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From programs to equations: Intraprocedural

Program 7→ system X = f(X) of linear fixed-point equations

Least solution non-computable in general

Program analysis: domain 2IN 7→ abstract domain D

transformer f 7→ abstract transformer f #

Sufficient condition for existence of least solution: (D,+, ·) is a
(ω-continuous) semiring
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Quantitative program analysis: Expected time
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From programs to equations: Interprocedural
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Sharir and Pnueli’s functional approach
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Sharir and Pnueli’s interprocedural equations

Program 7→ system X = f(X) of polynomial, non-linear

fixed-point equations

Least solution non-computable in general

Program analysis: domain 2IN 7→ abstract domain D

transformer f 7→ abstract transformer f #

Sufficient condition for existence of least solution: (D,+, ·) is a
(ω-continuous) semiring
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Solving the equations: Kleene iteration

Theorem [Kleene]: The least solution µf of X = f(X) is the supremum of
{ki}i≥0 , where

k0 = f(0)

ki+1 = f(ki)

Basic algorithm: compute k0, k1, k2, . . . until either ki = ki+1, which
implies ki = µf , or the approximation is considered adequate.



Kleene iteration is slow

Set domains: Kleene iteration never terminates for X = f(X) if least
solution µf is an infinite set.

• X = a · X + b µf = a∗b

• Kleene approximants are finite sets: ki = (ε+ a + . . .+ ai)b

Probabilistic interpretation: convergence can be very slow for polynomial
equations [EY STACS05].

• X =
1

2
X2 +

1

2
µf = 1 = 0.99999 . . .

• “Logarithmic convergence”: k iterations to get log k bits of accuracy.

kn ≤ 1−
1

n + 1
k2000 = 0.9990



Kleene Iteration for X = f(X) (univariate case)
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Newton’s Method for X = f(X) (univariate case)
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Kleene vs. Newton

Program analysis:

• Kleene iteration is applicable to arbitrary ω-continuous semirings

• . . . but converges slowly.

Numerical mathematics:

• Newton’s Method converges fast

• . . . but can only be applied to the real field

Can Newton’s method be generalized to arbitrary ω-continuous semirings?
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Mathematical formulation of Newton’s Method

Elementary analysis yields for the i-th Newton iterant νi :

ν0 = 0

νi+1 = νi + ∆i

where ∆i least solution of X = Df νi(X) + f(νi)− νi

Df νi(X) differential of f(X) at the point νi



Generalizing Newton’s method

Key point: generalize X = Df ν(X) + f(ν)− ν
to arbitrary ω-continuous semirings

In an arbitrary ω-continuous semiring

• neither the differential Df ν(X), nor

• the difference f(ν)− ν

are defined.



Overcoming the obstacles

(1) Use the algebraic definition of differential (recall that we only have
polynomial functions!)

Df(X) =


0 if f(X) = c

X if f(X) = X

Dg(X) + Dh(X) if f(X) = g(X) + h(X)

Dg(X) · h(X) + g(X) · Dh(X) if f(X) = g(X) · h(X)

(2) Replace f(νi)− νi by any δi such that f(νi) = νi + δi

Define ∆i as the least solution of X = Df νi(X) + δi



Idempotent and commutative semirings

Theorem [Hopkins-Kozen LICS ’99]: The least fixed
point of a system X = f(X) of n equations over an
idempotent and commutative ω-continuous semiring
is reached by the sequence

ν0 = f(0)

νi+1 = J(νi)
∗ · f(νi)

after at most O(3n) iterations.

Theorem: This is exactly Newton’s sequence.

Moreover, the fixed point is reached after at most n iterations.
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Two (quick) examples of application



May-Alias Analysis

listify(): transforms a binary tree of pointers into a list of pointers by
reading the tree in preorder.

void listifyL() { void listify() {
T.move left(); L.push back(T→get data());

listify(); if( T.is leaf() == false ) {
T.move up(); listifyL(); listifyR();

} }
}
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May-Alias Analysis

Which data access paths of tree and list may point to the same element ?

Access path of the tree: word w1 ∈ {left,right}∗

Access path of the list: word w2 ∈ {next}∗

May-alias information: set of pairs (w1,w2) such that w1, w2 may point to
the same cell

Commutative abstraction: (left right left,next next)→ (3,1,2)



May-Alias Analysis

Kleene iteration does not terminate.

Newton’s method terminates after one iteration and provides the following
information:

• Data access paths with 0 right’s and ` left’s may only be aliased to
the `-th element of the list.

• Data access paths with r right’s and ` left’s may only be aliased to
the (2r + `)-th element of the list, or to larger elements of the same
parity.



Lazy evaluation of And-Or trees

Nodes are only constructed and evaluated (to 0 or 1) if needed.
(e.g., if left subtree of And-node evaluates to 1, right subtree is not
constructed)

function And(node)
if node.leaf() then
return node.value()

else
v := Or(node.left)
if v = 0 then
return 0

else
return Or(node.right)

function Or(node)
if node.leaf() then
return node.value()

else
v := And(node.left)
if v = 1 then
return 1

else
return And(node.right)



Assume the probabilities that node.leaf() returns true and node.value()
returns 1 are both 1/2.

We perform an analysis to compute the average runtime.



Kleene vs. Newton

Neither Kleene nor Newton terminate, but Newton converges faster:

i k(i) And 0 ν(i) And 0 k(i) And 1 ν(i) And 1

0 2.000 2.000 2.000 2.000

1 2.538 3.588 2.333 3.383

2 2.913 5.784 3.012 5.906

3 3.429 6.975 3.381 7.194

4 3.793 7.067 3.904 7.295



Messages of this talk

The theory of solving “program analysis equations” is not be as well
understood as we thought.

We can learn from numerical mathematics and contribute to it.

Go for unified theory of qualitative and quantitative program analysis.



Commenting the works . . .



. . . of the giants



And yet . . .

The glosses of Saint Emilianus,
written around 1000 AC.
Oldest writing in (a form of) Spanish,
one of the most spoken languages
in the world.



Amir Pnueli, 1941−2009Shimon Even, 1935−2004


