
Mechanical Verification of Transactional Memories with
Non-Transactional Memory Accesses⋆

Ariel Cohen1, Amir Pnueli1, and Lenore D. Zuck2

1 New York University,{arielc,amir}@cs.nyu.edu
2 University of Illinois at Chicago,lenore@cs.uic.edu

Abstract. Transactional memoryis a programming abstraction intended to sim-
plify the synchronization of conflicting memory accesses (by concurrent threads)
without the difficulties associated with locks. In a previous work we presented a
formal framework for proving that a transactional memory implementation sat-
isfies its specifications and provided with model checking verification of some
using small instantiations. This paper extends the previous work to capture non-
transactional accesses to memory, which occurs, for example, when using legacy
code. We provide a mechanical proof of the soundness of the verification method,
as well as a mechanical verification of a version of the popular TCC implemen-
tation that includes non-transactional memory accesses. The verification is per-
formed by the deductive temporal checkerTLPVS.

1 Introduction

Transactional Memory [5] is a simple solution for coordinating and synchronizing con-
current threads that access the same memory locations. It transfers the burden of con-
currency management from the programmers to the system designers and enables a safe
composition of scalable applications, we well as efficiently utilizes the multiple cores.
Multicore and many-core processors, which require concurrent programs in order to
gain a full advantage of the multiple number of processors, has become the mainstream
architecture for microprocessor chips and thus many new transactional memory imple-
mentations have been proposed recently (see [9] for an excellent survey).

A transactional memory (TM) receives requests from clientsand issues responses.
The requests are usually part of atransactionthat is a sequence of operations starting
with a request toopena transaction, followed by a sequence of read/write requests,
followed by a request tocommit (or abort). The TM responds to requests. When a
transaction requests a successful “commit,” all of its effects are stored in the memory.
If a transaction is aborted (by either issuing an abort request or when TM detects that
it should be aborted) all of its effects are removed. Thus, a transaction is a sequence of
atomicoperations, either all complete successfully and all its write operations update
the memory, or none completes and its write operations do notalter the memory. In
addition, committed transaction should be serializable – the sequence of operations
belonging to successful transactions should be such that itcan be reordered (preserving

⋆ This research was supported in part by ONR grant N00014-99-1-0131 and NSF grants CCF-
0742686 and CNS-0720525

the order of operations in each transaction) so that the operation of each transaction
appear consecutive, and a “read” from any memory location returns the value of the last
“write” to that memory location.

TMs are often parameterized by their properties. These may include the conflicts
they are to avoid, when are the conflicts detected, how they are resolved, when is the
memory updated, whether transactions can be nested, etc. (see [9] for a list of such
properties). Each set of parameters defines a unique set of sequences of events that can
occur is a TM so to guarantee atomicity and serializability.We refer to the set of se-
quences of events allowed by a TM as its sspecifications. A particular implementation
does not necessarily generate all allowed sequences, but should only generate allowed
sequences. The topic of this paper (as well as [3]) is to formally verify that a TM im-
plementation satisfies its specification that is uniquely defined by its parameters.

Such parameters were given in [12]’s widely-cited paper, which was the first to char-
acterize transactional memory in a way that captured and clarified the many semantic
distinctions among the most popular implementations of TMs. Scott’s ([12]) approach
is to begin with classical notions of transactional histories and sequential specifications,
and to introduce two important notions. The first is aconflict functionwhich specifies
when two overlapping (concurrent) transactions cannot both succeed (a safety condi-
tion). The second is anarbitration functionwhich specifies which of two transactions
must fail (a liveness condition). Scott’s work went a long way towards clarification of
the semantics of TMs, but did not facilitate mechanical verification of implementations.

The work in [3] (co-authored by the authors of this paper) took a first step towards
modeling TMs, accordingly to [12]’s parameters, so to as allow for mechanical veri-
fication of their implementations. There, a specification ofa TM is represented by a
fair state machine that is parameterized by a set ofadmissibleinterchanges — a set of
rules specifying when a pair of consecutive operations in a sequence of transactional
operations can be safely swapped without introducing or removing a conflict. All the
conflicts described in [12] can be cast as admissible sets. The specification machine
takes a stream of transactional requests as inputs, and outputs a serializable sequence of
the input requests and their responses. The fairness is usedto guarantee that each trans-
action is eventually closed (committed or aborted) and, if committed, appears in the
output. Some proof rules are given to show that a TM implementation satisfies its spec-
ification. The applicability of the approach is demonstrated on several well-known TM
implementations. Small instantiations of each of the case study were shown to specify
their specification using the model checkerTLC [8].

