Mechanical Verification of Transactional Memories with
Non-Transactional Memory Accesses

Ariel Cohert, Amir Pnuelt, and Lenore D. Zuck

! New York University,{ari el ¢, ami r }@s. nyu. edu
2 University of lllinois at Chicagol enor e@s. ui c. edu

Abstract. Transactional memoris a programming abstraction intended to sim-
plify the synchronization of conflicting memory accessesdqbncurrent threads)
without the difficulties associated with locks. In a presdamork we presented a
formal framework for proving that a transactional memonpiementation sat-
isfies its specifications and provided with model checkingfieation of some
using small instantiations. This paper extends the preweork to capture non-
transactional accesses to memory, which occurs, for examplen using legacy
code. We provide a mechanical proof of the soundness of tfifece¢ion method,
as well as a mechanical verification of a version of the poputac implemen-
tation that includes non-transactional memory accesdes.veérification is per-
formed by the deductive temporal checkervs.

1 Introduction

Transactional Memory [5] is a simple solution for coordingtand synchronizing con-
current threads that access the same memory locationan#férs the burden of con-
currency management from the programmers to the systemrasiand enables a safe
composition of scalable applications, we well as efficientilizes the multiple cores.
Multicore and many-core processors, which require coreuipprograms in order to
gain a full advantage of the multiple number of processas tfecome the mainstream
architecture for microprocessor chips and thus many navsa@tional memory imple-
mentations have been proposed recently (see [9] for anlertslirvey).

A transactional memory (TM) receives requests from cliamd issues responses.
The requests are usually part ofransactionthat is a sequence of operations starting
with a request tapena transaction, followed by a sequence of read/write request
followed by a request teommit(or aborf). The TM responds to requests. When a
transaction requests a successful “commit,” all of itsaffeare stored in the memory.
If a transaction is aborted (by either issuing an abort regoewhen TM detects that
it should be aborted) all of its effects are removed. Thusasaction is a sequence of
atomicoperations, either all complete successfully and all itdenwperations update
the memory, or none completes and its write operations dahet the memory. In
addition, committed transaction should be serializabl&e-gequence of operations
belonging to successful transactions should be such tbanibe reordered (preserving

* This research was supported in part by ONR grant NO0014-9931 and NSF grants CCF-
0742686 and CNS-0720525

the order of operations in each transaction) so that theatiperof each transaction
appear consecutive, and a “read” from any memory locatitumme the value of the last
“write” to that memory location.

TMs are often parameterized by their properties. These meyde the conflicts
they are to avoid, when are the conflicts detected, how theyemolved, when is the
memory updated, whether transactions can be nested, e&c[9Efor a list of such
properties). Each set of parameters defines a unique sequéisees of events that can
occur is a TM so to guarantee atomicity and serializabilit refer to the set of se-
quences of events allowed by a TM as gpacificationsA particular implementation
does not necessarily generate all allowed sequences, duidstnly generate allowed
sequences. The topic of this paper (as well as [3]) is to fdymarify that a TM im-
plementation satisfies its specification that is uniquefingée by its parameters.

Such parameters were given in [12]'s widely-cited paperictvivas the first to char-
acterize transactional memory in a way that captured arrdieththe many semantic
distinctions among the most popular implementations of T8®tt’s ([12]) approach
is to begin with classical notions of transactional histerand sequential specifications,
and to introduce two important notions. The first isanflict functionwhich specifies
when two overlapping (concurrent) transactions canndt Batceed (a safety condi-
tion). The second is aarbitration functionwhich specifies which of two transactions
must fail (a liveness condition). Scott’s work went a longywtewards clarification of
the semantics of TMs, but did not facilitate mechanicalfieation of implementations.

The work in [3] (co-authored by the authors of this paperktadirst step towards
modeling TMs, accordingly to [12]'s parameters, so to asvalfor mechanical veri-
fication of their implementations. There, a specificatioradfM is represented by a
fair state machine that is parameterized by a seidwfissibleinterchanges — a set of
rules specifying when a pair of consecutive operations ircuence of transactional
operations can be safely swapped without introducing ookeng a conflict. All the
conflicts described in [12] can be cast as admissible se#s.sphcification machine
takes a stream of transactional requests as inputs, andtsatperializable sequence of
the input requests and their responses. The fairness isagedrantee that each trans-
action is eventually closed (committed or aborted) andpihmitted, appears in the
output. Some proof rules are given to show that a TM impleateént satisfies its spec-
ification. The applicability of the approach is demonsiaia several well-known TM
implementations. Small instantiations of each of the casgyswvere shown to specify
their specification using the model checker [8].

