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PREABLE

Simulation coverage does not scale gracefully with growing
system design size. Component interactions grow
exponentially with the number of system components,
while conventional system test at best can increase
coverage as a linear function of allotted test time.

Likewise, capacity limitations are commonly cited as the
essential gating factor that restricts the application of
model checking to at most a few design blocks.
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» synthesis/layout < 50% total cost
— more or less linear in chip size

— embedded software
— n parallel components of size m leads to m*n system states
— so functional verification grows exponentially with design size

« widely held that the cost of fixing a bug grows exponentially
with the development stage at which it is detected/fixed

— on account of increasing interactions with other components that also
must reflect changes from fixes

* holding down costs leads to less test coverage and lower
design reliability

— but cost of product failures can also be high
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IThe BIG Solution: ABSTRACTION

Abstraction has long been used successfully in
pilot projects to apply model checking to
entire systems. Abstraction in conjunction with
guided-random simulation can be used in the
same way to increase coverage for
conventional test.
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Abstraction as Divide-and-Conquer

Divide-and-conquer requires the precision of formal methods

« Types of divide-and-conquer
— Horizontal (flat) decomposition — abstracts component environment
— Vertical (hierarchical) decomposition — abstracts lower-level details

» Conservative vertical abstractions support verify-only-once:
at highest level of abstraction where property is defined
— Contrast with Transaction-Level Modeling

« Enables earlier debug
— main power and innovation will come from vertical decomposition
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« Design development today: data before control
— Controllers need to point to defined data structures

— But: upside down — often need to modify data structures for
controllers

 Decompose vertically: control before data
— Use stubs as place-holders for data
— Controllers point to stubs
— Stubs are oracles for data path computation

* Imposes hierarchical decomposition

— Control at higher levels (coarse granularity supports global
verification)

— Data paths at lower levels (fine granularity verified locally)
— Constant complexity at each level — scales with increasing design
size
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1. Start with functional spec, floor plan, etc
2. Derive properties (test plan) BEFORE coding design!

1. Formal spec with comments
2. Specification reviews (like design reviews) for completeness
3. Partition properties into levels

1. Control properties first (global properties)
2. Data path properties last (local properties)

4. Code to properties

1. Use stubs as place-holders/oracles for lower levels
2. Verify (simulation or formal) as you design

Implements top/down — bottom/up hierarchical design process
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20 years ago ...

Packet Layer Controller chip development at Bell Labs

o 200,000 transistors

o Developed entirely under the control of formal verification
through a top/down stepwise refinement hierarchy

o 20% of projected cost
6 staff years/2 calendar years vs projected 30 staff years

o “reliability of a 2" generic release”
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| Abstraction .

subroutine abstraction

begin delay { true
ZRNA NN N NN
AN dela

return (answer)

{yes, no}

Abstraction is | more general | than subroutine

e €.g., abstraction may never terminate

ALL Porlow e  APRLIES TO sutom. laxg. corlaiuwuit,
5 emLe & 3. Exg.(m;% it dowct oy Yo CTL wie 3.
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Conservative
abstraction of
refinement:
verify property
only once, at
highest level
it’s defined
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' Refinement Step I

e Use non-deterministic delay as place-holder for
to-be-defined procedure

e Use non-deterministic branch to model possible
returns from abstract procedure

ABSTRACTION

:

@ {pause: syntax-good, syntax-bad}

syntax-good syntax-bad

'
REFINEMENT

} pause
syntax-good-A syntax-bad-A
syntax-good-B syntax-bad-B

Data
Datapath
Control

datapath =
datastructure

control = FSM
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Example: stubbing a FIFO — Lv1

APPL

msg0

msg0

msg1

msg0

FIFO

wake

| MGR

bus
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Lv1 data abstraction: track msg1,
All others -> msg0

Lv1 Assertion: After (APPL.put_msg1)
Eventually(msg1_on_bus)
[verifies MGR]

FIFO STUB

Lv1 Constraint: After (FIFO.tail=msg1)
Assume Eventually (FIFO.head=msg1)

stubs data,
msg0 O datapath

‘%I'se
Teime msg1

msg1

TC@ » 1 » X

thanks Chris Komar I
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Example: stubbing a FIFO — Lv2

APPL
FIFO1 FIFO2
msg0 !
@ msg0
msg0 l
head v
- 1
'
—_ | MGR
bus

Lv2 refines FIFO stub into
2 sub-stubs
single msg1 can enter either

Lv2 Assertion: After (FIFO.tail=msg1)
Eventually (FIFO.head=msg1)
(= Lv1 constraint)
[Checks that FIFO MGR prevents starvation]

FIFO STUB

wake Lv2 Constraints:
After (FIFO1.tail=msg1)Assume Eventually
(FIFO1.head-1=msg1)
After (FIFO2.tail=msg1)Assume Eventually
(FIFO2.head=msg1)
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Lv3: add FIFO mechanism (head/tail pointers)

- verify succession for real stages + abstract stage
abstracting any number of words

(verifies Lv2 constraints)

Lv4: expand abstract stage to full length of FIFO
- succession property follows inductively

LvS: expand stages to full word width
- succession property follows inductively
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Consequences

« Design and verification done together

-- D sees bugs as they’re encoded (not months later)

-- debug when design is simpler, hence easier to fix (fewer
adjacent consequences)

PV promoted to S/VE

* D designs global flow control before low-level data
structures (iteratively)

-- structure serves function (today it's reverse)

eg, requirements for memory coherence will precede and
define requirements for a cache protocol (rather than reverse)
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Hierarchical Flow
Designer (D) < - Specification/Verification Engineer (S/VE)

writes global (Lv1) derived from Architectural
Spec, block diagrams, floor plan, Functional Spec, ...

writes flow-control code to support testing of Lv1 assertions,
writes for associated lower-level (Lv2) structures

writes on stubs (= Lv2* assertions)
* Hierarchy commonly not linear
4. D runs quick checks (limited/automatic model checking) of Lv1.

-- debugs/fixesl/iterates 4.
-- S/VE works on DNFs: mc + reduction/decomp, hybrid, guided-random

d. refines Lv1 stubs into Lv2 code to support testing of Lv2
assertions + Lv2 stubs (ie, 5. = 2. one level down)
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Stepwise Refinement

- « localization reductions

MORE
ABSTRACT

%
+

MORE vef(ify
CONCRETE refinement

\./e.rif'y
SHhorsnt develop byREDEFINITION
analyze Ta1, Tz, * - °

(Tu, T2, * * * guaranteed)

verify
refinement

analyze Tni, Tng, * * *
(Tiany guaranteed)

synthesis

IMPLEMENTATION

(idealized)
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PLC/Protocol Development
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