
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

Building a Symbolic Execution Engine for
Haskell

William T. Hallahan
Computer Science
Yale University

william.hallahan@yale.edu

Anton Xue
Computer Science
Yale University

anton.xue@yale.edu

Ruzica Piskac
Computer Science
Yale University

ruzica.piskac@yale.edu

Abstract
Symbolic execution is a powerful software analysis tech-
nique that reasons about the possible execution states
of a program due to logical branching.
Historically, such techniques are primarily geared to-

wards imperative languages such as C and Java, with less
effort in the development of frameworks for functional
languages. While such works do exist, many are focused
on contract-based analysis, and some lack full support
for reasoning about functional expressions.
In this paper we outline the application of symbolic

execution techniques to Haskell. Our methods for pro-
gram model extraction, defunctionalization, execution
semantics, and constraint solving have strong implica-
tions for static analysis based testing, and for future
work in program verification and synthesis.

CCS Concepts � Software and its engineering�
Functional languages;

Keywords Symbolic Execution, Functional Program-
ming, Higher-Order Functions, Haskell

ACM Reference Format:
William T. Hallahan, Anton Xue, and Ruzica Piskac. 2017.
Building a Symbolic Execution Engine for Haskell. In Pro-
ceedings of TAPAS 17, New York, NY, USA, August, 29,
2017, 4 pages.
https://doi.org/10.1145/nnnnnnn.nnnnnnn

1 Introduction
The difficulty of software analysis scales with program
size: large programs with complex interactions are diffi-
cult for humans to reason about.

In the context of testing, a simple approach to checking
program behavior is through the use of automated test
scripts. However, such scripts do not scale well with de-
velopment, as additional tests must be written to contain
the growing complexity of program logic. Furthermore,
writing effective tests is inherently difficult and time
consuming to do, placing unnecessary burdens on de-
velopers. Techniques such as randomized testing [6] can

with paper note.
TAPAS 17, August, 29, 2017, New York, NY, USA

2017. ACM ISBN 978-x-xxxx-xxxx-x/YY/MM. . . $15.00
https://doi.org/10.1145/nnnnnnn.nnnnnnn

partially address these issues, but cannot yield formal
proofs nor guaranteed coverage due to their probabilistic
nature.
The difficulty of achieving sound coverage by simply

querying a program with input suggests that a different
of angle attack is needed. Symbolic execution is one such
approach.
The core idea behind symbolic execution is to use

symbolic variables in place of concrete values for program
input data. By making this substitution, it is possible
to examine how arbitrary input results in different end
states of program execution. As branching instructions
such as if-then-else or case statements are hit, the current
execution state duplicates itself to continue execution
on all possible branches simultaneously. Each state is
tagged with a path constraint, a conjunction of the logical
conditions that its variables are required to satisfy in
order to reach the current point of execution. By contrast,
during concrete program execution, concrete values for
variables forces logical branching to take only one of the
several potential paths available. In testing scenarios,
this reduces the amount of code coverage that each test
case is able to hit.
For instance, consider the following Haskell function

foo, which has three parameters named a, b, and c:

foo a b c = if a + b < c

then a + b

else if c < 5

then b + c

else a + c

Each end result has a unique path constraint required to
reach it. For instance, in order to reach b + c, we must
satisfy a + b < c and c < 5. By keeping track of these
path constraints, we can utilize automated reasoning
tools such as SMT solvers [3] to generate satisfiable
concrete substitutions for variables that would conclude
at each end state.

Additional contract-based assertions and assumptions
about program state can also be encoded within path
constraints. For example, a general assertion check can be
expressed as follows: if there exists a state that satisfies
the negation of the assertion, it implies that the assertion
has failed.

1

https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

TAPAS 17, August, 29, 2017, New York, NY, USA William T. Hallahan, Anton Xue, and Ruzica Piskac

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

Symbolic execution is not without its flaws, however.
One difficulty is looping or recursion conditions that
depend on symbolic values themselves, which can eas-
ily result in infinite branching. Furthermore, because
multiple states appear per logical branch, path explo-
sion can quickly drain memory resources. Other chal-
lenges occur at the constraint solving phase: as SMT
solvers are currently only equipped to deal with first-
order logic, it is difficult for symbolic engines to reason
about higher-order functions. Such limitations affect in
existing symbolic engines [4], and limits the types of
functional programs that can be effectively analyzed.
In this paper we outline our progress towards unas-

sisted symbolic execution of Haskell. We document tech-
niques used for program model extraction from Haskell
source, execution semantics under symbolic evaluation,
and constraint solving strategies taken.
Furthermore, we illustrate how general symbolic ex-

ecution problems such as path explosion, execution se-
mantics, and exploration heuristics are tackled in G2.
We also demonstrate the feasibility of defunctionaliza-
tion techniques applied to domain-specific problems in
the constraint solving of higher-order functions. The
techniques applied in our work extends the power of
symbolic execution engines to reason about a larger fam-
ily of programs than before, and provides a solid base
for future development in this area.

