
On Synthesis for Differential Privacy

Calvin Smith
University of Wisconsin – Madison

cjsmith@cs.wisc.edu

Abstract

Data analysis has the capability to enrich the lives of many,
yet it presents a fundamental threat to individual privacy.
Formal privacy constraints such as differential privacy serve
to protect individual rights while allowing large-scale data
analytics to proceed relatively unhindered. However, such
constraints are a significant barrier to the access of relevant
data. In this abstract, we give a solution that leverages type-
directed synthesis and the privacy-aware type system DFuzz
to allow users to automatically and efficiently synthesize
programs that respect privacy constraints. Furthermore, we
introduce a technique for proving randomized privacy mech-
anisms are sufficiently accurate via reduction to synthesis.

Keywords differential privacy, program synthesis

1 Introduction

The ability to access and manipulate data is critical to make
predictions and inferences about the world around us. How-
ever, many important datasets now contain sensitive infor-
mation that should be kept secure so as to protect the privacy
rights of individuals. Differential privacy [7] has become a
standard definition of privacy, where the goal is to obscure
the presence of sensitive information in a dataset via the
addition of noise. Differential privacy is now used by major
corporations, including Google [8], Apple [3], and Uber [13],
and government bodies, such as the U.S. Census Bureau [4],
in their analyses and information releases.

The inherent complexity of differential privacy makes ac-
cessing data complicated, and presents an significant barrier-
of-entry. This abstract presents two lines of work towards
automation of data analytics in the face of differential privacy
via program synthesis. The first, conditionally accepted at
ICFP 2019, is a type-directed synthesis technique that lever-
ages the linear dependent type system DFuzz [9] to enable
end users to easily synthesize privacy-aware queries. The
second, presented at POPL 2019 [15], leverages the proof
technique trace abstraction [10] to reduce proving accuracy
conditions of randomized programs to program synthesis.

We assume the reader is familiar with standard notions of
differential privacy (hereafter dp). If not, we recommend the
excellent overview by Dwork and Roth [7].

2 Synthesizing dp Programs

To facilitate the democratization of data, we desire a system
that allows non-technical end users to interact with privacy-
aware systems in a straightforward manner. The following

section presents a technique for synthesizing privacy-aware
queries from simple constraints by inverting the typing rules
of the linear dependent type system DFuzz [9].

Overview ofDFuzz We leave the full presentation of DFuzz
to Gaboardi et al. [9], and merely present the relevant pieces
of the linear subsystem here. DFuzz is a linear type system,
and so uses a linear modality !kσ to keep track of the sensi-
tivity of values. This modality appears in two primary forms:

1. Function domains - a type !kσ ⊸ τ , hereon written
σ ⊸k τ , is a function that is k-sensitive in its argu-
ment, i.e., if we have distance metrics dσ and dτ , then
for all x ,y ∈ σ , dτ (f (x), f (y)) ≤ k · dσ (x ,y).

2. Typing contexts - A type context containing the as-
sumption !kx : σ can type expressions that are at most
k-sensitive in x .

DFuzz maintains a distinction between deterministic and
probabilistic values of type σ via a probability monad, de-
noted by⃝σ . By reasoning aboutmetric preservation, Gaboardi
et al. arrive at the following critical observation:
Theorem 2.1. The execution of any closed program e such
that ⊢ e : σ ⊸ϵ ⃝τ is an ϵ-dp function from σ to τ .

Using Theorem 2.1, to synthesize a dp program, we simply
need to find a program of type σ ⊸ϵ ⃝τ satisfying our
correctness constraint. Type-checking DFuzz programs is
undecidable [6], so simple guess-and-check is unsuitable.
Fortunately, privacy is often enforced via a limited number
of provably-correct mechanisms, which we can utilize as
higher-order components in synthesis.

Mechanisms Differential privacy, even in complicated sys-
tems, is often enforced via the use of primitives called privacy
mechanisms. The most-used mechanism is:
Theorem 2.2 (Laplace Mechanism). Let q be a k-sensitive
real-valued query, and let ϵ > 0 be a fixed privacy param-
eter. The program λx .q(x) + X , where X ∼ Lap(k/ϵ, 0), is a
randomized program that is ϵ-differentially private.