This paper extends the work of [3] in two directions. The fisgb add another pa-
rameter to the system -ron-transactionamemory accesses. Unlike their transactional
counterparts, non-transactional accesses cannot beedbW@rhile atomicity and serial-
izability requirements remain, where a non-transacticgration is cast as a singleton,
successfully committed, transaction. The second diredia framework that allows
for a mechanical formal verification that TM implementasasatisfy their specifica-
tions. The tool we use isLPVS [11], which embeds temporal logic and its deductive
frame-work within the theorem prover s[10]. UsingTLPVS entailed some changes to
the [3] proof rules that establish that an implementatiatesd refines its specification.
In fact, the rule presented here is more general than itsepess$or. UsingLPVs also

entailed restricting to interchange rules that can be desdby temporal logics (which

still covers all of [12]'s conflicts). For simplicity, we clse to restrict to interchanges
whose temporal description uses only past temporal opsréte., depend only on the
history leading to the interchange), which rules out [1#jiged invalidation conflict.

We make here a strong assumption on non-transactionalssas;esgmely, that the
transactional memory is aware that non-transactionalssese as soon as they occur.
While the TM cannot abort such accesses, it may use them er toéibort transactions
that are under its control. It is only with such or similar@sption that total consistency
or coherence can be maintained.

We demonstrate the new framework by presentingvs proofs that some TM
implementations with non-transactional accesses satigfy specifications, given an
admissible interchange.

To the best of our knowledge, the work presented here is tstetdiemploy a theo-
rem prover for verifying correctness of transactional meesand the first to formally
verify an implementation that handles non-transactioreitory accesses.

The rest of the paper is organized as follows: Section 2 pdes/preliminary def-
initions related to transactional memory, and defines theept of admissible inter-
changes. Section 3 provides a specification model of a tcéinsal memory. Section 4
discusses a proof rule for verifying implementations. B&ch presents a simple im-
plementation of transactional memory that handles nomsaetional memory accesses.
Section 6 shows how to apply deductive verification usingvs to verify this imple-
mentation. Section 7 provides some conclusions and opdrems.

2 Transactional Sequences and Interchanges

We extend the [3] to support non-transactional memory aeseand separate each ac-
tion into a request/response pair, as well as give a temgdefalition for interchanges.

2.1 Transactional Sequences

Assumen clientsthat direct requests to memory systepdenoted bymemory For
every clientp, let the set ohon-transactional invocations by clieptconsists of:

- (R} (x) — A non-transactional request to read from addressN.

- LW;” (y,v) — A non-transactional request to write value N to addresg € N.
Let the set ofransactional invocations by clieptconsists of:

— 14, — An open transaction request.

- (R}, (z) — A transactional read request from address N.

— W/ (y,v) — Atransactional request to write the value N to addresg € N.

— ¢», —A commit transaction request.

— (¥, —An abort transaction request.

The memory provides a response for each invocation. Ertenigwocations (e.g.,

a. 4, while clientp has a pending transaction) are responded by the memoryiregur
an error flagerr. Non-erroneous invocations, except idt’ and.R" are responded
by the memory returning an acknowledgment. Finally, for non-erroneousk;, ()
and LR;}t(x) the memory returns the (natural) value of the memory at ionat. We

assume that invocations and responses occur atomicallg@mskcutively, i.e., there
are no other operation that interleave an invocation amg#gonse.

LetE)": { R} (x,u), W' (x,v)} be the set ofon-transactional observable events
E;;: {4,,,R§,(x,u), W;(x,v), »,.¥,} be the set otransactional observable events
and E, = E™ U E', i.e. all events associated with client We consider as ob-
servable events only requests that are accepted, and &ibréhwe pair ifwvocation
non-err respongeby omitting the.-prefix of the invocation. Thuswlﬁ(x,v) abbre-
viates: W} (z, v), ack,. For read actions, we include the value read, thakgz, u)
abbreviatesR!(z), pR(u). When the value written/read has no relevance, we write the
above a3V} (x) and R}, (). When both values and addresses are of no importance, we
omit the addresses, thus obtainmq andR; (symmetric abbreviations and shortcuts
are used for the non-transactional observable events)ouitpeit of each action is its
relevant observable event when the invocation is acceptedlundefined otherwise.
Let £ be the set of all observable events over all clients, Ee= U;Lzl E, (similarly
defineE™t and E! to be the set of all non-transactional and the set of all &atienal
observable events, respectively).