2 Design
The core design of a symbolic execution engine for higher-
order functional languages consists of program model
extraction, defunctionalization, execution semantics, and
constraint solving.

2.1 Model Extraction

We now describe the representational model used in the
G2 symbolic execution engine that we call G2 Language.
This language is extracted by leveraging the Glas-

gow Haskell Compiler (GHC) API to perform partial
compilation of Haskell programs into a lambda calculus
intermediary called Core Haskell. While Core Haskell
is a relatively concise representation of Haskell source
programs, it nevertheless contains excessive amounts
of irrelevant compilation information. Thus, we further
translate Core Haskell into G2 Language, which is in ap-
proximate one-to-one correspondence with Core Haskell’s
high-level features. This language is complex enough
to express Core Haskell, and thus Haskell’s syntactic
constructs, yet concise enough to contain only the infor-
mation relevant to us.

⟨expression⟩ ::= ⟨variable⟩
| ⟨constant⟩

| 𝜆𝑥 . ⟨expression⟩
| ⟨expression⟩ ⟨expression⟩
| ⟨datacon⟩
| case ⟨expression⟩ of

−−→
⟨𝑎𝑙𝑡⟩

| BAD

⟨variable⟩ ::= ⟨name⟩ ⟨type⟩

⟨constant⟩ ::= int | float | char | . . .

⟨datacon⟩ ::= ⟨name⟩
−−−→
⟨𝑡𝑦𝑝𝑒⟩

⟨alt⟩ ::= ⟨datacon⟩
−−−−−−−→
⟨𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒⟩ ⟨expression⟩

⟨type⟩ ::= TyInt | TyFun ⟨type⟩ ⟨type⟩ | . . .

Within an expression, a variable is paired with an iden-
tifying name and corresponding type that is used during
constraint solving. constants are values that cannot be
reduced further. Because all functions are curried in
Haskell, single-parameter lambda functions are sufficient
to represent all functions. Next, lambda expression appli-
cation is treated as the application of the right expression
to the result of the left expression. Data constructors are
similar to variables: they are likewise endowed with a
unique name, and have a list of type to denote its param-
eters. Branching is done by data constructor matching
on alt cases, which have a parameter in the form of
a variable list that match to the arguments taken by
the datacon. All logical decisions can be broken down
into this format, even True and False from if-then-else
statements. Lastly, BAD represents a catch-all error state.

An execution state is defined as (ℰ , 𝒞,𝒫). ℰ is an envi-
ronment that maps name to expression. 𝒞 is the current
expression under evaluation. 𝒫 is the path constraint
accumulated so far for the execution state.

2.2 Defunctionalization

Because Haskell is able to natively express higher-order
functions that are outside of the reasoning capabilities of
the first-order SMT solvers, we apply defunctionalization
techniques introduced by Reynolds [10] in order to lower
higher-order terms to first-order ones.

Let 𝑡1, . . . , 𝑡𝑛 be a list of the function types used as ar-
guments in ℰ . For each 𝑡𝑖, we introduce a new datatype,
𝑎𝑝𝑝𝑙𝑦 𝑡𝑦𝑝𝑒𝑖 and a new function 𝑎𝑝𝑝𝑙𝑦 𝑓𝑢𝑛𝑐𝑖 of type
𝑎𝑝𝑝𝑙𝑦 𝑡𝑦𝑝𝑒𝑖 → 𝑡𝑖. We refer to these as apply types and
apply functions. For each function 𝑓 of type 𝑡𝑖, we in-
troduce a constructor 𝑓𝑐𝑜𝑛𝑠 for 𝑎𝑝𝑝𝑙𝑦 𝑡𝑦𝑝𝑒𝑖. The role
of 𝑎𝑝𝑝𝑙𝑦 𝑓𝑢𝑛𝑐𝑖 is to perform pattern matching on the
constructors of 𝑎𝑝𝑝𝑙𝑦 𝑡𝑦𝑝𝑒𝑖. When a match on 𝑓𝑐𝑜𝑛𝑠
is found, the appropriate function 𝑓 is invoked with

2

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

Short Title TAPAS 17, August, 29, 2017, New York, NY, USA

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

the corresponding arguments that were also passed into
𝑎𝑝𝑝𝑙𝑦 𝑓𝑢𝑛𝑐𝑖.

