
The TLA+ proof system

Stephan Merz

Kaustuv Chaudhuri, Damien Doligez, Leslie Lamport

INRIA Nancy & INRIA-MSR Joint Centre, France

Amir Pnueli Memorial Symposium

New York University, May 8, 2010

Stephan Merz (INRIA Nancy) The TLA+ proof system Amir Pnueli 2010 1 / 19



Amir Pnueli: Deduction is Forever (FM’99)

Just as it was unavoidable, due to the growing complexity of
circuits, that circuit manufacturers started to employ formal
methods for verifying their designs, it is equally inevitable that
more of the practicing verifiers will turn to deductive technologies,
due to their significantly better scalability.

Stephan Merz (INRIA Nancy) The TLA+ proof system Amir Pnueli 2010 2 / 19



Amir Pnueli: Deduction is Forever (contd.)

For verifying an invariant p over a finite-state system:

I it is usually much cheaper to check

Θ⇒ ϕ ϕ ∧ ρ⇒ ϕ′ ϕ⇒ p

I than computing ρ∗(¬p) by state space exploration.

Main differences between deduction and exploration:

I deduction is based on induction while exploration computes the set
of reachable states,

I deduction uses a more expressive language including quantifiers,
leading to succinct specification of parameterized systems,

I deduction requires user ingenuity and interaction.

Stephan Merz (INRIA Nancy) The TLA+ proof system Amir Pnueli 2010 3 / 19



Amir Pnueli: Deduction is Forever (contd.)

For verifying an invariant p over a finite-state system:

I it is usually much cheaper to check

Θ⇒ ϕ ϕ ∧ ρ⇒ ϕ′ ϕ⇒ p

I than computing ρ∗(¬p) by state space exploration.

Main differences between deduction and exploration:

I deduction is based on induction while exploration computes the set
of reachable states,

I deduction uses a more expressive language including quantifiers,
leading to succinct specification of parameterized systems,

I deduction requires user ingenuity and interaction.

Stephan Merz (INRIA Nancy) The TLA+ proof system Amir Pnueli 2010 3 / 19



Contents

1 Using the TLA+ proof system for proving invariants

2 The TLA+ proof language and system

3 Conclusion and outlook

Stephan Merz (INRIA Nancy) The TLA+ proof system Amir Pnueli 2010 4 / 19



Invariance proofs in TLA+

Elementary rule for proving invariants I ∧ [N]v ⇒ I′

I ∧2[N]v ⇒ 2I

THEOREM Inv1 ∆= ASSUME STATE I, STATE v, ACTION N,
I ∧ [N]v ⇒ I′

PROVE I ∧2[N]v ⇒ 2I

Schema for invariant proofs

Spec ∆= Init∧2[Next]vars ∧ L

THEOREM Spec⇒ Inv
〈1〉1. Init⇒ Inv
〈1〉2. Inv∧Next⇒ Inv′

〈1〉3. Inv∧ UNCHANGED vars⇒ Inv′

〈1〉4. QED

BY 〈1〉1, 〈1〉2, 〈1〉3, Inv1 DEF Spec

no tem
poral

logic here!

Stephan Merz (INRIA Nancy) The TLA+ proof system Amir Pnueli 2010 5 / 19



Invariance proofs in TLA+

Elementary rule for proving invariants I ∧ [N]v ⇒ I′

I ∧2[N]v ⇒ 2I

THEOREM Inv1 ∆= ASSUME STATE I, STATE v, ACTION N,
I ∧ [N]v ⇒ I′

PROVE I ∧2[N]v ⇒ 2I

Schema for invariant proofs

Spec ∆= Init∧2[Next]vars ∧ L

THEOREM Spec⇒ Inv
〈1〉1. Init⇒ Inv
〈1〉2. Inv∧Next⇒ Inv′

〈1〉3. Inv∧ UNCHANGED vars⇒ Inv′

〈1〉4. QED

BY 〈1〉1, 〈1〉2, 〈1〉3, Inv1 DEF Spec

no tem
poral

logic here!

Stephan Merz (INRIA Nancy) The TLA+ proof system Amir Pnueli 2010 5 / 19



Invariance proofs in TLA+

Elementary rule for proving invariants I ∧ [N]v ⇒ I′

I ∧2[N]v ⇒ 2I

THEOREM Inv1 ∆= ASSUME STATE I, STATE v, ACTION N,
I ∧ [N]v ⇒ I′

PROVE I ∧2[N]v ⇒ 2I

Schema for invariant proofs

Spec ∆= Init∧2[Next]vars ∧ L

THEOREM Spec⇒ Inv
〈1〉1. Init⇒ Inv
〈1〉2. Inv∧Next⇒ Inv′

〈1〉3. Inv∧ UNCHANGED vars⇒ Inv′

〈1〉4. QED

BY 〈1〉1, 〈1〉2, 〈1〉3, Inv1 DEF Spec

no tem
poral

logic here!

Stephan Merz (INRIA Nancy) The TLA+ proof system Amir Pnueli 2010 5 / 19



Reasoning about actions

About 95% of proof steps do not involve temporal logic

I reasoning about state predicates or state transitions
I first-order reasoning where v and v′ are distinct variables

Aim for as much automation as possible . . .

