Information-Theoretic
approaches to Information Flow

Catuscia Palamidessi
INRIA Saclay & Ecole Polytechnique

based on joint work with
Mario S. Alvim and Miguel E. Andres

Pnueli’s memorial, 9 May 2010

The problem

Control the information leakage
.e.

the amount of secret information that an adversary can
infer from what he can observe

An example to illustrate the problem:
The Dining Cryptographers (Chaum, 1988)

® Three cryptographers have a dinner

® Their master informs each of them separately
whether he should pay for the (whole) bill or
not. If none of them pays, the master will pay

The cryptographers are allowed to try to find
out whether the master has asked one of them
to pay, but they should not know whom

Dining Cryptographers:
The solution proposed by Chaum

Place a binary coin between each two
cryptographers and toss them

Each cryptographer makes the binary sum of the
adjacent coins.The payer (if any) adds 1. The
results are announced

Master

The binary sum of the results is 1 iff one of them / \

is a payer

If the coins are fair, we have perfect anonymity

Example: Crowds (Rubin and Reiter’98)

Problem: A user (initiator) wants to send a
message anonymously to another user (dest.)

Crowds: A group of n users who agree to
participate in the protocol.

The initiator selects randomly another user
(forwarder) and forwards the request to him

A forwarder randomly decides whether to send
the message to another forwarder or to dest.

...and so on

e .© ==
?
® @
v
o—@

Probable innocence: under certain
conditions, an attacker who intercepts
the message from x cannot attribute
more than 0.5 probability to x to be the
initiator

O

Our problem:
Formalize the notion of information leakage

® No agreement on the subject. (Here we present our proposal.)

® There is not even agreement on the true-false notions:

® Perfect anonymity: my favorite notion is the one by Chaum: for each
observation, the a posteriori probability that c; is the payer is the same as the
a priori probability

Probable innocence: Reiter and Rubin defined it only informally and other
researchers got it wrong

® We are interested in a quantitative notion, i.e. how much
information does the system leak

Common features in Information Flow

® There is information that we want to keep secret
- the payer in DC

- the initiator in Crowds
® There is information that is revealed (observables)

- the declarations in DC
- the users who forward messages to a corrupted user in Crowds

® The value of the secret information may be chosen
probabilistically, and the system may use randomization
(maybe even in purpose, to hide the link between secrets
and observables)

- coin tossing in DC

- random forwarding to another user in Crowds

Example: Dining Cryptographers

Secret Information Observables

00|

010
> 100

> 111

An intriguing analogy:

Systems as Information-Theoretic channels

Secret Information Observables

Protocol

Information-Theoretic channels are noisy channels:
- an input can generate different outputs (according to a prob. distr.)
- an output can be generated by different inputs (even in det. syst.)

P(oj|si): the conditional probability to observe o;
given that the secret is s;

Towards a quantitative def. of leakage

® A general principle (on which most people agree):

Leakage = a priori uncertainty — a posteriori uncertainty

® But whatis "uncertainty”?! (and here people disagree)

® Our answer is that there is no unique answer: it depends on
® the model of attack, and
® how we measure it success

Uncertainty, this unknown

® Kopf and Basin model of attack: assume an oracle who
answers yes/no to questions of a certain form.The attack is
then defined by the form of the questions

Example I: The questions are of the form “is S € P ?”,

and the measure of success is: the expected number of
questions of this kind needed to determine the value of S

then
uncertainty corresponds to Shannon entropy

® For instance, guessing the last bit of a password

Uncertainty, this unknown

Example 2: The questions are of the form “is S=v ?”,
and the measure of success is: the probability of determining

the value of S with just one try

then
uncertainty corresponds to Renyi’s min entropy

® For instance, guessing a password by trying it

In any case, leakage can be modeled as mutual information:

1(S;O0) = H(S)-H(S | O)

Computing the leakage by model checking
e.g. reachability analysis

m Example

9 =

e R R B B b
8 K 8§ K & &
ShatShAhAL A

Crowds
as a
probabilistic
automaton

Lw Y

+ + 4+

wall
L inis
bU

T init

LN Lo SAND SO L]0 0|1

B U
1/6

Matrix of joint probabilities

Solution

m Complexity
10 ((Jobs| x |Q[)®) In general
1O (|obs| x|Q|*) Some Scenarios (e.g observables at the end)

A digression on something that | find rather puzzling

Possibilistic approach

® \Very popular, ‘cause it is simpler than the quantitative approaches

® Key principle: A system P has no leakage iff:
For every pair of secret values a, b, P[a] “is equivalent” to P[b]

o Uhu 2

® |t assumes that the scheduler “helps”

® Problem with refinement

Example: Consider the following system

S % (c,out)(A || Hy || Ha | Corr),

AY c(sec), H € c(s) out(a), H, & c(s) out(b), Corr f c(s).out(s)

S[alsec] and S[b/sec] are bisimilar, so the system should have no leakage

But: nondeterminism in concurrency is meant as underspecification
e Some schedulers may always select Corr first

e Standard implementation refinement (simulation) preserves properties of individual runs,
but no-leakage is expressed as a global property.

This problem is actually well known. (My understanding of) the main proposals to solve it are
based on changing the notion of refinement: bisimulation instead than simulation.The actual

implementation would be probabilistic, but it would be viewed as nondeterministic in order to
prove bisimulation

S % (c,out)(A | Hy || Hy || Corr),

H, ¥ c(s).out(a), H, % c(s).out(b), Corr ¥ c(s).out(s)

S[alsec] S[b/sec]

ela) || elz).out{a) || c(z).out(b) || c(x).out{x) &b) || e(x).out{a) || c(z).out(d) || efz).out(z)

T T - T
v]

~ |l out{a) || — || - =l = || out(®) || - =l =1l = llout{a) ~ |l outfa)]l - || - = I = |l out{p) || - =l = Il = || out{b)

l l l | | lb

