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Knowledge Representation

Knowledge Representation

Knowledge representation (KR) mechanisms aim to provide a
high level description of a given application domain with the goal
of facilitating construction of intelligent applications.

Representation formalisms based on logic turn out to be
eminently suitable because

1 well-defined syntax

2 formal semantics

3 support development of adequate reasoning services
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Description Logic Description Logics

Description Logics

Description logics (DLs) are a family of logic based Knowledge
Representation formalisms.

DLs describe domain in terms of concepts (classes), roles (binary
relationships) and individuals (objects).

Decidable fragments of FOL.

Closely related to Propositional Modal Logics.

Formal semantics for DLs are typically model theoretic.
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Description Logic Description Logic EL

EL— Concept Expressions and Roles

Vocabulary: NO,NC ,NR

Syntax and semantics: interpretation I = (∆, ·I)

Syntax Semantics

> >I = ∆

a aI ∈ ∆

A AI ⊆ ∆

r rI ⊆ ∆×∆

C u D CI ∩ DI

∃r .C {x ∈ ∆ | ∃y : (x , y) ∈ rI ∧ y ∈ CI}

Example: C u D, ∃r .(C u ∃s.D)
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Description Logic Description Logic EL

EL— Formulae and Knowledge Bases

EL formulae are of the form

Syntax Semantics

C v D CI ⊆ DI

C(a) aI ∈ CI

r(a,b) (aI ,bI) ∈ rI

EL-knowledge base: Σ = 〈A, T 〉

A: a finite non-empty set of assertions (ABox);

T : a finite set of subsumptions (TBox).
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Description Logic DL Reasoning Services

DL Reasoning Services

KB-satisfiability: Σ is satisfiable if it has a model

Concept-satisfiability: C is satisfiable w.r.t. Σ if there is a model of
Σ where the interpretation of C is not empty

Subsumption: C is subsumed by D w.r.t. Σ if for every model of Σ,
the interpretation of C is a subset of that of D

Query-answering: a is an instance of C if the assertion C(a) is
true in every model of Σ
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Query Answering

Query Answering

Given a KB Σ = 〈A, T 〉, its main goal is to answer user queries. Here
we assume that queries are assertions.
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Query Answering Proof System for A*

Proof System for A∗

uA1 -rule: if C1 u · · · u Ck (a) ∈ A∗ and Ci (a) /∈ A∗,
then A∗ := A∗ ∪ {Ci (a)} where 1 ≤ i ≤ k ;

uA2 -rule: if {C1(a), ...,Ck (a)} ⊆ A∗,C1 u · · · u Ck ∈ SubC
and C1 u · · · u Ck (a) /∈ A∗,
then A∗ := A∗ ∪ {C1 u · · · u Ck (a)};

∃A1 -rule: if {r(a,b),C(b)} ⊆ A∗,∃r .C ∈ SubC
and ∃r .C(a) /∈ A∗, then A∗ := A∗ ∪ {∃r .C(a)};

∃A2 -rule: if ∃r .C(a) ∈ A∗ and @b ∈ O∗ such that
{r(a,b),C(b)} ⊆ A∗, then A∗ := A∗ ∪ {r(a, c),C(c)}
where c is fresh, and O∗ := O∗ ∪ {c};

vT -rule: if C(a) ∈ A∗,C v D ∈ T and D(a) /∈ A∗,
then A∗ := A∗ ∪ {D(a)}.

Theorem: The above proof system is sound and complete.
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Query Answering Query Answering under OWA

Query Answering under OWA

Open World Assumption (OWA)
The knowledge of the world is incomplete. Under OWA, if a statement
cannot be proven by the reasoner, we do not conclude that it is false.
Instead, we view the status of such statements as “Unknown”.

Based on OWA, the answer to a query C(a) posed to the knowledge
base Σ is defined as

Yes, if Σ ` C(a),
Unknown, otherwise.
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Query Answering Secrecy-preserving Reasoning

Secrecy-preserving Reasoning

OWA: the KB has incomplete information.

Main Idea of Secrecy-preserving Reasoning:

A secrecy-preserving reasoner must answer “Unknown” to every query
whose secrecy must be protected. Because of OWA, querying agents
are not able to distinguish between the information that is unknown to
the reasoner and the information that the reasoner needs to protect.