Every higher-order function is then adjusted in a pre-
processing step to accept apply types in place of function
arguments. Each call to a higher order function is re-
placed by a call to an apply function, which is passed
an apply type. In this way, we preserve the semantics of
the original program, but reduce reasoning about higher-
order functions to reasoning about first-order functions.
This transformation enables SMT solvers to reason

about higher-order functions by proxy.

2.3 Execution Semantics

The goal of G2 execution semantics is to reduce a state
down to a terminal one, in which 𝒞 is a normal form
achieved through rewrites and ℰ lookups.
Each expression in G2 Language has a set of corre-

sponding rewrite rules akin to those of similar lambda
calculus based languages. These rewrite rules can be
applied to step through the execution sequence of a par-
ticular state in discrete increments. Because steps are
applied incrementally, this allows us to bound the depth
of our execution space, and prevent automatic infinite
looping that would otherwise cause the engine to run in-
definitely. Several execution heuristics can be applied to
explore the space, such as depth-first-search or breadth-
first-search techniques. We currently use breadth-first-
search techniques to apply stepping on all states in a
queue until a counter limit is hit. This has the advantage
in achieving balanced coverage in execution states, and
avoids scenarios that would result in diving too deep
into infinite recursion conditions.
Execution branching occurs during the evaluation of

case expressions when the inspected expression is a sym-
bolic value. In this scenario, the state is duplicated and
all alt branches are taken simultaneously, with the con-
straints 𝒫 for each state appropriately updated. Sym-
bolic values can be represented as variables who lack a
corresponding lookup in the environment ℰ , although
other explicit annotations are possible. This technique
can be applied to delay evaluation of the Haskell Pre-
lude-dependent portions of the program that we cannot
easily extract G2 representations for, such as arithmetics,
until SMT constraint solving, where direct translation
can be done on variable name inspections.

Furthermore, because Haskell has lazy evaluation, sim-
ilar semantics must be preserved in G2. In particular,
this involves favoring the left expression during for eval-
uation during expression applications.

2.4 Constraint Solving

Each path constraint gives a representational formula
that can be fed into the Z3 SMT solver.

The translation is straightforwrad: Haskell datatypes
become Z3 sort, while arithmetical operations on numeri-
cal constants are mapped directly to their equivalents Z3.
We currently do not support translation of non-normal
form expressions to SMT equivalents, as this significantly
increases encoding complexity while yielding little value.
Furthermore, due to the breadth-first-search nature of
our execution, we tend to find terminal states quickly
anyways. Additional exploration of the execution space
can be achieved by increasing counter limits on the en-
gine.

3 Related Work
There has been considerable work in the analysis of
Haskell programs. Our project is still a work in progress,
with a flexible future for testing and implementation of
different ideas. As such, we have focused on building a
solid, general base for the symbolic execution of Haskell.
Projects such as static Contract Checking [14] and

HALO [13], are mostly concerned with verifying pre and
post-conditions annotated within the program. HALO,
in particular, does not rely on symbolic execution: it
uses a direct translation between Haskell functions and
first-order logic formulas. While Contract Checking does
make use of symbolic execution, it has limitation in
its ability to support recursive predicates in pre and
post conditions of function calls that we are working to
address.

Catch [7] is specifically designed for the identification
of pattern matching errors, while Reach [8] is focused
on determining reachability in Haskell code. These are
actually quite similar problems: a pattern matching error
is really just an instance of reaching the end of a case
expression. The techniques utilized, however, are differ-
ent. Catch does not rely on symbolic execution, instead
it generates constraints that allow it to create proofs
that pattern matching statements do not result in errors.
Reach does utilize symbolic execution, and appears to
have evaluation semantics similar to ours.
For this reason, Reach is probably the most similar

existing work to our project. While we are not yet at
a stage where a side by side comparison is possible, we
hope to be able to both cover a larger subset of Haskell,
and be more efficient, than Reach. In particular, Reach
does not support Haskell’s full standard library, which we
are currently investigating handling. Furthermore, Reach
also has a more narrow objective in pure reachability
testing of Haskell programs, while we also aim our engine
to target other challenges in domains such as verification
and synthesis.

3

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

TAPAS 17, August, 29, 2017, New York, NY, USA William T. Hallahan, Anton Xue, and Ruzica Piskac

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

4 Conclusion and Future Work
G2 integrates and improves upon existing symbolic exe-
cution techniques for Haskell that allow us to perform
analysis on a larger family of programs.

