Newtonian Program Analysis:

Solving Sharir and Pnueli’'s Equations

Javier Esparza

Technische Universitat Minchen

Joint work with
Stefan Kiefer and Michael Luttenberger

Two Approaches
to Interprocedural
Data Flow Analysis'

Micha Sharir
Amir Pnueli

7-1. INTRODUCTION

Under the general heading of program analysis we can find today two
disciplines which, even though they have similar aims, differ in the means
and tools they apply to the task of analysis. The first is the discipline of
program verification. This is usually presented as the process of finding
invariants of the program, or in other words fully characterizing the behavior
of the program, discovering all the properties of all possible executions
[Mann74, Cous77¢]. As such, it is extremely ambitious and hence a priori
doomed to failure on theoretical grounds for all but the most restricted
program models.

-~] . al o

Newtonian Program Analysis

JAVIER ESPARZA, STEFAN KIEFER and MICHAEL LUT TENBERGER

Technische Universitat Munchen

1. INTRODUCTION

This paper presents a novel generic technique for solving dataflow equations in
interprocedural dataflow analysis. It is obtained by generalizing Newton’s method,
the 300-year-old technique for computing a zero of a differentiable function.

Our approach to interprocedural analysis is very similar to|Sharir and Pnueli’s

functional approach |[Sharir and Pnueli 1981; [Jones and Muchnick 1982; Knoop
and Steffen 1992; Reps et al. 1995; Sagiv et al. 1996; Nielson et al. 1999; Reps
et al. 2005].|Sharir and Pnueli[assume the following as given: a (join-) semilattice'
of values, a mapping assigning to every program instruction a value, and a con-

From programs to equations: Intraprocedural

x>0

X—x4+1 X < 10

From programs to equations: Intraprocedural

One-step relations

a,...,eC(NxN)
c={(x,x+1)| x>0}

From programs to equations: Intraprocedural

One-step relations

a,...,eC(NxN)
c={(x,x+1)| x>0}

Big-step relation

XCNXxN

From programs to equations: Intraprocedural

One-step relations
a,...,eC(NxN)
c={(x,x+1)| x>0}

Big-step relations

X,Y,ZCNxN

From programs to equations: Intraprocedural

One-step relations
a,...,eC(NxN)
c={(x,x+1)| x>0}
Big-step relations
X,Y,ZCN x N

X = a-Y+b
c-Z
Z = d-Y+e

~<
|

From programs to equations: Intraprocedural

Program +— system X = f(X) of linear fixed-point equations

From programs to equations: Intraprocedural

Program +— system X = f(X) of linear fixed-point equations

Least solution non-computable in general

From programs to equations: Intraprocedural

Program +— system X = f(X) of linear fixed-point equations
Least solution non-computable in general

Program analysis: domain 2N +— abstract domain D
transformer f +— abstract transformer f#

From programs to equations: Intraprocedural

Program +— system X = f(X) of linear fixed-point equations
Least solution non-computable in general

Program analysis: domain 2N +— abstract domain D
transformer f +— abstract transformer f#

Sufficient condition for existence of least solution: (D, +,-) is a
(w-continuous) semiring

Quantitative program analysis: Expected time

X = 07-Y+1
= Z+1
Z = 06-Y+41

~<
|

From programs to equations: Interprocedural

P Q
X >0 X <3 X >3
X=0
call Q X <10 call Q call P
X — X %2
X > 10

From programs to equations: Interprocedural

P Q

call Q c |b callQ call P

From programs to equations: Interprocedural

Po=a-P1+0b

P, =2?? P
P=c-Pi+d
Q=e-h+1 Q
QL =22 Qs
02:??‘03
=g

Sharir and Pnueli’s functional approach

Po=a -Pi+0b
Pr=Qo P,
P=c-Pi+d
Q=e-h+1 Q
QL =22 Qs
02:??‘03
=g

Sharir and Pnueli’s functional approach

Po=a -Pi+0b
Pr=Qp- P>
P=c-Pi+d
Q=e-h+1 Q
Q=Qy &
Q=72? Qs
=g

Sharir and Pnueli’s functional approach

Po=a-P1+b
Pi=Q- P
P>=c-P1+d
Q=e-h+7
Q=0 G
Q= FPy- Qs
ngg

Sharir and Pnueli’s interprocedural equations

Program +— system X = f(X) of polynomial, non-linear
fixed-point equations

Sharir and Pnueli’s interprocedural equations

Program +— system X = f(X) of polynomial, non-linear
fixed-point equations

Least solution non-computable in general

Program analysis: domain 2N +— abstract domain D
transformer f +— abstract transformer f#

Sufficient condition for existence of least solution: (D, +,) is a
(w-continuous) semiring

Solving the equations: Kleene iteration

Theorem [Kleene]: The least solution uf of X = f(X) is the supremum of
{k/}iZO , where

S
|

f(0)
kKiy1 = f(kp)

Basic algorithm: compute kg, k1, ko, ... until either k; = k; 1, which
implies k; = uf, or the approximation is considered adequate.