Leto: eg,e1,...,ex be afinite sequence of observalifeevents. We say that the
sequencé over E? is ¢’s transactional sequencavheres is obtained froms by re-
placing eachk}* and W, by «, R!, », and«, W, »,, respectively. That is, each
non-transactional event of is transformed into a singleton committed transaction in
&. The sequence is called awell-formed transactional sequen€gsS for short) if the

following all hold:
1. For every clienp, let 4|, be the sequence obtained by projecﬁ;ngntoEzﬁ. Then

o|, satisfies the regular expressiBp, whereT}, is the regular expressiom, (R}, +
Wi)*(», + Wp). For each occurrence df, in o/, we refer to its first and last
elements asnatching The notion of matching is lifted té itself, where«, and
», (orw,) are matching if they are matchingdn,,;

2. The sequencé is locally read-write consistenfor any subsequence éf of the
form (W} (z,v)n R}, (x,u)) wheren contains na,, ¥, or W/ (x) eventsu = v.

We denote by the set of all well-formed transactional sequences, anpréf(7)
the set of7’s prefixes. Note that the requirement of local read-writasistency can
be enforced by each client locally. To build on this obseorgtwe assume that, within
a single transaction, there is it} (x) following a W;(z), and there are no two reads
or two writes to the same address. With these assumptioasetiuirement of local
read-write consistency is always (vacuously) satisfied S&Ts atomicif:

1. & satisfies the regular expressi@h + --- + T,,)*. That is, there is no overlap
between any two transactions;

2. gisglobally read-write consistenbamely, for any subsequen@é (z, v)n R} (x, u)
in 6, wheren containsw»,,, which is not preceded bw,, and contains no event
W/ (z) followed by evens, it is the case that = v.

2.2 Interchanging Events

The notion of a correct implementation is that every TS cartréesformed into an
atomic TS by a sequence of interchanges which swap two cotiseevents. This

definition is parameterized by the sétof admissible interchangaghich may be used
in the process of serialization. Rather than attempt toatttarize A, we choose to
characterize its complemes, the set offorbidden interchangesThe definition here
differs from the one in [3] in two aspects: There, in orderham@cterizeF, we allowed
arbitrary predicates over the TS, here, we restrict to tealdogic formulae. Also,
while [3] allowed swaps that depend on future events, hereesteict to swaps whose
soundness depends only on the history leading to them. &kidgation simplifies the
verification process, and is the one used in all TM systemsrev@aare of. Note that
it does not allow to express [12]'s mixed invalidation ccetfliin all our discussions,
we assumetrict serializabilitywhich implies that while serializing a TS, the order of
committed transactions has to be preserved.

Consider a temporal logic ovdl using the past operator§) (previously),&
(sometimes in the past), anfl (since). Leto be a prefix of a well-formed TS over
Et (i.e.,0 = &). We define a satisfiability relatio betweerr and a temporal logic
formula e so thato |= ¢ if at the end ofr, ¢ holds. (The more standard notation is
(o,|0] = 1) = ¢, but since we always interpret formulae at the end of seqeene
chose the simplified notation.)

Some of the restrictions we place jf are structural. For example, the formula
p # g\ », N O », forbids the interchange of closures of transactions befmntp
different clients. This guarantees the strictness of thialsgability process. Similarly,
the restrictionu, A © v,, whereu,,v, € E,, forbids the interchanges of two events
belonging to the same client. Other formulas may guarahtealisence of certain con-
flicts. For example, following [12], Bzy invalidationconflict occurs when committing
one transaction may invalidate a read of another, i.e. ,riffame transactions, and
T, and some memory addresswe haveR,(z), Wy(xz) <»,<», (Where ‘e; < e;”
denotes that; precedes;). Formally, the last two events in cannotbe interchanged
when for somey # ¢,

aEwg A ORy(x) A (=P S Wy(x)) 1)

Similarly, we express conflicts by TL formulae that detereqifor any prefix of a TS
(thatincludes only& events), whether the two last events in the sequence carfidbg sa
interchanged without removing the conflict. For a confliche formula that forbids in-
terchanges that may remove instances of this conflict isg#ifiemaintaining formula
for ¢ and is denoted by:.. Thus, Formula 1 is the maintaining formula for the conflict
lazy invalidation. See [2] for a list of the maintaining fautae for each[12]'s conflicts
(expect for mixed invalidation that requires future opersy.

Let F be a set of forbidden formulae characterizing all the fadkiainterchanges,
and let.A denote the set of interchanges which do not satisfy any ofdiraulas in
F. Assume that = ayg,...,a. Let ¢’ be obtained fromr by interchanging two
elements, say; 1 anda;. We then say that’ is 1-derivable frono with respect ta4
if (ao,...,a;) = \/ F. Similarly, we say that’ is derivable fromo with respect ta4
if there existc = oy, ...,0, = ¢’ such that for every < ¢, o, is 1-derivable from
o; With respect toA.