This paper extends the work of [3] in two directions. The firstis to add another pa-
rameter to the system —non-transactionalmemory accesses. Unlike their transactional
counterparts, non-transactional accesses cannot be aborted. While atomicity and serial-
izability requirements remain, where a non-transaction operation is cast as a singleton,
successfully committed, transaction. The second direction is a framework that allows
for a mechanical formal verification that TM implementations satisfy their specifica-
tions. The tool we use isTLPVS [11], which embeds temporal logic and its deductive
frame-work within the theorem proverPVS [10]. UsingTLPVS entailed some changes to
the [3] proof rules that establish that an implementation indeed refines its specification.
In fact, the rule presented here is more general than its predecessor. UsingTLPVS also

entailed restricting to interchange rules that can be described by temporal logics (which
still covers all of [12]’s conflicts). For simplicity, we chose to restrict to interchanges
whose temporal description uses only past temporal operators (i.e., depend only on the
history leading to the interchange), which rules out [12]’smixed invalidation conflict.

We make here a strong assumption on non-transactional accesses, namely, that the
transactional memory is aware that non-transactional accesses, as soon as they occur.
While the TM cannot abort such accesses, it may use them in order to abort transactions
that are under its control. It is only with such or similar assumption that total consistency
or coherence can be maintained.

We demonstrate the new framework by presentingTLPVS proofs that some TM
implementations with non-transactional accesses satisfytheir specifications, given an
admissible interchange.

To the best of our knowledge, the work presented here is the first to employ a theo-
rem prover for verifying correctness of transactional memories and the first to formally
verify an implementation that handles non-transactional memory accesses.

The rest of the paper is organized as follows: Section 2 provides preliminary def-
initions related to transactional memory, and defines the concept of admissible inter-
changes. Section 3 provides a specification model of a transactional memory. Section 4
discusses a proof rule for verifying implementations. Section 5 presents a simple im-
plementation of transactional memory that handles non-transactional memory accesses.
Section 6 shows how to apply deductive verification usingTLPVS to verify this imple-
mentation. Section 7 provides some conclusions and open problems.

2 Transactional Sequences and Interchanges

We extend the [3] to support non-transactional memory accesses and separate each ac-
tion into a request/response pair, as well as give a temporaldefinition for interchanges.

2.1 Transactional Sequences

Assumen clients that direct requests to amemory system, denoted bymemory. For
every clientp, let the set ofnon-transactional invocations by clientp consists of:

– ιRnt
p (x) – A non-transactional request to read from addressx ∈ N.

– ιWnt
p (y, v) – A non-transactional request to write valuev ∈ N to addressy ∈ N.

Let the set oftransactional invocations by clientp consists of:
– ι◭p – An open transaction request.
– ιRt

p(x) – A transactional read request from addressx ∈ N.
– ιW t

p(y, v) – A transactional request to write the valuev ∈ N to addressy ∈ N.
– ι◮p – A commit transaction request.
– ι 6◮p – An abort transaction request.

The memory provides a response for each invocation. Erroneous invocations (e.g.,
a ι◭p while clientp has a pending transaction) are responded by the memory returning
an error flagerr . Non-erroneous invocations, except forιRt andιRnt are responded
by the memory returning an acknowledgmentack . Finally, for non-erroneousιRt

p(x)
andιRnt

p (x) the memory returns the (natural) value of the memory at location x. We

assume that invocations and responses occur atomically andconsecutively, i.e., there
are no other operation that interleave an invocation and itsresponse.

LetEnt
p : {Rnt

p (x, u), Wnt
p (x, v)} be the set ofnon-transactional observable events,

Et
p : {◭p, R

t
p(x, u), W t

p(x, v), ◮p, 6◮p} be the set oftransactional observable events
and Ep = Ent ∪ Et, i.e. all events associated with clientp. We consider as ob-
servable events only requests that are accepted, and abbreviate the pair (invocation,
non-err response) by omitting theι-prefix of the invocation. Thus,W t

p(x, v) abbre-
viatesιW t

p(x, v), ackp. For read actions, we include the value read, that is,Rt
p(x, u)

abbreviatesιRt(x), ρR(u). When the value written/read has no relevance, we write the
above asW t

p(x) andRt
p(x). When both values and addresses are of no importance, we

omit the addresses, thus obtainingW t
p andRt

p (symmetric abbreviations and shortcuts
are used for the non-transactional observable events). Theoutput of each action is its
relevant observable event when the invocation is accepted,and undefined otherwise.
Let E be the set of all observable events over all clients, i.e.,E =

⋃n

p=1 Ep (similarly
defineEnt andEt to be the set of all non-transactional and the set of all transactional
observable events, respectively).