Kleene iteration is slow

Set domains: Kleene iteration never terminates for X = f(X) if least

solution wnf Is an infinite set.

e X=a-X+b uf=ab

e Kleene approximants are finite sets: k; = (e

a

ab

Probabilistic interpretation: convergence can be very slow for polynomial

equations [EY STACSO05].

1 1
. X:§X2—|—§ puf=1=0.99999...

e “Logarithmic convergence”. k iterations to get log k bits of accuracy.

1

kn <1 —
n-—+1

ko000 = 0.9990

Kleene lteration for X = f(X) (univariate case)

1.2

0.6 F(X)

Kleene lteration for X = f(X) (univariate case)

Kleene lteration for X = f(X) (univariate case)

Kleene lteration for X = f(X) (univariate case)

Kleene lteration for X = f(X) (univariate case)

Kleene lteration for X = f(X) (univariate case)

Kleene lteration for X = f(X) (univariate case)

Kleene lteration for X = f(X) (univariate case)

Newton’s Method for X = f(X) (univariate case)

1.2

0.8

0.6
0.4

0.2

F(X)

02

04

06

08

1.2

Newton’s Method for X = f(X) (univariate case)

Newton’s Method for X = f(X) (univariate case)

Newton’s Method for X = f(X) (univariate case)

Newton’s Method for X = f(X) (univariate case)

Newton’s Method for X = f(X) (univariate case)

Kleene vs. Newton

Program analysis:

e Kleene iteration is applicable to arbitrary w-continuous semirings

e ...but converges slowly.
Numerical mathematics:

e Newton’s Method converges fast

e ...but can only be applied to the real field

Kleene vs. Newton

Program analysis:

e Kleene iteration is applicable to arbitrary w-continuous semirings

e ...but converges slowly.
Numerical mathematics:
e Newton’s Method converges fast

e ...but can only be applied to the real field

Can Newton’s method be generalized to arbitrary w-continuous semirings?

Mathematical formulation of Newton’s Method

Elementary analysis yields for the /-th Newton iterant v;:

v = 0O
I/,'—|—A,'

Vi+1

where A, least solution of X = Df, (X) + f(v;) — v;

Df,.(X) differential of f(X) at the point v;

Generalizing Newton’s method

Key point: generalize X = Df,(X) + f(v) — v

to arbitrary w-continuous semirings

In an arbitrary w-continuous semiring
e neither the differential Df,(X), nor

e the difference f(v) — v

are defined.

Overcoming the obstacles

(1) Use the algebraic definition of differential (recall that we only have
polynomial functions!)

Df(X) = <

’

O
X

Dg(X) + Dh(X)

| Dg(X) - h(X) -

- 9(X) - Dh(X)

if f(X)=rc

if f(X) =X

if f(X) = g(X) + h(X)
if f(X) = g(X) - h(X)

(2) Replace f(v;) —v; by any §; suchthat f(v;) = v; 4+ §;
Define A; as the least solution of X = Df,,(X) + ¢;

ldempotent and commutative semirings

Theorem [Hopkins-Kozen LICS "99]: The least fixed
point of a system X = f(X) of n equations over an
idempotent and commutative w-continuous semiring
IS reached by the sequence

vg = f(0)
vigr = J)* - ()
after at most O(3") iterations.

ldempotent and commutative semirings

Theorem [Hopkins-Kozen LICS "99]: The least fixed
point of a system X = f(X) of n equations over an
idempotent and commutative w-continuous semiring
IS reached by the sequence

vg = f(0)
vigr = J)* - ()
after at most O(3") iterations.

Theorem: This is exactly Newton’s sequence.

Moreover, the fixed point is reached after at most n iterations.

Two (quick) examples of application

May-Alias Analysis

listify (): transforms a binary tree of pointers into a list of pointers by
reading the tree in preorder.

void listifyL () { void listify () {

T.move_left () ; L.push_back (T—get_data());
listify(); if(T.is_leaf() == false) {
T.move_up () ; listifyL(); listifyR();

May-Alias Analysis

4

4

R

May-Alias Analysis

May-Alias Analysis

Which data access paths of tree and list may point to the same element ?
Access path of the tree: word wy € {left, right}*
Access path of the list: word wy € {next}*

May-alias information: set of pairs (wq, w») such that wy, wo may point to
the same cell

Commutative abstraction: (1eft right left,next next) — (3,1,2)

May-Alias Analysis

Kleene iteration does not terminate.