A TS is serializable with respect tal if there exists an atomic TS that is derivable
from it with respect tad. The sequencé is called thepurified versiorof TS ¢ if & is
obtained by removing frord all aborted transactions, i.e., removing the opening and

closing events for such a transaction and all the read-wxigmts by the same client
that occurred between the opening and closing events. Whepecify the correctness
of a transactional memory implementation, only the purifiecsions of the implemen-
tation’s transaction sequences will have to be serialezabl

3 Specification and Implementation

Let A be a set of admissible interchanges which we fix for the rediof this sec-
tion. We next describ&peg, a specification of transactional memory that generates
all sequences whose corresponding TSs are serializalfieagipect tod. The process
Speg is described as a fair transition system. In every step, iputs an element in
E, = EU{L}. The sequence of outputs it generates, onceltledements are pro-
jected away, is the set dfSs that are admissible with respect.tb Speg¢ uses the
following data structures:

e specmem array N — N — A persistent memory. Initiallyspecmenti] = 0 for
alli e N;

e Q: listover E* UJ,{mark,} — A queue-like structure, to which elements are
appended, interchanged, deleted, and removed. The segokgiements removed
from this queue-like structure defines an atomic TS that eanHiained by seri-
alization of Speg¢’s output with respect tod. For each clienp, it is assumed that
mark, ¢ E, is a new symbol. InitiallyQ is empty;

e specout: scalarin E; = EU{L} — An output variable, initiallyL;

e specdoomed array [1..n] — bool— An array recording which pending transac-
tions are doomed to be aborted. Initiaipecdoomedp] = F for everyp.

Fig. 1 summarized the steps taken3yye¢. The first column describes the value of
specout with each step; it is assumed that every step produces antoiitpe second
column describes the effects of the step on the other vasablhe third column de-
scribes the conditions under which the step can be takenfdllbe/ing abbreviations
are used in Fig. 1:

¢ A client p is pendingif specdoomedp] = T or if Q|, is not empty and does not
terminate withe,;

¢ aclientp isunmarkedf Q|, does not terminate witmark,;

e ap-actiona islocally consistent withQ if Q|,, a is a prefix of some locally consis-
tentp-transaction;

e a transactior?’ is consistent wittspecmem if everyR!(x,v) in T is either pre-
ceded by som&’*(z, v), or elsev = specmeniz];

¢ theupdate ofspecmemby a transactioril” is specmem where for every location
x for which T" has noW'(z, v) actions,specmeni[z] = specmeniz], and for
every memory location such thatl’ has soméV*(z,v) actions,specmeni|z] is
the value written in the last such action’ii

e anA-valid transformation toQ is a sequence of interchanges@$ entries that is
consistent withA. To apply the transformations, eaoburk,, is treated as if it is
>,

The role ofspecdoomedis to allow Speg¢ to be implemented with various arbitra-
tion policies. It can, at will, schedule a pending trangactio be aborted by setting

[specout Jother updates [conditions |

<, append«,, to Q p is not pending
RL(x,v) |appendR] (x,v)toQ p is pending, unmarked argpecdoomedp] = F;
R(z,v) is locally consistent withQ
R;(z, v) |none p is pending, unmarked arspecdoomedp] = T
W] (z,v) [appendW](z,v)to Q p is pending, unmarked arspecdoomedp] = F
W;f(;c, v) [none p is pending, unmarked arspecdoomedp] = T
¥, deletep’s pending transaction from®; p is pending
setspecdoomedp] to F
>y updatespecmemby p’s pending transactioly has a consistent transaction at the frontf
removep-pending transaction fror® that ends withmark,, (p is pending and marked)
R (x,v) [appendd,, R, (z,v), b, 10 Q p is not pending
W't (x, v)|appende,, Wi (z,v), b, 10 Q p is not pending
1L setspecdoomedp] to T; p is pending andpecdoomedip] = F
delete all pending-events fromQ
1 apply a.4-valid transformation t@ none
1 appendmark, to Q p is pending and unmarked
1 none none

Fig. 1. Steps oiSpeg

specdoomedp], by so “dooming”p’s pending transaction to be aborted. The variable
specdoomedp] is reset once the transaction is actually aborted (WBe¢ outputs
»,). Note that actions of doomed transactions are not recarde2l

We assume a fairness requirement, namely, that for evamteli= 1, ..., n, there
are infinitely many states @pe¢ whereQ)|, is empty andspecdoomedp] = F. This
implies that every transaction eventually terminates (@itsior aborts). It also guaran-
tees that the sequence of outputs is indeed serializabte that unlike the specification
described in [3] where progress can always be guaranteduhinijreg transactions, here,
because of the non-transactional accesses, there areMzese) cannot be emptied.

