
1

Verification-Guided
Hierarchical Design

Robert Kurshan
NYU - Amir Pnueli Memorial Lectures
May 8, 2010

PREABLE

Simulation coverage does not scale gracefully with growing
system design size. Component interactions grow
exponentially with the number of system components,
while conventional system test at best can increase
coverage as a linear function of allotted test time.

Likewise, capacity limitations are commonly cited as the
essential gating factor that restricts the application of
model checking to at most a few design blocks.

2

3

Design Costs

•  synthesis/layout < 50% total cost
–  more or less linear in chip size

•  debug/verification = 50% - 80% of total cost
–  embedded software
–  n parallel components of size m leads to m^n system states
–  so functional verification grows exponentially with design size

•  widely held that the cost of fixing a bug grows exponentially
 with the development stage at which it is detected/fixed

–  on account of increasing interactions with other components that also
 must reflect changes from fixes

•  holding down costs leads to less test coverage and lower
 design reliability

–  but cost of product failures can also be high
–  ready for a $500M recall? (Intel FDIV bug)
–  How about $2B? (Toyota sudden acceleration – likely a s/w bug)

4

The BIG Solution: ABSTRACTION

Abstraction has long been used successfully in
pilot projects to apply model checking to
entire systems. Abstraction in conjunction with
guided-random simulation can be used in the
same way to increase coverage for
conventional test.

5

Abstraction as Divide-and-Conquer

•  Divide-and-conquer requires the precision of formal methods

•  Types of divide-and-conquer
–  Horizontal (flat) decomposition – abstracts component environment
–  Vertical (hierarchical) decomposition – abstracts lower-level details

•  Conservative vertical abstractions support verify-only-once:
at highest level of abstraction where property is defined
–  Contrast with Transaction-Level Modeling

•  Enables earlier debug
–  main power and innovation will come from vertical decomposition

6

Vertical (Hierarchical) Decomposition

•  Design development today: data before control
–  Controllers need to point to defined data structures
–  But: upside down – often need to modify data structures for

controllers

•  Decompose vertically: control before data
–  Use stubs as place-holders for data
–  Controllers point to stubs
–  Stubs are oracles for data path computation

•  Imposes hierarchical decomposition
–  Control at higher levels (coarse granularity supports global

verification)
–  Data paths at lower levels (fine granularity verified locally)
–  Constant complexity at each level – scales with increasing design

size

7

Vertical (Hierarchical) Decomposition, cont.

1.  Start with functional spec, floor plan, etc
2.  Derive properties (test plan) BEFORE coding design!

1.  Formal spec with comments
2.  Specification reviews (like design reviews) for completeness

3.  Partition properties into levels
1.  Control properties first (global properties)
2.  Data path properties last (local properties)

4.  Code to properties
1.  Use stubs as place-holders/oracles for lower levels
2.  Verify (simulation or formal) as you design

Implements top/down – bottom/up hierarchical design process

8

20 years ago …

Packet Layer Controller chip development at Bell Labs

o 200,000 transistors

o Developed entirely under the control of formal verification
through a top/down stepwise refinement hierarchy

o 20% of projected cost
 6 staff years/2 calendar years vs projected 30 staff years

o “reliability of a 2nd generic release”

9

10

11

12

Stub types
Data

Datapath
Control

datapath =
datastructure
control = FSM

Conservative
 abstraction of

refinement:
verify property
only once, at
highest level
it’s defined

13

Example: stubbing a FIFO – Lv1

APPL

FIFO

wake

MGR

bus

Lv1 Assertion: After (APPL.put_msg1)
Eventually(msg1_on_bus)

[verifies MGR]

1 X
T T

msg1

msg1

msg0
else msg0

 + else

T

FIFO STUB

thanks Chris Komar

stubs data,
datapath

Lv1 Constraint: After (FIFO.tail=msg1)
Assume Eventually (FIFO.head=msg1)

msg0

msg0

msg1

msg0

Lv1 data abstraction: track msg1,
All others -> msg0

14

Example: stubbing a FIFO – Lv2

APPL

FIFO1

wake

MGR

bus

Lv2 Assertion: After (FIFO.tail=msg1)
Eventually (FIFO.head=msg1)

(= Lv1 constraint)
[Checks that FIFO MGR prevents starvation]

FIFO STUB

thanks Vic Du

Lv2 Constraints:
 After (FIFO1.tail=msg1)Assume Eventually

(FIFO1.head-1=msg1)
After (FIFO2.tail=msg1)Assume Eventually

(FIFO2.head=msg1)

FIFO2

FIFO
 MGR

Lv2 refines FIFO stub into
2 sub-stubs

single msg1 can enter either

msg0

msg1

msg0

msg0

msg1

--

head

15

Further Refinements

Lv3: add FIFO mechanism (head/tail pointers)
 - verify succession for real stages + abstract stage

 abstracting any number of words
 (verifies Lv2 constraints)

Lv4: expand abstract stage to full length of FIFO
 - succession property follows inductively

Lv5: expand stages to full word width
 - succession property follows inductively

16

Consequences
•  Design and verification done together
  earlier hence cheaper debug

 -- D sees bugs as they’re encoded (not months later)
 -- debug when design is simpler, hence easier to fix (fewer
 adjacent consequences)

•  PV promoted to S/VE
•  D designs global flow control before low-level data

 structures (iteratively)
 Designer focuses on function before structure

 -- structure serves function (today it’s reverse)
 eg, requirements for memory coherence will precede and
 define requirements for a cache protocol (rather than reverse)

•  Coverage/Capacity scales linearly with design size

17

Hierarchical Flow
Designer (D)  Specification/Verification Engineer (S/VE)

 work hand-in-hand
1.  S/VE writes global (Lv1) assertions derived from Architectural

Spec, block diagrams, floor plan, Functional Spec, …

3.  D writes flow-control code to support testing of Lv1 assertions,
writes stubs for associated lower-level (Lv2) structures

4.  S/VE writes constraints on stubs (= Lv2* assertions)
 * Hierarchy commonly not linear
4. D runs quick checks (limited/automatic model checking) of Lv1.
 -- debugs/fixes/iterates 4.

 -- S/VE works on DNFs: mc + reduction/decomp, hybrid, guided-random

Iterate 2, 3, 4.
5. D refines Lv1 stubs into Lv2 code to support testing of Lv2

assertions + Lv2 stubs (ie, 5. = 2. one level down)

18

(idealized)

19

reality

20