Goal:
To answer queries as informatively as possible without compromising
secret information.
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Query Answering Secrecy-preserving Reasoning

Secrecy Envelopes

Let S ⊆ A∗ be a set of assertions whose secrecy must be protected.

Secrecy Envelope ES

S ⊆ ES and (A∗ \ ES)∗ ∩ S = ∅

Tight Envelope Et
S

∀α ∈ Et
S, ((A∗ \ Et

S) ∪ {α})∗ ∩ S 6= ∅.

Need good algorithms for computing secrecy envelopes.
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Example

Example: the knowledge base Σ

Σ = 〈A, T 〉
T = {∃r .(A u D) v C, B v ∃r .D, ∃r .D v C, C v E}
A = {A(a),B(a),D(a),C(a), r(a,a), r(a,b),D(b)}

T ∗

B v C, B v E , B v ∃r .D
C v E
A u D v A, A u D v D
∃r .(A u D) v C, ∃r .(A u D) v E , ∃r .(A u D) v ∃r .D
∃r .D v C, ∃r .D v E

A∗

A ∪ {A u D(a),E(a),∃r .D(a),∃r .(A u D)(a)}
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Example A Redundant Envelope

Example: a redundant envelope

The secrecy set S = {A u D(a),E(a)}
A∗ = {A(a),B(a),D(a),C(a), r(a,a), r(a,b),D(b),A u D(a),E(a),

∃r .D(a),∃r .(A u D)(a)}

The secrecy envelope E1

A u D(a)
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Example A Redundant Envelope

Example: a redundant envelope

The secrecy set S = {A u D(a),E(a)}
A∗ = {A(a),B(a),D(a),C(a), r(a,a), r(a,b),D(b),A u D(a),E(a),

∃r .D(a),∃r .(A u D)(a)}

The secrecy envelope E1

A u D(a), A(a)

choose A(a)
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Example A Redundant Envelope

Example: a redundant envelope

The secrecy set S = {A u D(a),E(a)}
A∗ = {A(a),B(a),D(a),C(a), r(a,a), r(a,b),D(b),A u D(a),E(a),

∃r .D(a),∃r .(A u D)(a)}

The secrecy envelope E1

A u D(a), A(a)
E(a)
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Example A Redundant Envelope

Example: a redundant envelope

The secrecy set S = {A u D(a),E(a)}
A∗ = {A(a),B(a),D(a),C(a), r(a,a), r(a,b),D(b),A u D(a),E(a),

∃r .D(a),∃r .(A u D)(a)}

The secrecy envelope E1

A u D(a), A(a)
E(a), B(a)

because B v E ∈ T ∗
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Example A Redundant Envelope

Example: a redundant envelope

The secrecy set S = {A u D(a),E(a)}
A∗ = {A(a),B(a),D(a),C(a), r(a,a), r(a,b),D(b),A u D(a),E(a),

∃r .D(a),∃r .(A u D)(a)}

The secrecy envelope E1

A u D(a), A(a)
E(a), B(a), C(a)

because C v E ∈ T ∗
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Example A Redundant Envelope

Example: a redundant envelope

The secrecy set S = {A u D(a),E(a)}
A∗ = {A(a),B(a),D(a),C(a), r(a,a), r(a,b),D(b),A u D(a),E(a),

∃r .D(a),∃r .(A u D)(a)}

The secrecy envelope E1

A u D(a), A(a)
E(a), B(a), C(a), ∃r .(A u D)(a)

because ∃r .(A u D) v E ∈ T ∗
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Example A Redundant Envelope

Example: a redundant envelope

The secrecy set S = {A u D(a),E(a)}
A∗ = {A(a),B(a),D(a),C(a), r(a,a), r(a,b),D(b),A u D(a),E(a),

∃r .D(a),∃r .(A u D)(a)}

The secrecy envelope E1

A u D(a), A(a)
E(a), B(a), C(a), ∃r .(A u D)(a), ∃r .D(a)

because ∃r .D v E ∈ T ∗

G. Slutzki (ISU) Inverting Proof Systems for Secrecy May 9th, 2010 19 / 34



Example A Redundant Envelope

Example: a redundant envelope

The secrecy set S = {A u D(a),E(a)}
A∗ = {A(a),B(a),D(a),C(a), r(a,a), r(a,b),D(b),A u D(a),E(a),