Newton’'s method terminates after one iteration and provides the following
iInformation:

e Data access paths with 0 right’'s and ¢ 1eft’s may only be aliased to
the /-th element of the list.

e Data access paths withr right’s and £ 1eft’s may only be aliased to
the (2r + £)-th element of the list, or to larger elements of the same

parity.

Lazy evaluation of And-Or trees

Nodes are only constructed and evaluated (to 0 or 1) if needed.
(e.g., If left subtree of And-node evaluates to 1, right subtree is not

constructed)

function And(node) function Or(node)

if node.leaf() then If node.leaf() then
return node.value() return node.value()

else else
v .= Or(node.left) v := And(node.left)
if v = 0 then if v =1 then

return O return 1

else else

return Or(node.right) return And(node.right)

Assume the probabilities that node.leaf() returns true and node.value()
returns 1 are both 1/2.

We perform an analysis to compute the average runtime.

Kleene vs. Newton

Neither Kleene nor Newton terminate, but Newton converges faster:

i | kD And0 v And0 k) And1 () And.1
0 2.000 2.000 2.000 2.000
1 2.538 3.588 2.333 3.383
2 2.913 5.784 3.012 5.906
3 3.429 6.975 3.381 7.194
4 3.793 7.067 3.904 7.295

Messages of this talk

The theory of solving “program analysis equations” is not be as well
understood as we thought.

We can learn from numerical mathematics and contribute to It.

Go for unified theory of qualitative and quantitative program analysis.

Commenting the works

' "mméx&:m ;nﬁ:r-.e%m fu.Ll
_- : sru.. 1" ttuo ;55! ns&ﬁ}f
fz‘ar" ﬁmm‘f o[nf ?ﬁﬂqo’i
N u—’srw- e

T

1 #!sitf:olﬂnfkwui..ﬁm: :
(5 g }'L-u_il"a‘.'), ¥ s
aff&quac :tcez-mufﬁf :

... 0of the giants

't.

--u

; "’*J?%ﬁ!f%t t:m-ﬁ Q__éﬁ:cémﬁ

i -':'“_-mqf &lno I:l.f CdLﬂ.cs:‘Lu-cru -] ii'ch

%ﬁ; feaﬁﬂfd:!’c

o e i e E
5 T ey e L S e e =
e 2 el
weoararuy Ufaitim..

o bocorde mkrz;?ﬁ;m! 2

af

*fa—ur?f“ cfwmfmcm er'noL fm

-::ﬁ"& € o ety mrft wnumhmfu— 1
STo: mmén mch quf‘-;?‘hm ﬂiﬂ o g

ﬂ;‘ohfjf}‘!: minﬁnuo ﬁﬂ o8
. NS mk"qo tf- ?«n&uu{:f s

%}luugﬁl&iﬂﬂ”mbnﬁ' qdﬁpﬁ g

E m&éﬁa nfgikﬁy o eu:fﬂr e T’,L’
o
semior & m{gﬁ‘tq cumpaﬂ%&i ;&im -mu;:_-[::t

E%nffd‘ ua:?;ngmufq : "\.‘Itro-?—:l = i

‘-\Cl ZLC q$ {r-iq.l. ‘ky“#cpl -:_:Bm: '::l';rl o
at{ia nJm&"
J o ju-z;b&n }écdfnclsﬁmh S g}

The glosses of Saint Emilianus,
written around 1000 AC.
Oldest writing in (a form of) Spanish,
one of the most spoken languages
In the world.

JOURNAL OF COMPUTER AND SYSTEM SCIENCES 5, 511-523 (1971)

Marked Directed Graphs*

F. CommonNer AND A.W. HoLt

Applied Data Research, Wakefield, Massachusetis 01880
AND

S. Even, A. PNUELI

The Weizmann Institute of Science, Rehovot, Israel
Received October 6, 1970

(e
iEH,
W L &

1. INTRODUCTION . . -
Shimon Even, 1935-2004 Amir Pnueli, 1941-2009
Diverse graph structure modeis for concurrent processing systems have been
suggested and used. The structures differ in generality and scope according to the
properties one wishes to model and analyze. In this paper we solve a problem of

maximal storage requirements for a simple flowchart model called the Marked Graph
Model.