Let σ : e0, e1, . . . , ek be a finite sequence of observableE-events. We say that the
sequencêσ overEt is σ’s transactional sequence, whereσ̂ is obtained fromσ by re-
placing eachRnt

p andWnt
p by ◭p Rt

p ◮p and◭p W t
p ◮p, respectively. That is, each

non-transactional event ofσ is transformed into a singleton committed transaction in
σ̂. The sequenceσ is called awell-formed transactional sequence(TS for short) if the
following all hold:
1. For every clientp, let σ̂|p be the sequence obtained by projectingσ̂ ontoEt

p. Then
σ̂|p satisfies the regular expressionT ∗

p , whereTp is the regular expression◭p (Rt
p+

W t
p)∗(◮p + 6◮p). For each occurrence ofTp in σ̂|p, we refer to its first and last

elements asmatching. The notion of matching is lifted tôσ itself, where◭p and
◮p (or 6◮p) are matching if they are matching in̂σ|p;

2. The sequencêσ is locally read-write consistent: for any subsequence of̂σ of the
form 〈W t

p(x, v) η Rt
p(x, u)〉 whereη contains no◮p, 6◮p, or W t

p(x) events,u = v.

We denote byT the set of all well-formed transactional sequences, and bypref(T)
the set ofT ’s prefixes. Note that the requirement of local read-write consistency can
be enforced by each client locally. To build on this observation, we assume that, within
a single transaction, there is noRt

p(x) following a W t
p(x), and there are no two reads

or two writes to the same address. With these assumptions, the requirement of local
read-write consistency is always (vacuously) satisfied. A TSσ is atomicif:

1. σ̂ satisfies the regular expression(T1 + · · · + Tn)∗. That is, there is no overlap
between any two transactions;

2. σ̂ is globally read-write consistent: namely, for any subsequenceW t
p(x, v)ηRt

q(x, u)
in σ̂, whereη contains◮p, which is not preceded by6◮p, and contains no event
W t

k(x) followed by event◮k, it is the case thatu = v.

2.2 Interchanging Events

The notion of a correct implementation is that every TS can betransformed into an
atomic TS by a sequence of interchanges which swap two consecutive events. This

definition is parameterized by the setA of admissible interchangeswhich may be used
in the process of serialization. Rather than attempt to characterizeA, we choose to
characterize its complementF , the set offorbidden interchanges. The definition here
differs from the one in [3] in two aspects: There, in order to characterizeF , we allowed
arbitrary predicates over the TS, here, we restrict to temporal logic formulae. Also,
while [3] allowed swaps that depend on future events, here werestrict to swaps whose
soundness depends only on the history leading to them. This restriction simplifies the
verification process, and is the one used in all TM systems we are aware of. Note that
it does not allow to express [12]’s mixed invalidation conflict. In all our discussions,
we assumestrict serializabilitywhich implies that while serializing a TS, the order of
committed transactions has to be preserved.

Consider a temporal logic overE using the past operators� (previously),Q
(sometimes in the past), andS (since). Letσ be a prefix of a well-formed TS over
Et (i.e.,σ = σ̂). We define a satisfiability relation|= betweenσ and a temporal logic
formulaϕ so thatσ |= ϕ if at the end ofσ, ϕ holds. (The more standard notation is
(σ, |σ| − 1) |= ϕ, but since we always interpret formulae at the end of sequences we
chose the simplified notation.)

Some of the restrictions we place inF are structural. For example, the formula
p 6= q∧ ◮p ∧ � ◮q forbids the interchange of closures of transactions belonging to
different clients. This guarantees the strictness of the serializability process. Similarly,
the restrictionup ∧ � vp, whereup, vp ∈ Ep, forbids the interchanges of two events
belonging to the same client. Other formulas may guarantee the absence of certain con-
flicts. For example, following [12], alazy invalidationconflict occurs when committing
one transaction may invalidate a read of another, i.e., if for some transactionsTp and
Tq and some memory addressx, we haveRp(x), Wq(x) ≺◮q≺◮p (where “ei ≺ ej”
denotes thatei precedesej). Formally, the last two events inσ cannotbe interchanged
when for somep 6= q,

σ |= ◮q ∧ � (Rp(x) ∧ (¬ ◮q)S Wq(x)) (1)

Similarly, we express conflicts by TL formulae that determine, for any prefix of a TS
(that includes onlyEt events), whether the two last events in the sequence can be safely
interchanged without removing the conflict. For a conflictc, the formula that forbids in-
terchanges that may remove instances of this conflict is called themaintaining formula
for c and is denoted bymc. Thus, Formula 1 is the maintaining formula for the conflict
lazy invalidation. See [2] for a list of the maintaining formulae for each[12]’s conflicts
(expect for mixed invalidation that requires future operators).

Let F be a set of forbidden formulae characterizing all the forbidden interchanges,
and letA denote the set of interchanges which do not satisfy any of theformulas in
F . Assume thatσ = a0, . . . , ak. Let σ′ be obtained fromσ by interchanging two
elements, sayai−1 andai. We then say thatσ′ is 1-derivable fromσ with respect toA
if (a0, . . . , ai) 6|=

∨
F . Similarly, we say thatσ′ is derivable fromσ with respect toA

if there existσ = σ0, . . . , σℓ = σ′ such that for everyi < ℓ, σi+1 is 1-derivable from
σi with respect toA.