I open proof system: harness power of different prover back-ends
I first-order logic, rewriting, SAT and SMT solving etc.
I ensure overall correctness by proof certification

. . . but encourage users to maintain readable proofs

I declarative, hierarchical proof language
I prefer an extra level of interaction over obscure automatic tactics

Stephan Merz (INRIA Nancy) The TLA+ proof system Amir Pnueli 2010 6 / 19



Proving trivial steps

Expand definitions and discharge automatically

Init ∆= ∧ pc = [i ∈ {0, 1} 7→ “a0”]
∧ turn = 0
∧ flag = [i ∈ {0, 1} 7→ FALSE]

Inv ∆= ∧ pc ∈ [{0, 1} → {“a0”, “a1”, “a2”, “a3a”, “a3b”, “cs”, “a4”}]
∧ turn ∈ {0, 1}
∧ flag ∈ [{0, 1} → BOOLEAN]
∧ ∀i ∈ {0, 1} : ∧ pc[i] ∈ {“a2”, “a3a”, “a3b”, “cs”, “a4”} ⇒ flag[i]

∧ pc[i] ∈ {“cs”, “a4”}
⇒ ∧ pc[1− i] /∈ {“cs”, “a4”}
∧ pc[1− i] ∈ {“a3a”, “a3b”} ⇒ turn = i

〈1〉1. Init⇒ Inv
BY DEFS Init, Inv

Stephan Merz (INRIA Nancy) The TLA+ proof system Amir Pnueli 2010 7 / 19



When automatic proof fails . . .

Decompose proof into a sequence of “simpler” steps

Next ∆= ∃i ∈ {0, 1} : Proc(i)
Proc(i) ∆= a0(i) ∨ a1(i) ∨ . . . ∨ a4(i)

〈1〉2. Inv∧Next⇒ Inv′

〈2〉1. SUFFICES ASSUME Inv, NEW i ∈ {0, 1}, Proc(i)
PROVE Inv′

BY DEF Next
〈2〉2. CASE a0(i)
〈2〉3. CASE a1(i)
. . .
〈2〉8. CASE a4(i)
〈2〉9. QED

BY〈2〉2, 〈2〉3, . . . , 〈2〉8 DEF Proc

Stephan Merz (INRIA Nancy) The TLA+ proof system Amir Pnueli 2010 8 / 19



When automatic proof fails . . .

Decompose proof into a sequence of “simpler” steps

Next ∆= ∃i ∈ {0, 1} : Proc(i)
Proc(i) ∆= a0(i) ∨ a1(i) ∨ . . . ∨ a4(i)

〈1〉2. Inv∧Next⇒ Inv′

〈2〉1. SUFFICES ASSUME Inv, NEW i ∈ {0, 1}, Proc(i)
PROVE Inv′

BY DEF Next
〈2〉2. CASE a0(i)
〈2〉3. CASE a1(i)
. . .
〈2〉8. CASE a4(i)
〈2〉9. QED

BY〈2〉2, 〈2〉3, . . . , 〈2〉8 DEF Proc

Stephan Merz (INRIA Nancy) The TLA+ proof system Amir Pnueli 2010 8 / 19



Contents

1 Using the TLA+ proof system for proving invariants

2 The TLA+ proof language and system

3 Conclusion and outlook

Stephan Merz (INRIA Nancy) The TLA+ proof system Amir Pnueli 2010 9 / 19



TLA+ proof language

Hierarchical, declarative proof

I linear representation of proof tree

I step labels 〈d〉lbl (where d is the depth of the step)

I steps assert sequents ASSUME . . . PROVE . . .

I top-down development: refine assertions until they are “obvious”

I leaf: invoke proof method, citing necessary assumptions and facts

Controlling the use of assumptions, facts, and definitions

I limit search space for automatic provers

I require explicit citation of assumptions, facts, and definitions . . .

I . . . or make them usable throughout the current scope

Stephan Merz (INRIA Nancy) The TLA+ proof system Amir Pnueli 2010 10 / 19



Example: proof of Cantor’s theorem

THEOREM ASSUME NEW S, NEW f ∈ [S→ SUBSET S]
PROVE ∃A ∈ SUBSET S : ∀x ∈ S : f [x] 6= A

〈1〉. DEFINE T ∆= {z ∈ S : z /∈ f [z]}
〈1〉1. ∀x ∈ S : f [x] 6= T

〈2〉1. ASSUME NEW x ∈ S PROVE f [x] 6= T
〈3〉1. CASE x ∈ T OBVIOUS

〈3〉2. CASE x /∈ T OBVIOUS

〈3〉3. QED BY 〈3〉1, 〈3〉2
〈2〉2. QED BY 〈2〉1

〈1〉2. QED BY 〈1〉1

Stephan Merz (INRIA Nancy) The TLA+ proof system Amir Pnueli 2010 11 / 19



Example: proof of Cantor’s theorem

THEOREM ASSUME NEW S, NEW f ∈ [S→ SUBSET S]
PROVE ∃A ∈ SUBSET S : ∀x ∈ S : f [x] 6= A

〈1〉. DEFINE T ∆= {z ∈ S : z /∈ f [z]}
〈1〉1. ∀x ∈ S : f [x] 6= T
〈2〉1. ASSUME NEW x ∈ S PROVE f [x] 6= T