While Spe¢ resembles its counterpart in [3], the treatment of nonsaational ac-
cesses entailed numerous changes: Roughly speaking,raashdtional access is ap-
pended to the queue, and removed from it when the transamtimmits, aborts, or is
doomed to abort. When a transaction attempts to commit,csdpearkermark,, is ap-
pended to the queue, and, if there are admissible interesahgt move the whole trans-
action into the head of the queue, its events are removedifremueue and it commits.
Thus, the queue never contaimsevents, and it contains at most onark-event. A
non-transactionai—accesst;jt (that can only be accepted whgihas no pending trans-
action) is treated by appendirg,, a;, », to the queue. (Note that the non-transactional
event is replaced by its transactional counterpart.) Hemeee the queue may hamwe
events. The transactions (or, rather, non-transactiomgsponding to themmannotbe
“doomed to abort” since such a transaction is, by definitsae(below), not pending.
The liveness properties require that all transaction aentenally removed from the
queue. As a consequence, unlike its [3] vers®pe¢ does not support “eager version
management” that eagerly updates the memory with ei&raction (that doesn’t con-
flict any pending transaction) which is reasonable sinceragrsion management and
the requirement to commit each non-transactional accessoatradictory.

A sequence overE is compatible withSpeg, if it can be obtained by the sequence
of specoutthatSpeg, outputs once all thel's are removed. We then have:

Claim. For every sequence over E, ¢ is compatible withSpeg, iff & is serializable
with respect toA.

An implementation TM (read, commi} of a transactional memory consists of a
pair of functiongead: pref(7'S) x [1..n] x N — N andcommit pref(T'S) x [1..n] —
{ack err} For a prefixo of a TS,read(c, p, x) is the response (value) of the memory to
an acceptedR; (z)/. R}, (=) request immediately following, andcommito, p) is the
responsedckor err) of the memory to a», request immediately following.

A TS ¢ is said to becompatiblewith the memoryTM if:

1. For every prefiy R (x, u) ornR: (z,u) of o, read(n, p, z) = u.
2. For every prefixy», of o, commitn, p) = ack.

An implementationTM: (read, commi} is a correct implementation of a transac-
tional memory with respect tal if every TS compatible withTM is also compatible
with Speg,;.

4 Verifying Implementation Correctness

We present a proof rule for verifying that an implementasatisfies the specification
Spec The rule is adapted [6], which, in turn is based on [&straction mappingln
addition to being case in a different formal framework, agrebiring compassion (which
is rarely, if ever, used in TMs), the rule generalizes on @ given in [3] by allowing
for general stuttering equivalence.

To apply the underlying theory, we assume that both the implgation and the
specifications are representedarss (see [2] for details). In the current application,
we prefer to adopt aevent-basediew of reactive systems, by which the observed
behavior of a system is a (potentially infinite) set of evefechnically, this implies
that one of the system variabléxsis designated as avutput variable The observation
function is then defined b§(s) = s[O]. Itis also required that the observation domain
always includes the value, implying no observable event. In our case, the observation
domain of the output variable 8, = F U {L}.

Letn: eg, e1,. .. be aninfinite sequence &f, -values. TheZ | -sequence is called
astuttering varianof the sequenceif it can be obtained by removing or inserting finite
strings over L} at (potentially infinitely many) different positions witit).

Leto: sg,s1,... be a computation cbPFSD, that is, a sequence of states where
so satisfies the initial condition, each state is a successdhefprevious one, and
for every justice (weak fairness) requirementhas infinitely many states that satisfy
the requirement. Thebservationcorresponding t@ (i.e., O(0)) is the £, sequence
$0[0], 51][0], . . . obtained by listing the values of the output variablén each of the
states. We denote by D) the set of all observations of systdn

Let D, be aconcretesystem whose set of states)is,, set of observations 8, ,
observation function i€, initial condition is©_,, transition relation ip,, and justice
requirements arleefcj(f). Similarly, let D, be anabstractsystem whose set of
states, set of observations, observation function, Initiedition, transition relation,
and justice requirements ate,, £,,0,, 0,, p,, andUser, J(f) respectively. (For
simplicity, we assume that neither system contains congragsquirements.) Note
that we assume that both systems share the same obserdatinagE | . We say that

systemD, abstractssystemD,, (equivalentlyD , refinesD,), denotedD_, T D,
if, for every observatiom; € ObgD,), there exists; € ObgD,), such thaty; is
a stuttering variant of;. In other words, modulo stutterin@bgD,,) is a subset of
ObgD,). We denote by andS the states oD, andD ,, respectively.