A TS is serializable with respect toA if there exists an atomic TS that is derivable
from it with respect toA. The sequencĕσ is called thepurified versionof TS σ if σ̆ is
obtained by removing from̂σ all aborted transactions, i.e., removing the opening and

closing events for such a transaction and all the read-writeevents by the same client
that occurred between the opening and closing events. When we specify the correctness
of a transactional memory implementation, only the purifiedversions of the implemen-
tation’s transaction sequences will have to be serializable.

3 Specification and Implementation

Let A be a set of admissible interchanges which we fix for the remainder of this sec-
tion. We next describeSpec

A
, a specification of transactional memory that generates

all sequences whose corresponding TSs are serializable with respect toA. The process
Spec

A
is described as a fair transition system. In every step, it outputs an element in

E⊥ = E ∪ {⊥}. The sequence of outputs it generates, once the⊥ elements are pro-
jected away, is the set ofTSs that are admissible with respect toA. Spec

A
uses the

following data structures:
• specmem: array N 7→ N — A persistent memory. Initially,specmem[i] = 0 for

all i ∈ N;
• Q : list over Et ∪

⋃
p{markp} — A queue-like structure, to which elements are

appended, interchanged, deleted, and removed. The sequence of elements removed
from this queue-like structure defines an atomic TS that can be obtained by seri-
alization ofSpec

A
’s output with respect toA. For each clientp, it is assumed that

markp 6∈ Ep is a new symbol. Initially,Q is empty;
• specout: scalar in E⊥ = E ∪ {⊥} — An output variable, initially⊥;
• specdoomed: array [1..n] 7→ bool — An array recording which pending transac-

tions are doomed to be aborted. Initiallyspecdoomed[p] = F for everyp.
Fig. 1 summarized the steps taken bySpec

A
. The first column describes the value of

specout with each step; it is assumed that every step produces an output. The second
column describes the effects of the step on the other variables. The third column de-
scribes the conditions under which the step can be taken. Thefollowing abbreviations
are used in Fig. 1:
• A client p is pendingif specdoomed[p] = T or if Q|p is not empty and does not

terminate with◮p;
• a clientp is unmarkedif Q|p does not terminate withmarkp;
• ap-actiona is locally consistent withQ if Q|p, a is a prefix of some locally consis-

tentp-transaction;
• a transactionT is consistent withspecmem if everyRt(x, v) in T is either pre-

ceded by someW t(x, v), or elsev = specmem[x];
• theupdate ofspecmemby a transactionT is specmem′ where for every location

x for which T has noW t(x, v) actions,specmem′[x] = specmem[x], and for
every memory locationx such thatT has someW t(x, v) actions,specmem′[x] is
the value written in the last such action inT ;

• anA-valid transformation toQ is a sequence of interchanges ofQ’s entries that is
consistent withA. To apply the transformations, eachmarkp is treated as if it is
◮p.

The role ofspecdoomedis to allow Spec
A

to be implemented with various arbitra-
tion policies. It can, at will, schedule a pending transaction to be aborted by setting

specout other updates conditions

◭p append◭p to Q p is not pending
Rt

p(x, v) appendRt
p(x, v) to Q p is pending, unmarked andspecdoomed[p] = F;

R(x, v) is locally consistent withQ
Rt

p(x, v) none p is pending, unmarked andspecdoomed[p] = T

W t
p(x, v) appendW t

p(x, v) to Q p is pending, unmarked andspecdoomed[p] = F

W t
p(x, v) none p is pending, unmarked andspecdoomed[p] = T

6◮p deletep’s pending transaction fromQ; p is pending
setspecdoomed[p] to F

◮p updatespecmemby p’s pending transaction;p has a consistent transaction at the front ofQ
removep-pending transaction fromQ that ends withmarkp (p is pending and marked)

Rnt
p (x, v) append◭p, Rt

p(x, v), ◮p to Q p is not pending
W nt

p (x, v) append◭p, W t
p(x, v), ◮p to Q p is not pending

⊥ setspecdoomed[p] to T; p is pending andspecdoomed[p] = F

delete all pendingp-events fromQ
⊥ apply aA-valid transformation toQ none
⊥ appendmarkp to Q p is pending and unmarked
⊥ none none

Fig. 1. Steps ofSpec
A

specdoomed[p], by so “dooming”p’s pending transaction to be aborted. The variable
specdoomed[p] is reset once the transaction is actually aborted (whenSpec

A
outputs

6◮p). Note that actions of doomed transactions are not recordedonQ.

We assume a fairness requirement, namely, that for every clientp = 1, . . . , n, there
are infinitely many states ofSpec

A
whereQ|p is empty andspecdoomed[p] = F. This

implies that every transaction eventually terminates (commits or aborts). It also guaran-
tees that the sequence of outputs is indeed serializable. Note that unlike the specification
described in [3] where progress can always be guaranteed by aborting transactions, here,
because of the non-transactional accesses, there are caseswhereQ cannot be emptied.