This transformation is referred to as the Laplace mechanism.

We can encode the above as a primitive in DFuzz:
⊢ LapMech : ∀k .(σ ⊸k R) ⊸∞ σ ⊸ϵ ⃝R

Observe that the amount of noise added scales with the
sensitivity of the provided query. The interplay between
sensitivity, utility, and privacy is a complicated one, and
often reduces down to economic matters [11]. We assume a
user is able to place an upper-bound on k , the sensitivity of
the query.

1

SYNT’19, July 14, 2019, New York, NY, USA Calvin Smith

Synthesis Our synthesis procedure maintains tuples ⟨ϕ,p⟩
containing i) a partial solution p containing wildcards Ω

σ
representing unrefined sub-terms with type σ in context Ω,
and ii) a constraint ϕ restricting when the partial solution
p is well-typed. Synthesis is defined by a set of inference
rules that refine wildcards and accumulate constraints, ter-
minating when a closed program is found that is well-typed
and satisfying the provided correctness constraint. These in-
ference rules are derived by effectively inverting the typing
rules for DFuzz.

Inverting Typing Rules Because typing contexts main-
tain sensitivities of variables, combining contexts is a linear
operation, as seen in the rule for function application:

Ω ⊢ f : σ ⊸r τ Γ ⊢ e : σ
(⊸ E)

Ω + r · Γ ⊢ f e : τ

Intuitively, because f is r -sensitive, we require r uses of
context Γ to type the application f e . If we wish to invert the
rule (⊸ E) to synthesize function applications, we must find
a way to linearly decompose our initial context. Unfortunately,
there are possibly infinitely-many such decompositions, so
we introduce symbolic context constraints (sccs) to abstractly
record the space of possible decompositions:

Definition 2.3 (Symbolic Context Constraint). A symbolic
context is a term C in the grammar

C B ∅ | {x :R τ } | Ω | C + R ·C,

where Ω is a context variable, R is a sensitivity term, τ is
a type, and s is a sensitivity variable. A symbolic context
constraint is a conjunction of equalities of symbolic contexts.

sccs have a natural interpretation consistent with the
expected notions of context equality and manipulations.
Checking satisfiability of sccs is done using off-the-shelf
smt solvers and a procedure for converting sccs to equisat-
isfiable formulas in the theory of non-linear real arithmetic.

Using sccs, we can invert the DFuzz rule (⊸ E):〈
ϕ,p[Ω

τ]
〉

Ω1,Ω2, r fresh
App〈

ϕ ∧ Ω = Ω1 + r · Ω2,p[
Ω1
σ⊸r τ

Ω2
σ]

〉
Note the scc in the consequent. Informally, this inference

rule states that we can replace a wildcard with a function
application, assuming we properly decompose the context
variable Ω into the symbolic context Ω1 + r · Ω2, and can
find an r -sensitive function to apply.

Pruning and Heuristics The constraint ϕ in the state
⟨ϕ,p⟩ becomes unsatisfiable when it is impossible for p to
satisfy the typing or privacy constraints. As constraints are
only ever extended, if we arrive at a state where the con-
straint ϕ is unsatisfiable, we are justified in excluding any
state derivable from that synthesis state from the search, as
no completion of p will be able to satisfy the privacy budget.

0.001 0.01 0.1 1 10 100 1000
sensitivity time

0.001

0.01

0.1

1

10

100

1000

ba
se

lin
e

tim
e

Mechanism
Lap
Exp
PC

Figure 1. Each benchmark is a pair in log-space comparing
sens.-directed and baseline. Top, middle, and bottom dotted
lines are the 10x, 1x, and 0.1x levels of the efficiency gradient.
Marginal distributions are projected on the borders.

Checking satisfiability at every stage of synthesis is prohib-
itively expensive, however. Instead, we repeatedly simplify
constraints via constant propagation, and use the structure
of the resulting formula as a heuristic to direct the search
towards states that are more likely to be satisfiable.