Rule ABS-REL in Fig. 2 is a proof rule to establish th&, C D,. The method
advocated by the rule assumes the identification cdfastraction relationR(s, S) C
X, x X, . Ifthe relationR(s, S) holds, we say that the abstract states an R-image
of the concrete state
R1.6,(s) — 35 : R(s,5) AN ©,(5)
R2. D, E O(R(s,S) A ps(s,s
R3.D, = [(R(s,S) — O,(s) =
R4.D, E OOWMS: R(s,S)— J)S)), foreveryf € F,

) — 38 :R(s,8) A p,u(S,S5))

Fig. 2. Rule ABS-REL.

Premise R1 of the rule states that for every initial concstdges, it is possible to
find an initial abstract staté = 6, such thatR(s, S) = T.

Premise R2 states that for every pair of concrete statasds’, such thats’ is a
p-successor of, and an abstract statewhich is aR-related tos, there exists an ab-
stract states’ such thatS’ is R-related tos’ and is also &, -successor of. Together,
R1 and R2 guarantee that, for every rgns,, . .. of D, there exists a rudy, Si, ...,
of D, suchthat for every > 0, S; is R-related tos;. Premise R3 states that if abstract
stateS is R-related to the concrete statethen the two states agree on the values of
their observables. Together with the previous premiseg;amelude that for every a
run of D, there exists a corresponding run®f, which has the same observation as
o. Premise R4 ensures that the abstract justice requirerhelttsn any abstract state
sequence which is a (point-wis&)related to a concrete computation. Hefre,is the
(linear time) temporal operator for “hencefortk’y the temporal operator for “even-
tually”, thus,] <> means “infinitely often.” It follows that every sequence bktaact
states which isR-related to a concrete computatierand is obtained by applications
of premises R1 and R2 is an abstract computation whose @idesvmatch the ob-
servables ob. This leads to the following claim which was proved usingvs (see
Section 6):

Claim. If the premises of rulaBs-REL are valid for some choice @k, thenD,, is an
abstraction oD, .

5 An Example: Tcc with non-transactional accesses

We demonstrate our proof method by verifying a TM implemgatawhich is essen-
tially Tcc [4] augmented with non-transactional accesses. Its spatitfins is given
by Spe¢ where A is the admissible set of events corresponding to the laajigation
conflict described in Subsection 2.2.

In the implementation, transactions execute speculgtivethe clients’ caches.
When a transaction commits, all pending transactions tbatain some read events

from addresses written to by the committed transaction doerhed.” Similarly, non-
transactional writes cause pending transactions thatfreadthe same location to be
“doomed.” A doomed transactions may execute new read arid ewents in its cache,
but it must eventually abort.

Here we present the implementation, and in Section 6 explamnwe can verify
that it refines its specification using the proof ralgs-REL in TLPVS. We refer to the
implementation a§M. It uses the following data structures:

e impmem N — N — A persistent memory. Initially, for all € N, impmenti] = 0;

e cache array|l..n] of list of E* — Caches of clients. For eaghe [1..n], cachép],
initially empty, is a sequence ovétf) that records the actions p& pending trans-
action;

e impout scalarin £, = F U {L} — an output variable recording responses to
clients, initially L;

e impdoomed array [1..n] of booleans— An array recording which transactions
are doomed to be aborted. Initiallppdoomedp| = F for everyp.

TM receives requests from clients, to each it updates its, gtatading updating the
output variablémp out, and issues a response to the requesting client. The respons
are either a value itV (for a (R or L R™ requests), an errarrr (for . » requests that
cannot be performed), or an acknowledgmexdit for all other cases. Fig. 3 describes
the actions off M, where for each request we describe the new output valuetiiee
updates tarM’s state, the conditions under which the updates occur, ledetsponse
to the client that issues the request. For now, ignore theteambs in the square brackets
under the “conditions” column. The last line representsidites step where no actions
occurs and the output is.

Comment:For simplicity of exposition, we assume that clients onlsuis reads for
locations they had not written to in the pending transaction

The specification of Section 3 specifies not only the behafidhe Transactional
Memory but also the combined behavior of the memory when lealyith a typical
clients module. A generic clients modut@jentgn), may, at any step, invoke the next
request for clienp, p € [1..n], provided the sequence B},-events issued so far (includ-
ing the current one) forms a prefix of a well-formed sequefbe. justice requirement
of Clientqn) is that eventually, every pending transaction issues@ned . » or an
LW p.