While Spec
A

resembles its counterpart in [3], the treatment of non-transactional ac-
cesses entailed numerous changes: Roughly speaking, each transactional access is ap-
pended to the queue, and removed from it when the transactioncommits, aborts, or is
doomed to abort. When a transaction attempts to commit, a special markermarkp is ap-
pended to the queue, and, if there are admissible interchanges that move the whole trans-
action into the head of the queue, its events are removed fromthe queue and it commits.
Thus, the queue never contains◮-events, and it contains at most onemark -event. A
non-transactionalp-accessant

p (that can only be accepted whenp-has no pending trans-
action) is treated by appending◭p, a

t
p, ◮p to the queue. (Note that the non-transactional

event is replaced by its transactional counterpart.) Hence, here the queue may have◮-
events. The transactions (or, rather, non-transaction) corresponding to themcannotbe
“doomed to abort” since such a transaction is, by definition (see below), not pending.
The liveness properties require that all transaction are eventually removed from the
queue. As a consequence, unlike its [3] version,Spec

A
does not support “eager version

management” that eagerly updates the memory with everyW t-action (that doesn’t con-
flict any pending transaction) which is reasonable since eager version management and
the requirement to commit each non-transactional access are contradictory.

A sequenceσ overE is compatible withSpecA if it can be obtained by the sequence
of specout thatSpecA outputs once all the⊥’s are removed. We then have:

Claim. For every sequenceσ overE, σ is compatible withSpecA iff σ̂ is serializable
with respect toA.

An implementation TM: (read, commit) of a transactional memory consists of a
pair of functionsread: pref(TS)× [1..n]×N → N andcommit: pref(TS)× [1..n] →
{ack, err} For a prefixσ of a TS,read(σ, p, x) is the response (value) of the memory to
an acceptedιRnt

p (x)/ιRt
p(x) request immediately followingσ, andcommit(σ, p) is the

response (ackor err) of the memory to aι◮p request immediately followingσ.
A TS σ is said to becompatiblewith the memoryTM if:

1. For every prefixηRnt
p (x, u) or ηRt

p(x, u) of σ, read(η, p, x) = u.
2. For every prefixη◮p of σ, commit(η, p) = ack .

An implementationTM : (read, commit) is a correct implementation of a transac-
tional memory with respect toA if every TS compatible withTM is also compatible
with SpecA.

4 Verifying Implementation Correctness

We present a proof rule for verifying that an implementationsatisfies the specification
Spec. The rule is adapted [6], which, in turn is based on [1]’sabstraction mapping. In
addition to being case in a different formal framework, and ignoring compassion (which
is rarely, if ever, used in TMs), the rule generalizes on the two given in [3] by allowing
for general stuttering equivalence.

To apply the underlying theory, we assume that both the implementation and the
specifications are represented asOPFSs (see [2] for details). In the current application,
we prefer to adopt anevent-basedview of reactive systems, by which the observed
behavior of a system is a (potentially infinite) set of events. Technically, this implies
that one of the system variablesO is designated as anoutput variable. The observation
function is then defined byO(s) = s[O]. It is also required that the observation domain
always includes the value⊥, implying no observable event. In our case, the observation
domain of the output variable isE⊥ = E ∪ {⊥}.

Letη : e0, e1, . . . be an infinite sequence ofE⊥-values. TheE⊥-sequencẽη is called
astuttering variantof the sequenceη if it can be obtained by removing or inserting finite
strings over{⊥} at (potentially infinitely many) different positions within η.

Let σ : s0, s1, . . . be a computation ofOPFSD, that is, a sequence of states where
s0 satisfies the initial condition, each state is a successor ofthe previous one, and
for every justice (weak fairness) requirement,σ has infinitely many states that satisfy
the requirement. Theobservationcorresponding toσ (i.e.,O(σ)) is theE⊥ sequence
s0[O], s1[O], . . . obtained by listing the values of the output variableO in each of the
states. We denote byObs(D) the set of all observations of systemD.

Let D
C

be aconcretesystem whose set of states isΣ
C

, set of observations isE⊥,
observation function isO

C
, initial condition isΘ

C
, transition relation isρ

C
, and justice

requirements are∪f∈F
C
J (f). Similarly, letD

A
be anabstractsystem whose set of

states, set of observations, observation function, initial condition, transition relation,
and justice requirements areΣ

A
, E⊥, O

A
, Θ

A
, ρ

A
, and∪f∈F

A
J (f) respectively. (For

simplicity, we assume that neither system contains compassion requirements.) Note
that we assume that both systems share the same observationsdomainE⊥. We say that

systemD
A

abstractssystemD
C

(equivalentlyD
C

refinesD
A

), denotedD
C

⊑ D
A

if, for every observationη ∈ Obs(D
C
), there exists̃η ∈ Obs(D

A
), such that̃η is

a stuttering variant ofη. In other words, modulo stuttering,Obs(D
C
) is a subset of

Obs(D
A
). We denote bys andS the states ofD

C
andD

A
, respectively.