Results After inverting the rest of the typing rules for
DFuzz, which involves introducing an abduction judgement
for handling subtyping, we evaluated a determinization of
our synthesis procedure on benchmarks taken from several
real-world datasets [5, 12, 14], which consists of 28 queries
using the Laplace mechanism, parallel composition mecha-
nism, and exponential mechanism [7]. To evaluate the effect
of considering sensitivities during synthesis, we compare to
a baseline type-directed synthesis tool that does not maintain
constraints. The results are plotted in Figure 1.
Considering sensitivities results in an average improve-

ment of 3.9x, and a maximum improvement of over 30x. All
but 2 sensitivity-directed benchmarks terminate in under
10 seconds. These numbers strongly suggest that there are
very tangible benefits to maintaining constraints over partial
solutions and using them to direct the search.

3 Proving Accuracy of dp Programs

Often, an end user desires a program that is not only privacy-
preserving, but useful. Common notions of utility for privacy
mechanisms are given in terms of accuracy, and roughly cor-
respond to the intuition that usually, a close-enough answer is
returned. More precisely, we are concerned with statements
that take the form of probabilistic Hoare triples:

2

On Synthesis for Differential Privacy SYNT’19, July 14, 2019, New York, NY, USA

Definition 3.1 (Probabilistic Hoare Triple). The judgement
⊢p

{
ϕpre

}
P
{
ϕpost

}
is said to hold if, for all program states

s |= ϕpre, we have Prs ′∼P (s)[s ′ |= ϕpost] ≥ 1 − p.

Proving probabilistic Hoare triples is unfortunately diffi-
cult to automate in the case of accuracies of privacy mecha-
nisms, as existing techniques are unable to handle the combi-
nation of complicated, continuous distributions and symbolic
failure properties required. In this section, we summarize a
technique from Smith et al. [15] that is able to automatically
prove accuracy conditions in the face of the above challenges
via reduction to program synthesis.

Proof Rule We rely on trace abstraction as a framework
for our approach [10]. Trace abstraction is a technique for
proving deterministic Hoare triples

{
ϕpre

}
P
{
ϕpost

}
hold, and

is simple in concept: i) model P as an automaton whose
language contains all traces in the control-flow graph of P ,
ii) sample a trace πi ∈ L(P) and prove

{
ϕpre

}
πi

{
ϕpost

}
, iii)

repeat step ii until no new traces can be sampled. If this
procedure succeeds, the control-flow graph of P has been
proven correct, and so the Hoare triple holds.
To extend trace abstraction to randomized programs, we

need to modify our proof rule slightly:

Theorem 3.2 (Trace Abstraction for Randomized Programs).
The probabilistic Hoare triple ⊢p

{
ϕpre

}
P
{
ϕpost

}
holds if

1. ⊢pi
{
ϕpre

}
πi

{
ϕpost

}
for all πi ∈ L(P)

2.
∑

i pi ≤ p

This proof rule is a simplification of the technique pre-
sented in Smith et al. [15], but is sufficient to prove simple
programs correct. Checking condition 2 is straightforward
using an smt solver (as the pis are likely symbolic), so the
rest of this presentation focuses on checking condition 1.

Reduction to Synthesis To prove ⊢p
{
ϕpre

}
π
{
ϕpost

}
, we

follow the classic strategy of encoding the semantics of π
as a logical formula. However, as π is a trace in a random-
ized program, it very likely contains sampling statements
of the form x ∼ D(e), where x is a program variable, D a
distribution function, and e an expression that parameterizes
D. To encode sampling statements, we turn to distribution
axioms, which are statements of the form Prx∼D [ϕax] ≤ p,
where p is a [0, 1]-valued expression and ϕax is a formula. To
use an axiom, we note that we can assume ¬ϕax holds if we
accumulate the chance of failure p.
Axioms can be parameterized by an uninterpreted func-

tion f whose inputs are the input variables to the program
V . For example, concentration inequalities for the Laplace
distribution give the following family of axioms:

Prx∼Lap(s,m) [|x −m | > (1/s) log (1/f (V))] ≤ f (V).