Combining module§ M and Client{n) we obtain the complete implementation,
defined by:

Imp: TM ||| Client{n)

where||| denote thesynchronousomposition operator defined in [7]; This composition
in combines several of the actions of each of the modulesiné

The actions ofmp can be described similarly to the one given by Fig. 3, wheee th
first and last column are ignored, the conditions in the betckre added. The justice
requirements ofClientyn), together with the observation that bat and anack-
ed . » cause the cache of the issuing client to be emptied, implyIthg's justice
requirement is that for evegy= 1,. .., n, cachép] is empty infinitely many times.

|[Request [impout |Other Updates |Conditions [Response |
L4y <, append«,, to cachép] [cachdp] is empty] |ack

LR (2) RY(z,v) |appendR,(z,v) tocachdp] [v =impmeniz]; imp meniz]
[cachdp] is empty]
(see comment)
Wi (z,v) [Wi(z,v) [appendV,(x,v) tocachdp] |[cachdp] is not empty]ack

Wy ¥, setcachép] to empty; [cachép] is not empty]ack
setimp.doomedp] to F
Ly >, setcachép] to empty; impdoomedp] = F; |ack

for everyz andq # p such thafcachép] is not empty
Wi (x) € cachdp] and
R} (z) € cachdg]
setspecdoomedly] to T;

updateimpmemby cachép]
g 1 none impdoomedp] =T; |err
[cachdp] is not empty|
LRy (z) [RyT(xz,v) [none v = impmeniz]; impmeniz]
[cachép] is empty]
W (@, 0) W (2, v)|setimpmenjz] to v; [cachdp] is empty] |ack
for everyq such that
R'(x) € cachdg]
setimpdoomedyg] to T
none 1 none none none

Fig. 3. The actions offTM

The application of ruleses-REL requires the identification of a relatia® which
holds between concrete and abstract states. In [3], we heaélation defined by:
specout= imp.out A specmem= impmem
A specdoomed= imp.doomed
A A,—, impdoomegp] — (Q|, = cachép])

however, there the implementation did not support nonseational accesses. In
Section 6 we provide the relation that was applied when pigpthe augmented imple-
mentation usingLPVS.

6 Deductive Verification in TLPVS

In this section we describe how we usedPvs [11] to verify the correctness of the
implementation provided in Section 5LPvs was developed to reduce the substan-
tial manual effort required to complete deductive tempprabfs of reactive systems.
It embeds temporal logic and its deductive framework witthi@ high-order theorem
prover,Pvs [10]. It includes a set of theories defining linear tempooai¢ (LTL),
proof rules for proving soundness and response propestieksstrategies which aid in
conducting the proofs. In particular, it has a special fraor for verifying unbounded
systems and theories. See [10] and [11] for thorough digmus$or proving withPvs

andTLPVS, respectively. In [3] we described the verification of thkemwn transac-
tional memory implementations with the (explicit-statejdael checkerLc. This veri-
fication involvedTLA* [8] modules for both the specification and implementatiow, a
abstractiormappingassociating each of the specification’s variables with gmession
over the implementation’s variables.

This effort has several drawbacks: The mapping does natdtio abstractionre-
lations betweerstates but rather formappingshetweervariables We therefore used
a proof rule that is weaker thaxBs-REL and auxiliary structures. For example, for
9|, = cachép], which cannot be expressedina™, we used an auxiliary queue that
can be mapped int@ and that records the order in which events are invoked inthe i
plementation. And, like any other model checking took; can only be used to verify
small instantiations, rather than the general case. A adudtive verification requires
a theorem prover.

Our tool of choice igLPVS. Since, howeverLPVs only supports the model efFs
we formulateopPFsin thepvsspecification language. We then defined a new theory that
uses twaoPFss, one for the abstract system (specification) and anothénéazoncrete
system (implementation), and proved, in a rather straoghtird manner, that the rule
ABS-REL is sound.

We then defined a theory for the queue-like structures usdmbtin specification
and implementation. This theory required, in addition t® tagular queue operations,
the definition of the projection and deletion of projected elements, which, in turn,
required the proofs of several auxiliary lemmas.