Rule ABS-REL in Fig. 2 is a proof rule to establish thatD
C

⊑ D
A

. The method
advocated by the rule assumes the identification of anabstraction relationR(s, S) ⊆
Σ

C
× Σ

A
. If the relationR(s, S) holds, we say that the abstract stateS is anR-image

of the concrete states.
R1. Θ

C
(s) → ∃S : R(s, S) ∧ Θ

A
(S)

R2. D
C

|= 0 (R(s, S) ∧ ρ
C

(s, s′) → ∃S′ : R(s′, S′) ∧ ρ
A
(S, S′))

R3. D
C

|= 0 (R(s, S) → O
C

(s) = O
A
(S))

R4. D
C

|= 0 1 (∀S : R(s, S) → J (f)(S)), for everyf ∈ F
A

D
C

⊑ D
A

Fig. 2. RuleABS-REL.

Premise R1 of the rule states that for every initial concretestates, it is possible to
find an initial abstract stateS |= Θ

A
, such thatR(s, S) = T.

Premise R2 states that for every pair of concrete states,s ands′, such thats′ is a
ρ

C
-successor ofs, and an abstract stateS which is aR-related tos, there exists an ab-

stract stateS′ such thatS′ is R-related tos′ and is also aρ
A

-successor ofS. Together,
R1 and R2 guarantee that, for every runs0, s1, . . . of D

C
there exists a runS0, S1, . . . ,

of D
A

, such that for everyj ≥ 0, Sj is R-related tosj. Premise R3 states that if abstract
stateS is R-related to the concrete states, then the two states agree on the values of
their observables. Together with the previous premises, weconclude that for everyσ a
run ofD

C
there exists a corresponding run ofD

A
which has the same observation as

σ. Premise R4 ensures that the abstract justice requirementshold in any abstract state
sequence which is a (point-wise)R-related to a concrete computation. Here,0 is the
(linear time) temporal operator for “henceforth”,1 the temporal operator for “even-
tually”, thus,0 1 means “infinitely often.” It follows that every sequence of abstract
states which isR-related to a concrete computationσ and is obtained by applications
of premises R1 and R2 is an abstract computation whose observables match the ob-
servables ofσ. This leads to the following claim which was proved usingTLPVS (see
Section 6):

Claim. If the premises of ruleABS-REL are valid for some choice ofR, thenD
A

is an
abstraction ofD

C
.

5 An Example: TCC with non-transactional accesses

We demonstrate our proof method by verifying a TM implementation which is essen-
tially TCC [4] augmented with non-transactional accesses. Its specifications is given
by Spec

A
whereA is the admissible set of events corresponding to the lazy invalidation

conflict described in Subsection 2.2.
In the implementation, transactions execute speculatively in the clients’ caches.

When a transaction commits, all pending transactions that contain some read events

from addresses written to by the committed transaction are “doomed.” Similarly, non-
transactional writes cause pending transactions that readfrom the same location to be
“doomed.” A doomed transactions may execute new read and write events in its cache,
but it must eventually abort.

Here we present the implementation, and in Section 6 explainhow we can verify
that it refines its specification using the proof ruleABS-REL in TLPVS. We refer to the
implementation asTM. It uses the following data structures:

• imp mem: N → N — A persistent memory. Initially, for alli ∈ N, imp mem[i] = 0;
• cache: array [1..n] of list of Et — Caches of clients. For eachp ∈ [1..n], cache[p],

initially empty, is a sequence overEt
p that records the actions ofp’s pending trans-

action;
• imp out: scalar in E⊥ = E ∪ {⊥} — an output variable recording responses to

clients, initially⊥;
• imp doomed: array [1..n] of booleans— An array recording which transactions

are doomed to be aborted. Initiallyimp doomed[p] = F for everyp.

TM receives requests from clients, to each it updates its state, including updating the
output variableimp out, and issues a response to the requesting client. The responses
are either a value inN (for a ιRt or ιRnt requests), an errorerr (for ι ◮ requests that
cannot be performed), or an acknowledgmentack for all other cases. Fig. 3 describes
the actions ofTM, where for each request we describe the new output value, theother
updates toTM’s state, the conditions under which the updates occur, and the response
to the client that issues the request. For now, ignore the comments in the square brackets
under the “conditions” column. The last line represents theidle step where no actions
occurs and the output is⊥.
Comment:For simplicity of exposition, we assume that clients only issue reads for
locations they had not written to in the pending transaction.

