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The evil that men do lives after them.

Julius Caesar, by William Shakespeare
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Where I Started

Making sure my concurrent algorithms were right.

Proving the Correctness of Multiprocess Programs
(IEEE TSE, 1977)

Proved:

Safety Properties: Invariance

Liveness Properties: P ; Q
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My Introduction to Temporal Logic

In 1977–78, Susan Owicki started a little seminar on Amir’s 1977
FOCS paper.

It sounded like formal nonsense to me, but I attended anyway.

I discovered that:

It was simple: One primitive temporal operator 2

3
∆
= ¬2¬

It worked beautifully for liveness: P ; Q
∆
= 2(P ⇒ 3Q)

Eventually, Susan and I wrote Proving Liveness Properties of
Concurrent Programs (TOPLAS, 1982).
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Specification

Around 1980, my colleagues and I started trying to write
specifications.

Instead of stating some properties about an algorithm, say exactly
what it has to do.

Write the properties an algorithm/system/protocol should have.
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Temporal logic seemed ideal for this.

We had been using an exogenous logic:

|= F (validity of F ) depends on underlying system.

Just had to switch to an endogenous logic:

Single notion of |= .

System specified by temporal logic formula S

|= F becomes |= S ⇒ F
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It Didn’t Work!

My colleagues spent days unsuccessfully trying to specify a FIFO
queue.

The reason was obvious: the simple logic of Amir’s 1977 paper was
not expressive enough.

An arms race ensued. Who could invent the biggest, most powerful
temporal logic?

I was not immune:
TIMESETS — A New Method for Temporal Reasoning About Programs

(in LNCS 131, 1981)
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The Real Problem

Writing a specification as a list of properties doesn’t work.

No one can understand the consequences of a list of properties.
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An Example: Weak Memory Models

Typically specified by axioms.

Even their designers don’t understand them.

The original Alpha memory specification model allowed this:

Initially: x = y = 0

Process 1: if x = 23 then y := 42

Process 2: if y = 42 then x := 23

After execution: x = 23, y = 42
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An Example: Weak Memory Models

Typically specified by axioms.

Even their designers don’t understand them.

The original Itanium memory specification document.

We wrote a TLA+ specification and used our tools to check
the document’s tiny examples.

We found several errors.
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An Example: Weak Memory Models

Typically specified by axioms.

Even their designers don’t understand them.

No one can figure out from a list of axioms
what a tiny bit of concurrent code can do.
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What works

Specify liveness with Amir’s original temporal logic.

Specify safety by a state machine (abstract program).

How to do this in temporal logic:

Generalize Amir’s temporal logic.

Don’t add new temporal operators.

Do generalize elementary formulas from state predicates
to transition predicates.

But that’s another story.
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What is Evil About Temporal Logic

A fundamental rule of ordinary math: to prove A⇒ B , we assume A

and prove B .

The Deduction Principle:

P

Q

P ⇒ Q

The deduction principle is not valid for temporal logic (and other
modal logics).

For example, a basic rule of temporal logic asserts that if P is true
then it is always true.

P

2P
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From

P

Q

P ⇒ Q

and

P

2P

by substituting 2P for Q we deduce

P ⇒ 2P

which asserts that if P is true now then it is always true.
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In modal logics, implication (P ⇒ Q) and inference (
P

Q
) are different.

This is confusing.

Martín Abadi and I once believed a false result for several days
because this confused us.

A logic that can confuse Martín is evil.
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Greater Evil #1

Temporal logic is modal because it has an implicit time variable.

A solution: make time explicit.

For example: P ; Q becomes ∀ t : (P(t)⇒ ∃ s ≥ t :Q(s)) .

This makes formulas ugly and hard to understand.

Trying to eliminate this is what led Amir to temporal logic.

(He was inspired by Nissim Francez’s thesis.)
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Greater Evil #2

Use a programming logic.

Some programming logics:

Hoare Logic (Tony Hoare 1968)

Dynamic Logic (Vaughan Pratt 1974)

Weakest Preconditions (Edsger Dijkstra 1975)

Action Systems (Ralph Back ∼1983)

What they have in common:

programs appear in formulas of the “logic”.

Why are they evil? First a digression.
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We can derive Program 2 from Program 1 by substituting
p + q mod 2 for x .

Program 1:

initially x = 0

while TRUE do if x = 0 then Prod else Cons end if;
x := x + 1 mod 2

end while

Program 2:

initially p = q = 0

Process 1: while TRUE do await p = q ; Prod ; p := p + 1 mod 2
end while

Process 2: while TRUE do await p 6= q ; Cons ; q := q + 1 mod 2
end while

Two-Phase Handshake, an important hardware protocol
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A derivation is a refinement proof run backwards.
Refinement is substitution.
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How do you substitute p + q mod 2 for x in a program?
It can’t be done.
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Why Programming Logics are Evil

Substitution of an expression for a variable is a fundamental
operation of mathematics.

A logic that doesn’t permit substitution is evil.

Program refinement is based on substitution.

A programming logic that doesn’t permit substitution is especially evil.

Refinement by substitution is not a problem with temporal logic.

Temporal logic is a lesser evil.

17



Why Programming Logics are Evil

Substitution of an expression for a variable is a fundamental
operation of mathematics.

A logic that doesn’t permit substitution is evil.

Program refinement is based on substitution.

A programming logic that doesn’t permit substitution is especially evil.

Refinement by substitution is not a problem with temporal logic.

Temporal logic is a lesser evil.

17



Why Programming Logics are Evil

Substitution of an expression for a variable is a fundamental
operation of mathematics.

A logic that doesn’t permit substitution is evil.

Program refinement is based on substitution.

A programming logic that doesn’t permit substitution is especially evil.

Refinement by substitution is not a problem with temporal logic.

Temporal logic is a lesser evil.

17



Why Programming Logics are Evil

Substitution of an expression for a variable is a fundamental
operation of mathematics.

A logic that doesn’t permit substitution is evil.

Program refinement is based on substitution.

A programming logic that doesn’t permit substitution is especially evil.

Refinement by substitution is not a problem with temporal logic.

Temporal logic is a lesser evil.

17



Why Programming Logics are Evil

Substitution of an expression for a variable is a fundamental
operation of mathematics.

A logic that doesn’t permit substitution is evil.

Program refinement is based on substitution.

A programming logic that doesn’t permit substitution is especially evil.

Refinement by substitution is not a problem with temporal logic.

Temporal logic is a lesser evil.

17



Why Programming Logics are Evil

Substitution of an expression for a variable is a fundamental
operation of mathematics.

A logic that doesn’t permit substitution is evil.

Program refinement is based on substitution.

A programming logic that doesn’t permit substitution is especially evil.

Refinement by substitution is not a problem with temporal logic.

Temporal logic is a lesser evil.

17



A Necessary Evil

Temporal logic is the best way I know of to reason about
systems—especially for liveness properties.

Someone as good as Amir would not have done anything evil unless
it was necessary.

We are all grateful that he did it.

I am grateful that I had the privilege of being his colleague.

He was a great scientist and a wonderful human being.
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Thank you.
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