, such that
every request by a client is immediately responded by the memory.

Since TLC requires that every Spec variable has a matching
expression over Imp variables, we added a new variable to Imp,
history q, which is a queue over E⊥ that contains all events of
pending transactions. New events are appended to history q, and
the events of a transaction that is closed (committed or aborted) are
removed from it.

C. Refinement mapping

The implementation module includes a mapping between Spec’s
variables, spec mem, q, spec out, and doomed , to expressions over
Imp’s variables. In all but our last example the refinement mapping
is trivial: spec mem = imp mem, q = history q, spec out =
imp out, and doomed [i] = F for all i. In the last exam-
ple, spec mem = rolled back(imp mem) replaces spec mem =
imp mem. TLC (automatically) verifies that the proposed mapping
is a refinement mapping. Success means that, for the bounded
instantiation taken, Imp implements its specification Spec, i.e., that
every Imp implements some Spec run, and that every fair Imp
computation maps into a fair Spec computation. In the first case,
failure is indicated by a finite execution path leading from an initial
state into a state in which the mapping is falsified. In the second
case, failure is indicated by a finite execution path leading from an
initial state to a loop in which the implementation meets all fairness
requirements, and the associated specification does not.

VIII. CONCLUSION AND FUTURE WORK

In this paper we developed a formal specification of transactional
memory correctness and a methodology for verifying transactional
memory implementations based on model checking. We demonstrated
our approach on three transactional memory implementations drawn
from the literature. While our models capture the important algo-
rithmic aspects of those implementations, they are still quite a bit
more abstract than “real” implementations in the form of C++ or
Java libraries, say. The most obvious next step is to formally analyze
more detailed models of implementations.

Practical transactional memory implementations must deal with
memory accesses that occur outside of transactions. Such non-
transactional accesses give rise to anomalies like the privatization
problem [11], in which a thread can observe inconsistencies in what
should be its own private copy of some shared data; and the granular
lost update problem [12], in which the transactional implementation
manages memory at a coarser granularity than changes made by
nontransactional updates, leading to nontransactional updates being
lost. It would be interesting to extend our formal specification and
verification framework to account for non-transactional accesses and
give precise and abstract characterizations of the privatization and
GLU problems.

There are also a number of open questions concerning the program-
mer’s view of transactions, and we want to extend our framework to
reason about them, too. For example,

• What happens when transactions contain other transactions?
Two kinds of transaction nesting have been proposed: in closed
nesting the nested transactions are “flattened” into one top-
level transaction whose effects are invisible until commit time,
while in open nesting the effects of nested transactions may
be visible before commit. In open nesting the requirement for
serializability is relaxed, and it would be interesting to extend
our specification to account for this.
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• What are the properties of various linguistic constructs for pro-
gramming with transactions? This is an active area of research
in the programming languages community (see [13] for one
example).

Finally, we would like to harness the power of new verification
technology like satisfiability modulo theories (SMT) that has already
shown so much potential for software verification. Interesting ques-
tions are whether SMT and other software verification technology
gives us additional leverage for efficient reasoning about transactional
memory, and whether there are theories and decision procedures
specific to transactional memory that we could add to the SMT

arsenal.
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APPENDIX

Fair Discrete Systems and Their Computations As a computational
model for reactive systems we take the model of fair discrete systems
(FDS) [14], which is a slight variation on the model of fair transition
system [15]. Under this model, a system D : 〈V,O,Θ, ρ,J , C〉
consists of the following components:

• V — A set of system variables. A state of D provides a type-
consistent interpretation of the variables V . For a state s and a

system variable v ∈ V , we denote by s[v] the value assigned to
v by the state s. Let Σ denote the set of all states over V .

• O ⊆ V — A subset of observable variables. These are the
variables which can be externally observed.

• Θ — The initial condition: An assertion (state formula) charac-
terizing the initial states.

• ρ(V, V ′) — The transition relation: An assertion, relating the
values V of the variables in state s ∈ Σ to the values V ′ in
an D-successor state s′ ∈ Σ. We assume that every state has a
ρ-successor.

• J — A set of justice (weak fairness) requirements (assertions);
A computation must include infinitely many states satisfying
each of the justice requirements.

• C — A set of compassion (strong fairness) requirements: Each
compassion requirement is a pair 〈p, q〉 of state assertions; A
computation should include either only finitely many p-states,
or infinitely many q-states.

For an assertion ψ, we say that s ∈ Σ is a ψ-state if s |= ψ.
A run of an FDS D is a possibly infinite sequence of states σ :

s0, s1, . . . satisfying the requirements:

• Initiality — s0 is initial, i.e., s0 |= Θ.
• Consecution — For each � = 0, 1, . . ., the state s�+1 is an D-

successor of s�. That is, 〈s�, s�+1〉 |= ρ(V, V ′) where, for each
v ∈ V , we interpret v as s�[v] and v′ as s�+1[v].

A computation of D is an infinite run that satisfies

• Justice — for every J ∈ J , σ contains infinitely many
occurrences of J-states.

• Compassion – for every 〈p, q〉 ∈ C, either σ contains only
finitely many occurrences of p-states, or σ contains infinitely
many occurrences of q-states.

A synchronous parallel composition of systems D1 and D2,
denoted by D1‖|D2, is specified by the FDS

D : 〈V1 ∪ V2,O1 ∪ O2,Θ1 ∧ Θ2, ρ1 ∧ ρ2,J1 ∪ J2, C1 ∪ C2〉

To guarantee that the composition doesn’t cause any computation
of the composed system to be lost, we further require that for every
i = 1, 2, each Di-computation is some computation of D when
projected onto Vi.