The specification of Section 3 specifies not only the behaviorof the Transactional
Memory but also the combined behavior of the memory when coupled with a typical
clients module. A generic clients module,Clients(n), may, at any step, invoke the next
request for clientp, p ∈ [1..n], provided the sequence ofEp-events issued so far (includ-
ing the current one) forms a prefix of a well-formed sequence.The justice requirement
of Clients(n) is that eventually, every pending transaction issues anack -ed ι ◮ or an
ι 6◮p.

Combining modulesTM andClients(n) we obtain the complete implementation,
defined by:

Imp : TM ‖| Clients(n)

where‖| denote thesynchronouscomposition operator defined in [7]; This composition
in combines several of the actions of each of the modules intoone.

The actions ofImpcan be described similarly to the one given by Fig. 3, where the
first and last column are ignored, the conditions in the brackets are added. The justice
requirements ofClients(n), together with the observation that bothι 6◮ and anack -
ed ι ◮ cause the cache of the issuing client to be emptied, imply that Imp’s justice
requirement is that for everyp = 1, . . . , n, cache[p] is empty infinitely many times.

Request imp out Other Updates Conditions Response

ι◭p ◭p append◭p to cache[p] [cache[p] is empty] ack

ιRt
p(x) Rt

p(x, v) appendRp(x, v) to cache[p] v = imp mem[x]; imp mem[x]
[cache[p] is empty]
(see comment)

ιW t
p(x, v) W t

p(x, v) appendWp(x, v) to cache[p] [cache[p] is not empty]ack
ι 6◮p 6◮p setcache[p] to empty; [cache[p] is not empty]ack

setimp doomed[p] to F

ι◮p ◮p setcache[p] to empty; imp doomed[p] = F; ack

for everyx andq 6= p such that[cache[p] is not empty]
W t

p(x) ∈ cache[p] and
Rt

p(x) ∈ cache[q]
setspecdoomed[q] to T;

updateimp memby cache[p]

ι◮p ⊥ none imp doomed[p] = T; err

[cache[p] is not empty]
ιRnt

p (x) Rnt
p (x, v) none v = imp mem[x]; imp mem[x]

[cache[p] is empty]
ιW nt

p (x, v) W nt
p (x, v) setimp mem[x] to v; [cache[p] is empty] ack

for everyq such that
Rt(x) ∈ cache[q]
setimp doomed[q] to T

none ⊥ none none none

Fig. 3.The actions ofTM

The application of ruleABS-REL requires the identification of a relationR which
holds between concrete and abstract states. In [3], we used the relation defined by:

specout = imp out ∧ specmem= imp mem
∧ specdoomed= imp doomed

∧
∧n

p=1 imp doomed[p] −→ (Q|p = cache[p])

however, there the implementation did not support non-transactional accesses. In
Section 6 we provide the relation that was applied when proving the augmented imple-
mentation usingTLPVS.

6 Deductive Verification in TLPVS

In this section we describe how we usedTLPVS [11] to verify the correctness of the
implementation provided in Section 5.TLPVS was developed to reduce the substan-
tial manual effort required to complete deductive temporalproofs of reactive systems.
It embeds temporal logic and its deductive framework withinthe high-order theorem
prover,PVS [10]. It includes a set of theories defining linear temporal logic (LTL),
proof rules for proving soundness and response properties,and strategies which aid in
conducting the proofs. In particular, it has a special framework for verifying unbounded
systems and theories. See [10] and [11] for thorough discussions for proving withPVS

andTLPVS, respectively. In [3] we described the verification of threeknown transac-
tional memory implementations with the (explicit-state) model checkerTLC. This veri-
fication involvedTLA+ [8] modules for both the specification and implementation, and
abstractionmappingassociating each of the specification’s variables with an expression
over the implementation’s variables.

This effort has several drawbacks: The mapping does not allow for abstractionre-
lations betweenstates, but rather formappingsbetweenvariables. We therefore used
a proof rule that is weaker thanABS-REL and auxiliary structures. For example, for
Q|p = cache[p], which cannot be expressed inTLA+, we used an auxiliary queue that
can be mapped intoQ and that records the order in which events are invoked in the im-
plementation. And, like any other model checking took,TLC can only be used to verify
small instantiations, rather than the general case. A full deductive verification requires
a theorem prover.

Our tool of choice isTLPVS. Since, however,TLPVS only supports the model ofPFS,
we formulateOPFSin thePVSspecification language. We then defined a new theory that
uses twoOPFSs, one for the abstract system (specification) and another for the concrete
system (implementation), and proved, in a rather straightforward manner, that the rule
ABS-REL is sound.

We then defined a theory for the queue-like structures used inboth specification
and implementation. This theory required, in addition to the regular queue operations,
the definition of the projection (|) and deletion of projected elements, which, in turn,
required the proofs of several auxiliary lemmas.

