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Markov Chains

• An important modeling formalism in science:

– Economics.

– Physics.

– Biology.

– Chemistry.

• In CS and Engineering:

– Performance and queuing models.

– Randomized algorithms.



Formal Methods for Markov Chains

Formal methods community devoted significant 

resources:

• Qualitative analysis – 0,1 answers.

• Quantitative analysis – what is the probability.

• Logics for reasoning about Markov chains.

• Probabilistic bisimulation.

• Model checking tools: PRISM (Oxford/Birmingham), 

LiQuor (Bonn/Dresden), MRMC (Aachen).



Automata in Model Checking

Automata theoretic approach to model checking:
• A unifying approach for: model checking, temporal logics, 

synthesis, and abstraction

• Linear time through word automata:

– Translate LTL to word automata.

– Regular expressions as part of PSL.

• Branching time through tree automata:

– MSO is satisfiable (Rabin).

– ¹-calculus, CTL, CTL* reasoning.

– Synthesis of linear specifications.

– Two player games.

– Complete abstraction for branching time.



Reason about infinite-state systems by 

abstraction:

•The basis for CEGAR.

•What is the right abstraction domain D?

•Completeness: given an infinite state system M 
and a branching time property Á s.t. M²Á ,there

exists a finite A2D such that M¹A and A²Á.

•Alternating tree automata are a complete 

abstraction framework for branching-time logic.

Completeness of Abstraction



Back to Markov Chains

• Presently no unifying framework for reasoning 

about Markov chains.

• Abstraction is an open problem.

• p-Automata – provide such a framework:

– Acceptors of Markov chains (as a whole!).

– Express Markov chain bisimulation class.

– Express pCTL, pCTL*, future !-regular extensions.

– Closed under Boolean operations.

– Simulation approximates language containment.

– Complete abstraction framework for pCTL.



Outline of Talk

• Motivation and introduction.

• Markov chains and pCTL

• p-Automata.

• First results.

• Conclusions.



Markov Chains and pCTL



1
2

1
2

1
2

1
2

1
2 1

2

1
2

1
2

1
2

1
2

1
2

1
2

1
2

1
2



1
1024

1

t0

s0

a

t1

s1

a

t2

s2

a

t3

s3

a

`t4

s4

a

1
4

3
4

1
64

1
256

255
256

1 1 1 1

63
64

15
16

1
16



Á ::= a j :a j Á _ Á j Á^ Á j [®]./p
® ::= XÁ j ÁUÁ j ÁWÁ j FÁ j GÁ

State formulas:

Path formulas:

atomic propositions Probability threshold:                        and p 2 [0; 1]./ 2f>;¸g

pCTL

pCTL is the de-facto standard for reasoning 

about Markov chains.
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No Finite Model
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p-Automata



p-Automata

• Motivated by alternating tree automata and 

pCTL:

– Include existential and universal choices.

– Include quantification over probability of path sets.

• Combine path measure and regular path sets.

• Two types of transitions:

– Unbounded – part of regular path measure.

– Bounded – measure the probability



Definition 

p-Automaton is                               , where

• Σ – finite input alphabet.

• – set of states (not necessarily finite).

• transition function.

• – initial  condition.

• ® – acceptance condition.

A = h§;Q; ±; 'in; ®i

Q

± : Q£§!B+(Q[ [[Q]])

'in 2 B+(Q[ [[Q]])



• Boolean connectives: existential and universal

choice.

• holds in location s if measure of paths that 

start in s and satisfy q is

• is
– Paths that satisfy q1 have probability at least p1.

– Paths that satisfy q2 have probability greater than p2.

– The sets supplying probability are immediately disjoint (a-

la separation logic …).

• is dual.

B+(Q[ [[Q]])

[[q]]./p

./ p

¤([[q1]]¸p1 ; [[q2]]>p2)

¤_([[q1]]>p1; [[q2]]¸p2)
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Acceptance Games

• Given a p-automaton A and an input structure 

M we want to construct a game such that 

player 1 wins iff A accepts M. 

• Existential and universal choice handled in 

standard way.

• Two new things:

– Systems are probabilistic – use stochastic games.

– Star and bounded transitions – player 1 commits to 

values it can achieve.

• Structural Restrictions.



Simulation Games

• Given two automata A1 and A2, construct a 

game such that player 1 wins iff A1 ¹ A2.

• Generalize simulation games by considering 

star and bounded transitions on the left and on 

the right.

• For finite p-Automata or p-Automata arising 

from Markov chains, simulation implies 

language containment.

A¹ B =)L(A) µ L(B)



Results



Closures of Languages

• Closure under conjunction and disjunction is 

standard.

• Closure under complement.

• Language emptiness and language containment 

are inter-reducible.

• Given two bisimilar Markov chains             :M1 »M2

M1 2 L(A) i® M2 2 L(A)



Embedding Markov Chains

A Markov chain                        is embedded into 

a p-automaton                                :

M = (S;P;L; sin)

AM = h2AP;Q; ±; 'in; ®i

Q = f(s; s0) 2 S £ S j P(s; s0) > 0g
±((s; s0); L(s)) = ¤([[(s0; s00)]]¸P(s0;s00) j s00 2 succ(s0))

±((s; s0); ¾) = f if ¾ 6= L(s)

'in = ¤([[(sin; s0)]]¸P(sin;s0) j P(s
in; s0) > 0)

® = Q

M 0 2 L(AM) i® M » M 0



[[¢]]

Embedding pCTL

• Similar to translation of CTL to tree automata.

• Given a pCTL formula  over AP construct 

the p-automaton                                               :

• cl() is the set of temporal subformulas of .

• ® includes everything except         .

• ½x and ½² unfold fixpoints and replace   by   . 

For example,          replaced by                           

A' = h2AP; cl(')[AP; ½x; ½²('); ®i

Ã1UÃ2

Ã1UÃ2 (Ã1 ^XÃ1UÃ2) _Ã2

[¢]

M j= ' i® M 2 L(A')



Abstraction

• p-Automata abstract Markov chains.

• For every pCTL formula  and infinite
Markov chain M such that M² there is a 

finite p-automaton A such that AM¹A and 

A¹A.



Conclusions



p-Automata

• Developed a notion of automata that accept 

Markov chains.

• Defined acceptance and simulation games 

through stochastic two-player games.

• p-Automata are closed under Boolean 

operations. Languages closed under 

bisimulation.

• Can express pCTL and Markov chains.

• Complete abstraction framework for pCTL.



Related Work

• Rabin (probabilistic) automata.
– Can be thought as linear time probabilistic automata.

– Define a mapping from words to probability of acceptance.

– Can define a language by including a threshold.

– Unrelated to pCTL and model checking.

• Co-algebraic automata.
– Accept Markov chains.

– Inherently infinite.

– Finite model property, hence cannot express pCTL.

• Classical automata.
– Can be used for linear time model checking.

– Do not give answers for pCTL.



Future Work

• Decidability of language emptiness.

– Qualitative (0,1 thresholds).

– Quantitative.

– Generalizes open problem of pCTL satisfiability.

• Remove structural restrictions.

– Define games that generalize stochastic games.

– Generalize Martin’s determinacy result.

• Markov Decision Processes.

• Usage within a CEGAR framework.



Thank you, Amir.


