
The Challenge of
Evolutionary Verification

The Amir Pnueli Memorial Symposium

NYU, 9 May 2010

Roni Rosner
Intel – Israel Design Center, Haifa, Israel

09-May-10 Slide 1

The Four-Color Theorem
• 1852: Guthrie conjectured

Every planar map is four-colorable
• 1976: Appel & Haken proved the theorem using an

assembly program on a IBM 370-168 computer
• 2004: Gonthier verified the proof of the theorem using the

Coq proof checker
• 2005: Devlin [Math. Assoc. America] announced

Last doubts removed
about the proof of the Four Color Theorem

• 2006: Harrison partially verified HOL light, the logical
kernel of Coq, using HOL light itself

• …

09-May-10 Slide 2

Even for most non-typically well defined problem - math,
formalization and verification are not so easily attainable

A Different Aspect of Uncertainty

1976 layers

• Assembly program

• Assembler

• Operating system (with
VM!)

• Mainframe

2004 layers

• Data: proof

• Application: proof-checker

• Compiler(s)

• Operating system + updates

• Dual-core system

• Network connection

09-May-10 Slide 3

A Typical Application

2010 layers

• Data

• Application

• Compiler(s)

• Operating system(s)

• Virtualization layer(s)

• Multi core / multi processor

• Heterogeneous network

Dynamic aspects
• Runtime downloadable data /

scripts
• Dynamic libraries
• Dynamic compilation
• Online SW updates
• Anti virus at the background
• Viruses
• OS patches
• Virtualization layer
• Cloud computing
• …

09-May-10 Slide 4

The interfaces between abstraction layers as well as inside layers get
more complex, dynamic and unstable – more reasons for doubts!!!

Outline

• Motivation and conception of an
“evolutionary” approach for verification

• Supporting examples

• Initial thoughts about potential directions

09-May-10 Slide 5

Motivation

• Verification task refers to a single, isolated transition
– Given model, system, assumptions, specification
– Apply an algorithmic verification process
– Desired correctness outcome: once proved - done forever

• Modern systems are of a more progressive nature
– Systems evolve, assumptions change
– Underlying models adapt, correctness criteria get refined
– Verification methods improve, adjust
– Correctness concerns are never fully satisfied

• Hypothesis
– System’s fast evolution and complexity make it increasingly

inefficient / impossible to target system time-snapshots by
isolated verification tasks

09-May-10 Slide 6

Proposal: Evolutionary Verification

Challenge: Extend the scope of formal-methods research from
(isolated) verification tasks to the context of (evolutionary)
verification process

This requires the development of a formal framework that
can adapt to and express the evolution of

• Specifications
• Computational/programming model
• Verification methods
• Correctness criteria and metrics
• Methods for handling intermediate, incorrect states
… and their ongoing integration into the implementation

process.

09-May-10 Slide 7

Put into Historical Perspective
Strongly Inspired by some of Amir Pnueli’s Major Contributions

09-May-10 Slide 8

Transformational
System

Reactive
System

Adding time and state to
the system and its spec

Verification
Task

Verification
Task

Valid! Valid!


Input


Input*

Evolving
System

Verification
Process

Valid
for P!

Compiler

Verification
Task

Input
P Adding time and state to

the verification process???

Adding laziness to the
verification process

Case for Evolution (1) - Racing

• Characteristics

– Systems are too complex to fully verify in advance

– System’s (at least initial) reaction/output is
required earlier than full verification can complete

• Examples

– Just in time (JIT) compilation

– Dynamic binary optimizers (DBO)

– Virtualization layers

09-May-10 Slide 9

Case for Evolution (2) - Unpredictability

• Characteristics
– System behavior is changing dynamically

– Modes of operations / usage environments are
amorphous / not known in advance

• Examples
– WEB applications, e.g. Java scripts

– Viruses and anti viruses

– Operating systems

– Server networks

– Cloud computing

09-May-10 Slide 10

Case for Evolution (3) - Maliciousness

• Characteristics
– Optimized systems
– Explicit interfaces (e.g. ISA, programming model) are preserved, yet

implicit assumptions of the applications are broken
– Knowledge of implementation details enables unexpected attacks

• Examples - RSA encryption
– Side channel attack on the Secure Socket Layer (SSL) protocol

(protecting online transactions)
– Exploits intimate knowledge of HW optimizations such as caches and

branch prediction
– Exploit intimate knowledge of the algorithmic implementation of the

protocol
– Utilize “innocent” OS features such time sharing to “spy” into the

protocol
– Gain observability into tiny timing effects uncovering the private key

09-May-10 Slide 11

So How Evolution?

• All three cases (racing, unpredictability, maliciousness) have several
characteristics in common
– Complexity
– Impossibility to validate in advance
– A sense of continuous struggle for correctness
– Need to tolerate intermediate failures

• Can “incessant, lazy-verification” become a more robust
evolutionary model?
– Specification, verification are building blocks of the continuous design

process

• While competing for system resources, need to address
– How to manage the evolving specification, correctness status
– What to do about incorrect output?
– How to fix a failing system?
– How to improve verification over time (learn)?

09-May-10 Slide 12

Why is Evolutionary Verification
an “Appropriate” Challenge?

• Interesting? – subjective
• Difficult? – necessary, not sufficient
• Inspired by real world problems
• Has the potential of expanding the scope and

outreach of formal methods, by
– Addressing some fundamental questions about the

very nature of formal models
• What is a (good) specification?
• What defines the limits and the desired flexibilities of a

formal model?

– Allowing for better design engineering

09-May-10 Slide 13

Partial List of Related Trends
and Potential Directions

• Open Verification Methodology (OVM) intiative
• Subject/aspect oriented programming

– Separation of concerns

• Self verification
– Assertions
– Artificial intelligence methods
– SHADOWS

• Any method of gradual verification
– Bounded model checking

• Many relevant ideas I heard in the first day of the
symposium

09-May-10 Slide 14

Thank You

09-May-10 Slide 15