Next all the components of bothpFss defining the abstract and concrete systems
were defined. To simplify theLpPvs proofs, some of the abstract steps were combined.
For example, when&pe¢ commits a transaction, we combined the steps of interchang-
ing events, removing them fro@, and settingspecout to ». This restricts the set of
Speg¢’s runs but retains soundness. Formally| C Sfﬁeg” implies thaffM C Speg, ,

whereSpeg, _is the restricted specification
The abstraction relatioR between concrete and abstract states was defined by:

rel : RELATI ON= (LAMBDA s_c, s.a:
sc‘out = sa‘'out AND sc'mem= s.a' mem AND
s_c' dooned = s_a‘' dooned AND
FORALL(id:1D): (NOT s_c‘doonmed(id)) |MLIES
project(id,sa'Q = sc‘caches(id) AND
FORALL(id:ID): (enpty(s—c‘caches(id))) |IMLIES
empty(project(id,sa' Q))

Here,s _c is a concrete state argla is an abstract state. The relatiGhequates the values of
out , nemanddooned in the two systems. It also states that if the transactionalieat is not
doomed, then its projection on the abstr@otquals to the concrete client’s cache, and if the con-
crete cache is empty then so is the projection of the absftaxt the client’s current transaction.
An additional invariant, stating that each value read byradoomed client is consistent with the
memory was also added.

In order to prove thafM C Speg, , D, andD, of ABs-REL were instantiated with
T™M and Speg,,., respectively, and all the premises were verified. The pr@e inhttp :
//cs.nyu.edu/acsys/tlpvs/tm.html .

7 Conclusion and Future Work

We extended our previous work on a verification frameworkfansactional memory implemen-
tations against their specifications, to accommodate rersactional memory accesses. We also
developed a methodology for verifying transactional megnimplementations based on the theo-
rem proverTLPVSthat provides a framework for verifying parameterized syst against tempo-
ral specifications. We obtained mechanical verificationsath the soundness of the method and
the correctness of an implementation which is based@naugmented with non-transactional
accesses.

Our extension for supporting non-transactional accessbaded on the assumption that an
implementation can detect such accesses. We are currentking on weakening this assump-
tion. We are also planning to study liveness propertiesasfdactional memory.

References

1. M. Abadi and L. Lamport. The existence of refinement maggirTheoretical Computer
Science82(2):253-284, May 1991.

2. A. Cohen, A. Pnueli, and L. D. Zuck. Verification of transacal memories that support
non-transactional memory accesses, February 2008. TRANSA08.

3. Ariel Cohen, John W. O’Leary, Amir Pnueli, Mark R. Tuttend Lenore D. Zuck. Verifying
correctness of transactional memories.Phoceedings of the 7th International Conference
on Formal Methods in Computer-Aided Design (FMCApBgges 37—44, November 2007.

4. L. Hammond, W.Wong, M. Chen, B. D. Carlstrom, J. D. DavisHBrzberg, M. K. Prabhu,
H. Wijaya, C. Kozyrakis, and K. Olukotun. Transactional nmeyncoherence and consis-
tency. InProc. 3¥¢ annu. Int. Symp. on COmputer Architectusage 102. IEEE Computer
Society, June 2004.

5. Maurice Herlihy and J. Eliot B. Moss. Transactional meynarchitectural support for lock-
free data structures. ISCA '93: Proceedings of the 20th annual international sgsipm
on Computer architecturgpages 289-300, New York, NY, USA, 1993. ACM Press.

6. Y. Kesten, A. Pnueli, E. Shahar, and L. D. Zuck. Networlanmnts in action. Iri3th Inter-
national Conference on Concurrency Theory (CONCUR®@ume 2421 oL ect. Notes in
Comp. Sci.pages 101-115. Springer-Verlag, 2002.

7. Yonit Kesten and Amir Pnueli. Verification by augmentedtéiry abstractioninf. Comput,
163(1):203-243, 2000.

8. L. Lamport.Specifying Systems: Thea™ Language and Tools for Hardware and Software
Engineers Addison-Wesley, 2002.

9. James R. Larus and Ravi Rajwdransactional Memory Morgan & Claypool Publishers,
2007.

10. S. Owre, N. Shankar, J. M. Rushby, and D. W. J. Stringdvetta PVS System Guide
Computer Science Laboratory, SRI International, Menl&kP@A, September 1999.

11. A.Pnueliand T. Arons. Tlpvs: A pvs-based ltl verificatigystem. InVerification—Theory
and Practice: Proceedings of an International Symposiutdamor of Zohar Manna’s 64th
Birthday, Lect. Notes in Comp. Sci., pages 84—-98. Springer-Verlag32

12. M.L. Scott. Sequential specification of transactionahmory semantics. IRroc. TRANSACT
the First ACM SIGPLAN Workshop on Languages, Compiler, aatiWare Suppport for
Transactional ComputingOttawa, 2006.