〈3〉1. CASE x ∈ T OBVIOUS

〈3〉2. CASE x /∈ T OBVIOUS

〈3〉3. QED BY 〈3〉1, 〈3〉2

〈2〉2. QED BY 〈2〉1
〈1〉2. QED BY 〈1〉1

Stephan Merz (INRIA Nancy) The TLA+ proof system Amir Pnueli 2010 11 / 19



Example: proof of Cantor’s theorem

THEOREM ASSUME NEW S, NEW f ∈ [S→ SUBSET S]
PROVE ∃A ∈ SUBSET S : ∀x ∈ S : f [x] 6= A

〈1〉. DEFINE T ∆= {z ∈ S : z /∈ f [z]}
〈1〉1. ∀x ∈ S : f [x] 6= T
〈2〉1. ASSUME NEW x ∈ S PROVE f [x] 6= T
〈3〉1. CASE x ∈ T OBVIOUS

〈3〉2. CASE x /∈ T OBVIOUS

〈3〉3. QED BY 〈3〉1, 〈3〉2
〈2〉2. QED BY 〈2〉1
〈1〉2. QED BY 〈1〉1

Stephan Merz (INRIA Nancy) The TLA+ proof system Amir Pnueli 2010 11 / 19



System architecture

TLAPS

call backends to

(when possible)

parse and compute convert to

constant levelproof obligations

attempt proof

certify proof

proof manager

Isabelle/TLA+

Zenon
SMT solver

diagnostics

TLA+ proof

Stephan Merz (INRIA Nancy) The TLA+ proof system Amir Pnueli 2010 12 / 19



Proof Manager

Interpret hierarchical TLA+ proof

I manage assumptions and current goal

I expand operator definitions if they are USEd

Rewrite proof obligations to constant level

I handle primed expressions such as Inv′

I distribute prime over (constant-level) operators

I introduce distinct variables e and e′ for atomic state expression e

Invoke back-end provers

I user chooses which prover to use (default: Zenon, then Isabelle)

Stephan Merz (INRIA Nancy) The TLA+ proof system Amir Pnueli 2010 13 / 19



Proof reconstruction

Oracle: trusted external reasoner

I simple, but error-prone
I translation and backend part of trusted code base

Proof reconstruction: skeptical integration

I replay proofs in trusted proof assistant (Isabelle/TLA+)
I reconstruction should be cheap

Stephan Merz (INRIA Nancy) The TLA+ proof system Amir Pnueli 2010 14 / 19



Isabelle/TLA+

Encoding of TLA+ as Isabelle object logic

I TLA+ is untyped: incompatible with existing object logics

I Isabelle/TLA+ provides a library of standard data structures

Instantiate automated proof methods

I exploit genericity of Isabelle as a logical framework

I tableau prover, rewriting engine, and combinations

Trusted backend for proof reconstruction

I formal definition of (constant-level) TLA+ semantics

Stephan Merz (INRIA Nancy) The TLA+ proof system Amir Pnueli 2010 15 / 19



Contents

1 Using the TLA+ proof system for proving invariants

2 The TLA+ proof language and system

3 Conclusion and outlook

Stephan Merz (INRIA Nancy) The TLA+ proof system Amir Pnueli 2010 16 / 19



Current state of the TLAPS

First public release: april 2010

I http://msr-inria.inria.fr/˜doligez/tlaps/

I binary release includes prover backends

I batch processing of proofs, Emacs interface

Restricted to proving safety properties

I invariant and step simulation (refinement) proofs

I several examples provided in the distribution

Looking forward to user feedback

Stephan Merz (INRIA Nancy) The TLA+ proof system Amir Pnueli 2010 17 / 19

http://msr-inria.inria.fr/~doligez/tlaps/


Current work

Support for temporal logic proofs (liveness properties)

I extend proof manager to track temporal contexts
; hierarchical proof language helps separating contexts

I encode semantics of temporal logic in Isabelle/TLA+

I TLA-specific proof rules

I decision procedure for propositional temporal logic

Improve user interface

I integration with TLA+ toolbox (Eclipse-based)

I focus on specific subproofs, selectively rerun proof fragments

I display and select usable assumptions

Stephan Merz (INRIA Nancy) The TLA+ proof system Amir Pnueli 2010 18 / 19



Amir Pnueli, again

The previous examples indicated the great raw potential possessed
by the deductive technology which can often be impressively
utilized by experts. We also pointed out that user ingenuity is an
essential ingredient in its application.

The main challenge is to propose a working deductive tool and
associated methodology which can be used by the “masses”.

Automatic invariant generation

Counter-examples from failed proof attempts

Generic proof methods developed by experts

Stephan Merz (INRIA Nancy) The TLA+ proof system Amir Pnueli 2010 19 / 19


	Using the [+] proof system for proving invariants
	The [+] proof language and system
	Conclusion and outlook