∃r .D(a),∃r .(A u D)(a)}

The secrecy envelope E1

A u D(a), A(a)
E(a), B(a), C(a), ∃r .(A u D)(a), ∃r .D(a), D(a)

because {r(a,a),D(a)} ⊆ A∗ and we choose D(a)

G. Slutzki (ISU) Inverting Proof Systems for Secrecy May 9th, 2010 20 / 34



Example A Redundant Envelope

Example: a redundant envelope

The secrecy set S = {A u D(a),E(a)}
A∗ = {A(a),B(a),D(a),C(a), r(a,a), r(a,b),D(b),A u D(a),E(a),

∃r .D(a),∃r .(A u D)(a)}

The secrecy envelope E1

A u D(a), A(a)
E(a), B(a), C(a), ∃r .(A u D)(a), ∃r .D(a), D(a), r(a,b)

because {r(a,b),D(b)} ⊆ A∗ and we choose r(a,b)
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Example A Redundant Envelope

Example: a redundant envelope

The secrecy set S = {A u D(a),E(a)}
A∗ = {A(a),B(a),D(a),C(a), r(a,a), r(a,b),D(b),A u D(a),E(a),

∃r .D(a),∃r .(A u D)(a)}

The secrecy envelope E1

A u D(a), A(a)
E(a), B(a), C(a), ∃r .(A u D)(a), ∃r .D(a), D(a), r(a,b)

E1 is an envelope. However, A(a) is redundant because of D(a).
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Example A Tight Envelope

Example: a tight envelope

The secrecy set S = {A u D(a),E(a)}
A∗ = {A(a),B(a),D(a),C(a), r(a,a), r(a,b),D(b),A u D(a),E(a),

∃r .D(a),∃r .(A u D)(a)}

The secrecy envelope E2

A u D(a), D(a),
E(a), B(a), C(a), ∃r .(A u D)(a), ∃r .D(a), r(a,b)

E2 is tight.
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Computing Secrecy Envelopes Secrecy Envelope Problem is NP-complete

Computing Secrecy Envelopes

How to compute secrecy envelopes that are both:
informative, and
secrecy-preserving.

Tight would be good! Optimal would be better, but

The Secrecy Envelope Problem is NP-complete

Given a KB Σ = 〈A, T 〉 and a secrecy set S ⊆ A∗, let k ≤ |A∗|. Is there
a secrecy envelope E such that S ⊆ E ⊆ A∗ and |E \ S| ≤ k?
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Computing Secrecy Envelopes Secrecy Envelope Problem is NP-complete

Computing Secrecy Envelopes

How to compute secrecy envelopes that are both:
informative, and
secrecy-preserving.

Tight would be good! Optimal would be better, but

The Secrecy Envelope Problem is NP-complete

Given a KB Σ = 〈A, T 〉 and a secrecy set S ⊆ A∗, let k ≤ |A∗|. Is there
a secrecy envelope E such that S ⊆ E ⊆ A∗ and |E \ S| ≤ k?
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Computing Secrecy Envelopes Lazy Approach

Computing Secrecy Envelopes

How to compute secrecy envelopes that are both:
informative, and
secrecy-preserving.

Lazy approach:
wait for queries; when query α comes along, figure out how to answer
it so that no information about secrecy set S is revealed, taking into
account answers to prior queries:

(QYES ∪ {α})∗ ∩ S = ∅
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Computing Secrecy Envelopes Main Idea

Main Idea

Take the reasoner’s proof system used to compute consequences A∗
of the KB Σ = 〈A, T 〉 and “invert” it into a “proof system” to compute
the secrecy envelope ES from the secrecy set S.