The use of axioms enables a natural encoding:

Table 1. Results on private algorithms. PA: # of proposed
axioms (synthesis solutions); time is in sec.

Algorithm Axiom(s) synthesized PA Time

RResponse priv ⇐⇒ Snd(r) 162 2
NoisySum |Q | /p 5 98
RNM |Q | /p 4 33
ExpMech |R | /p 3 27
AboveT 2/p and 2 |Q | /p 22 23
SparseVec 3/p, 3 |Q | /p, and 3/p 941 97

Theorem 3.3. The triple ⊢p
{
ϕpre

}
π
{
ϕpost

}
holds iff the fol-

lowing formula is satisfiable:

∀V ,ωi .(ϕpre ∧ ω0 = 0 ∧ ϕsem) ⇒ (ωn ≤ p ∧ ϕpost),

where ωi tracks the cumulative chance of failure at statement
i and ϕsem encodes the statement semantics [15].

Note, however, that any use of an axiom family can intro-
duce a free uninterpreted function f to the encoding. For a
trace with one uninterpreted function in its logical encoding,
the above formula is more precisely written as:

∃f ∀V ,ωi .(ϕpre ∧ ω0 = 0 ∧ ϕsem) ⇒ (ωn ≤ p ∧ ϕpost)

Checking satisfiability therefore becomes a synthesis prob-
lem, where we must find interpretations for each f such that
the rest of the formula is satisfiable. Our implementation
solves these synthesis problems using a standard bottom-up
term enumeration strategy [1, 2].

Results A prototype implementation of the above proce-
dure, with the necessary extensions from [15], was able to
automatically prove accuracy properties for 6 real-world dp
mechanisms. Results are summarized in Table 1.

Synthesized axioms, in general, are quite simple. This ob-
servation, combined with the low correlation between the
number of proposed axioms and the synthesis time suggest
the performance bottleneck lies elsewhere in the implemen-
tation. This is a promising revelation: we have likely not yet
reached the limits of synthesis in proof automation.

4 Conclusion

This abstract presents two lines of work towards the automa-
tion of data analytics in the presence of differential privacy:
the efficient synthesis of privacy-aware queries, and the au-
tomated proof of accuracy of randomized programs. Both
contributions make a reasonable step forwards in lowering
the barrier-of-entry for accessing data protected by formal
privacy guarantees by leveraging synthesis techniques.

As it stands, these two developments are disjoint.We imag-
ine a system that incorporates both privacy and utility into
synthesis, so that highly efficient answers are routinely gen-
erated. Furthermore, we believe there is more for synthesis
to automate in the realm of dp by considering frameworks
such as adaptive differential privacy [16].

3

SYNT’19, July 14, 2019, New York, NY, USA Calvin Smith

References

[1] Aws Albarghouthi, Sumit Gulwani, and Zachary Kincaid. 2013. Re-
cursive Program Synthesis. In Computer Aided Verification, Natasha
Sharygina and Helmut Veith (Eds.). Springer Berlin Heidelberg, Berlin,
Heidelberg, 934–950.

[2] Rajeev Alur, Arjun Radhakrishna, and Abhishek Udupa. 2017. Scaling
Enumerative Program Synthesis via Divide and Conquer. In Tools and
Algorithms for the Construction and Analysis of Systems, Axel Legay and
TizianaMargaria (Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg,
319–336.

[3] Apple. Accessed 11-11-2017. Differential privacy. https://images.apple.
com/privacy/docs/Differential_Privacy_Overview.pdf.

[4] US Census Bureau. Accessed 11-11-2017. On The Map. https:
//onthemap.ces.census.gov/.

[5] Paulo Cortez and Alice Silva. 2008. Using data mining to predict
secondary school student performance. (01 2008).

[6] Arthur Azevedo de Amorim, Marco Gaboardi, Emilio Jesús Gallego
Arias, and Justin Hsu. 2014. Really Natural Linear Indexed Type
Checking. In Proceedings of the 26th 2014 International Symposium
on Implementation and Application of Functional Languages, IFL ’14,
Boston, MA, USA, October 1-3, 2014. 5:1–5:12.