Next all the components of bothOPFS’s defining the abstract and concrete systems
were defined. To simplify theTLPVS proofs, some of the abstract steps were combined.
For example, when aSpec

A
commits a transaction, we combined the steps of interchang-

ing events, removing them fromQ, and settingspecout to ◮. This restricts the set of
Spec

A
’s runs but retains soundness. Formally,TM ⊑ S̃pecφli

implies thatTM ⊑ Specφli
,

whereS̃pecφli
is the restricted specification

The abstraction relationR between concrete and abstract states was defined by:

rel : RELATION = (LAMBDA s c, s a :
s c‘out = s a‘out AND s c‘mem = s a‘mem AND
s c‘doomed = s a‘doomed AND
FORALL(id : ID) : (NOT s c‘doomed(id)) IMPLIES

project(id,s a‘Q) = s c‘caches(id) AND
FORALL(id : ID) : (empty(s c‘caches(id))) IMPLIES

empty(project(id,s a‘Q)))

Here,s c is a concrete state ands a is an abstract state. The relationR equates the values of
out, mem anddoomed in the two systems. It also states that if the transaction of aclient is not
doomed, then its projection on the abstractQ equals to the concrete client’s cache, and if the con-
crete cache is empty then so is the projection of the abstractQ on the client’s current transaction.
An additional invariant, stating that each value read by a non-doomed client is consistent with the
memory was also added.

In order to prove thatTM ⊑ Specφli
, D

C
and D

A
of ABS-REL were instantiated with

TM and Specφli
, respectively, and all the premises were verified. The proofs are inhttp :

//cs.nyu.edu/acsys/tlpvs/tm.html .

7 Conclusion and Future Work

We extended our previous work on a verification framework fortransactional memory implemen-
tations against their specifications, to accommodate non-transactional memory accesses. We also
developed a methodology for verifying transactional memory implementations based on the theo-
rem proverTLPVS that provides a framework for verifying parameterized systems against tempo-
ral specifications. We obtained mechanical verifications ofboth the soundness of the method and
the correctness of an implementation which is based onTCC augmented with non-transactional
accesses.

Our extension for supporting non-transactional accesses is based on the assumption that an
implementation can detect such accesses. We are currently working on weakening this assump-
tion. We are also planning to study liveness properties of transactional memory.

References

1. M. Abadi and L. Lamport. The existence of refinement mappings. Theoretical Computer
Science, 82(2):253–284, May 1991.

2. A. Cohen, A. Pnueli, and L. D. Zuck. Verification of transactional memories that support
non-transactional memory accesses, February 2008. TRANSACT 2008.

3. Ariel Cohen, John W. O’Leary, Amir Pnueli, Mark R. Tuttle,and Lenore D. Zuck. Verifying
correctness of transactional memories. InProceedings of the 7th International Conference
on Formal Methods in Computer-Aided Design (FMCAD), pages 37–44, November 2007.

4. L. Hammond, W.Wong, M. Chen, B. D. Carlstrom, J. D. Davis, B. Herzberg, M. K. Prabhu,
H. Wijaya, C. Kozyrakis, and K. Olukotun. Transactional memory coherence and consis-
tency. InProc. 31st annu. Int. Symp. on COmputer Architecture, page 102. IEEE Computer
Society, June 2004.

5. Maurice Herlihy and J. Eliot B. Moss. Transactional memory: architectural support for lock-
free data structures. InISCA ’93: Proceedings of the 20th annual international symposium
on Computer architecture, pages 289–300, New York, NY, USA, 1993. ACM Press.

6. Y. Kesten, A. Pnueli, E. Shahar, and L. D. Zuck. Network invariants in action. In13th Inter-
national Conference on Concurrency Theory (CONCUR02), volume 2421 ofLect. Notes in
Comp. Sci., pages 101–115. Springer-Verlag, 2002.

7. Yonit Kesten and Amir Pnueli. Verification by augmented finitary abstraction.Inf. Comput.,
163(1):203–243, 2000.

8. L. Lamport.Specifying Systems: TheTLA+ Language and Tools for Hardware and Software
Engineers. Addison-Wesley, 2002.

9. James R. Larus and Ravi Rajwar.Transactional Memory. Morgan & Claypool Publishers,
2007.

10. S. Owre, N. Shankar, J. M. Rushby, and D. W. J. Stringer-Calvert. PVS System Guide.
Computer Science Laboratory, SRI International, Menlo Park, CA, September 1999.

11. A. Pnueli and T. Arons. Tlpvs: A pvs-based ltl verification system. InVerification–Theory
and Practice: Proceedings of an International Symposium inHonor of Zohar Manna’s 64th
Birthday, Lect. Notes in Comp. Sci., pages 84–98. Springer-Verlag, 2003.

12. M.L. Scott. Sequential specification of transactional memory semantics. InProc. TRANSACT
the First ACM SIGPLAN Workshop on Languages, Compiler, and Hardware Suppport for
Transactional Computing, Ottawa, 2006.