Similar techniques can be applied to symbolic engines
that will be developed for similar functional languages for
more effective program coverage. Currently, a number
of promising optimizations and configurations are in
development.
For instance, although G2 favors left expression dur-

ing expression applications to emulate lazy evaluation
semantics, the current implementation does not support
the optimization of single evaluation of shared expres-
sions. Such implementations require a Spineless Tagless
Graph Reduction (STG) [9] based approach in order to
perform direct stack and heap manipulations, deviating
from well-known standard lambda calculus family of
evaluation semantics currently implemented. STG execu-
tion semantics in theory will also solve a few aggressive
memory consumption issues with G2 that result from the
need to perform nested symbolic execution during expres-
sion application. We have developed a promising STG
semantics-based prototype with goals for integration.

Another crucial problem in every symbolic execution
engine is speed, as annotated runs are inherently slow
and multiple states must be kept track of. As such, the
heuristics for exploration is important. While this has
not been the immediate focus of our work, we also plan
to investigate how different exploration techniques such
as bounded depth-first-search work in terms of efficiency
trade offs.

5 Acknowledgements
This research was sponsored by the NSF under grant
CCF-1553168.

References
[1] Cristian Cadar, Daniel Dunbar, and Dawson Engler. Klee:

Unassisted and automatic generation of high-coverage tests for

complex systems programs. In Proceedings of the 8th USENIX
Conference on Operating Systems Design and Implementation,

OSDI’08, pages 209–224, Berkeley, CA, USA, 2008. USENIX
Association.

[2] Cristian Cadar and Koushik Sen. Symbolic execution for soft-
ware testing: Three decades later. Commun. ACM, 56(2):82–

90, February 2013.
[3] Leonardo De Moura and Nikolaj Bjørner. Satisfiability modulo

theories: Introduction and applications. Commun. ACM,
54(9):69–77, September 2011.

[4] Aggelos Giantsios, Nikolaos Papaspyrou, and Konstantinos
Sagonas. Concolic testing for functional languages. In Pro-
ceedings of the 17th International Symposium on Principles

and Practice of Declarative Programming, PPDP ’15, pages

137–148, New York, NY, USA, 2015. ACM.

[5] Patrice Godefroid, Nils Klarlund, and Koushik Sen. Dart: Di-
rected automated random testing. SIGPLAN Not., 40(6):213–

223, June 2005.

[6] Richard Hamlet. Random testing. In Encyclopedia of Software
Engineering, pages 970–978. Wiley, 1994.

[7] Neil Mitchell and Colin Runciman. Not all patterns, but
enough: An automatic verifier for partial but sufficient pat-

tern matching. In Proceedings of the First ACM SIGPLAN

Symposium on Haskell, Haskell ’08, pages 49–60, New York,
NY, USA, 2008. ACM.

[8] M. Naylor and C. Runciman. Finding inputs that reach

a target expression. In Seventh IEEE International Work-
ing Conference on Source Code Analysis and Manipulation

(SCAM 2007), pages 133–142, Sept 2007.

[9] Simon L. Peyton Jones and Jon Salkild. The spineless tagless
g-machine. In Proceedings of the Fourth International Confer-

ence on Functional Programming Languages and Computer

Architecture, FPCA ’89, pages 184–201, 1989.
[10] John C. Reynolds. Definitional interpreters for higher-order

programming languages. In Proceedings of the ACM Annual
Conference - Volume 2, ACM ’72, pages 717–740, New York,

NY, USA, 1972. ACM.

[11] Koushik Sen, Darko Marinov, and Gul Agha. Cute: A concolic
unit testing engine for c. In Proceedings of the 10th Euro-

pean Software Engineering Conference Held Jointly with 13th
ACM SIGSOFT International Symposium on Foundations
of Software Engineering, ESEC/FSE-13, pages 263–272, New

York, NY, USA, 2005. ACM.

[12] Willem Visser, Klaus Havelund, Guillaume Brat, Seungjoon
Park, and Flavio Lerda. Model checking programs. Automated

Software Engg., 10(2):203–232, April 2003.
[13] Dimitrios Vytiniotis, Simon Peyton Jones, Koen Claessen,

and Dan Rosén. Halo: Haskell to logic through denotational

semantics. SIGPLAN Not., 48(1):431–442, January 2013.
[14] Dana N. Xu, Simon Peyton Jones, and Koen Claessen. Static

contract checking for haskell. SIGPLAN Not., 44(1):41–52,

January 2009.

4

	Abstract
	1 Introduction
	2 Design
	2.1 Model Extraction
	2.2 Defunctionalization
	2.3 Execution Semantics
	2.4 Constraint Solving

	3 Related Work
	4 Conclusion and Future Work
	5 Acknowledgements
	References