[7] Cynthia Dwork and Aaron Roth. 2013. The Algorithmic Foundations of
Differential Privacy. Foundations and Trends® in Theoretical Computer
Science 9, 3-4 (2013), 211–407. https://doi.org/10.1561/0400000042

[8] Úlfar Erlingsson, Vasyl Pihur, and Aleksandra Korolova. 2014. Rap-
por: Randomized aggregatable privacy-preserving ordinal response.
In Proceedings of the 2014 ACM SIGSAC conference on computer and
communications security. ACM, 1054–1067.

[9] Marco Gaboardi, Andreas Haeberlen, Justin Hsu, Arjun Narayan, and
Benjamin C. Pierce. 2013. Linear Dependent Types for Differential
Privacy. In Proceedings of the 40th Annual ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages (POPL ’13). ACM,
New York, NY, USA, 357–370. https://doi.org/10.1145/2429069.2429113

[10] Matthias Heizmann, Jochen Hoenicke, and Andreas Podelski. 2013.
Software Model Checking for People Who Love Automata. In Pro-
ceedings of the 25th International Conference on Computer Aided Veri-
fication (CAV’13). Springer-Verlag, Berlin, Heidelberg, 36–52. https:
//doi.org/10.1007/978-3-642-39799-8_2

[11] Justin Hsu, Marco Gaboardi, Andreas Haeberlen, Sanjeev Khanna,
Arjun Narayan, Benjamin Pierce, and Aaron Roth. 2014. Differential
Privacy: An Economic Method for Choosing Epsilon. Proceedings of
the Computer Security Foundations Workshop 2014. https://doi.org/10.
1109/CSF.2014.35

[12] Lauren Kirchner Jeff Larson, Surya Mattu and Julia
Angwin. [n. d.]. How We Analyzed the COMPAS Re-
cidivism Algorithm. https://www.propublica.org/article/
how-we-analyzed-the-compas-recidivism-algorithm/ Accessed:
2017-11-15.

[13] Noah M. Johnson, Joseph P. Near, and Dawn Xiaodong Song. 2018.
Practical Differential Privacy for SQL Queries Using Elastic Sensitivity.
VLDB. http://arxiv.org/abs/1706.09479

[14] M. Lichman. 2013. UCI Machine Learning Repository. http://archive.
ics.uci.edu/ml

[15] Calvin Smith, Justin Hsu, and Aws Albarghouthi. 2019. Trace Abstrac-
tion Modulo Probability. Proc. ACM Program. Lang. 3, POPL, Article
39 (Jan. 2019), 31 pages. https://doi.org/10.1145/3290352

[16] Daniel Winograd-Cort, Andreas Haeberlen, Aaron Roth, and Ben-
jamin C. Pierce. 2017. A Framework for Adaptive Differential Privacy.
Proc. ACM Program. Lang. 1, ICFP, Article 10 (Aug. 2017), 29 pages.
https://doi.org/10.1145/3110254

4

https://images.apple.com/privacy/docs/Differential_Privacy_Overview.pdf
https://images.apple.com/privacy/docs/Differential_Privacy_Overview.pdf
https://onthemap.ces.census.gov/
https://onthemap.ces.census.gov/
https://doi.org/10.1561/0400000042
https://doi.org/10.1145/2429069.2429113
https://doi.org/10.1007/978-3-642-39799-8_2
https://doi.org/10.1007/978-3-642-39799-8_2
https://doi.org/10.1109/CSF.2014.35
https://doi.org/10.1109/CSF.2014.35
https://www.propublica.org/article/how-we-analyzed-the-compas-recidivism-algorithm/
https://www.propublica.org/article/how-we-analyzed-the-compas-recidivism-algorithm/
http://arxiv.org/abs/1706.09479
http://archive.ics.uci.edu/ml
http://archive.ics.uci.edu/ml
https://doi.org/10.1145/3290352
https://doi.org/10.1145/3110254

	Abstract
	1 Introduction
	2 Synthesizing dp Programs
	3 Proving Accuracy of dp Programs
	4 Conclusion
	References