Approach
We invert the inference rules.
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Computing Secrecy Envelopes Illustration of Inverting Infer Rules

Illustrations (non EL)

1 Modus Ponens

A, A→ B
B

2 And-Elimination

A ∧ B
A,B

3 And-Introduction

A,B
A ∧ B

1 Inverse Modus Ponens

B is secret, A→ B
A should be secret

2 Inverse And-Elimination

A ∧ B is secret
A or B should be secret

3 Inverse And-Introduction

A or B is secret
A ∧ B should be secret
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Computing Secrecy Envelopes Inverting EL Rules

EL secrecy closure rules

u1 rules:

uA1 -rule: If C1 u · · · u Ck (a) ∈ A∗ and Ci(a) /∈ A∗,
then A∗ := A∗ ∪ {Ci(a)} where 1 ≤ i ≤ k

uS1-rule: If C1 u · · · u Ck (a) ∈ A∗ \ E and {C1(a), ...,Ck (a)} ∩ E 6= ∅,
then E := E ∪ {C1 u · · · u Ck (a)}

u2 rules:

uA2 -rule: If {C1(a), ...,Ck (a)} ⊆ A∗,C1 u · · · u Ck ∈ SubC and
C1 u · · · u Ck (a) /∈ A∗, then A∗ := A∗ ∪ {C1 u · · · u Ck (a)}

uS2-rule: If C1 u · · · u Ck (a) ∈ E and {C1(a), ...,Ck (a)} ∩ E = ∅,
then E := E ∪ {Ci(a)} where 1 ≤ i ≤ k
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Computing Secrecy Envelopes Inverting EL Rules

EL secrecy closure rules

∃1 rules:

∃A1 -rule: If {r(a,b),C(b)} ⊆ A∗,∃r .C ∈ SubC and ∃r .C(a) /∈ A∗,
then A∗ := A∗ ∪ {∃r .C(a)}

∃S1-rule: If ∃r .C(a) ∈ E, ∃b ∈ O∗ s.t. {r(a,b),C(b)} ⊆ A∗ \ E,
then E := E ∪ {r(a,b)} or E := E ∪ {C(b)}

∃2 rules:

∃A2 -rule: If ∃r .C(a) ∈ A∗ and @b ∈ O∗ such that {r(a,b),C(b)} ⊆ A∗,
then A∗ := A∗ ∪ {r(a, c),C(c)} where c is fresh,
and O∗ := O∗ ∪ {c}

∃S2-rule: If ∃r .C(a) ∈ A∗ \ E and ∀b ∈ O∗ with {r(a,b),C(b)} ⊆ A∗,
we have {r(a,b),C(b)} ∩ E 6= ∅, then E := E ∪ {∃r .C(a)}
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Computing Secrecy Envelopes Inverting EL Rules

EL secrecy closure rules

v rules:

vT -rule: If C(a) ∈ A∗,C v D ∈ T and D(a) /∈ A∗,
then A∗ := A∗ ∪ {D(a)}

vS-rule: If D(a) ∈ E,C v D ∈ T and C(a) ∈ A∗ \ E,
then E := E ∪ {C(a)}

Theorem.
Let Σ = 〈A, T 〉 be a knowledge base, S ⊆ A∗ a secrecy set and let E
be obtained from S by the secrecy closure rules until none is
applicable. Then E is a secrecy envelope of S.

Remark: The envelope E may not be tight.
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Computing Secrecy Envelopes Computing Tight Envelopes

Computing Tight Envelopes

1 Deterministic version of ∃S1-rule:

∃S1d -rule: if ∃r .C(a) ∈ E, ∃b ∈ O∗ s.t. {r(a,b),C(b)} ⊆ A∗ \ E,
then E := E ∪ {r(a,b)}.

2 Drop ∃S2-rule:

∃S2-rule: if ∃r .C(a) ∈ A∗ \ E, and ∀b ∈ O∗ with
{r(a,b),C(b)} ⊆ A∗, we have {r(a,b),C(b)} ∩ E 6= ∅,
then E := E ∪ {∃r .C(a)}

3 Apply remaining secrecy closure rules in a specific order while
removing redundancy.
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Computing Secrecy Envelopes Computing Tight Envelopes

Computing Tight Envelopes

We show that

The set E, S ⊆ E, resulting from this process is a tight secrecy
envelope of S, and

E can be computed in polynomial time.
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Secrecy-Preserving Query Answering

Secrecy-Preserving Query Answering

SPQA(T ,A∗,C(a),ES):
1. if (C /∈ SubC)
2. {
3. compute sub(C);
4. update A∗ by adding the concepts in sub(C) \ SubC
5. expand the secrecy envelope ES
6. }
7. if (C(a) ∈ A∗ and C(a) /∈ ES)
8. return “Yes”
9. else
10. return “Unknown”

Figure: Secrecy Preserving Query Answering procedure
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Thank you!

Thank you!
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