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ASMs and Temporal Logic: my interaction with Amir Pnueli

mldea (1990) triggered by experience made with applying ASMs for
— definition of ISO-Prolog semantics and WAM implementation

— verification of Prolog2WAM compilation
Fact: Tarski structures (or algebras) as

states of ASMs evolve over time

Conclusion: a perfect fit should be to

use first order temporal logic for ASM verifications & model checking

i.e. for mathematical verifications of ASM behaviors (proving or
model-checking state-related runtime properties, not restricted to
in- /output behavior) and their time-based logical analysis

= Invitation to lecture in Lipari School (Manna/Pnueli Books 1991/95)
—1993 Amir Pnueli: Specification and Validation Methods (OUP 1995)
— 1997 Zohar Manna: Architecture Design and Validation Methods
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Amir Pnueli at Lipari Summer School 1993: EATCS Report

From EACSL President in EATCS Bulletin 51, 1993, p.66

2. SPECIFICATION AND VALIDATION METHODS for PROGRAMMING LANGUAGES AND SYSTEMS

held June 21 - July 3, 1993 on Lipari Island (Sicily), directed by
E.Boerger and A.Ferro. Th Wwas t h of a series of schools,

held since 1%89. The courses were:

Application of temporal 1°E5EfiEﬁ%;;,EEEE3;éEﬁiiﬁgiﬂﬂﬁhffffffffEiﬁﬂa
~ of reattivé and real-time syst {A. PNUELI, IStael)
npammbﬁwﬁmwmwcm USA)
Declarative and procedural interpretations for logic programming languages
(K.APT, Netherlands)
System specification and development using higher-order logic
(M. POURMAN,United Kingdom)
Specification and verification of VDHL-based hardware design
(W. DAMM, Germany)
Evolving Algebra based specification and verification of logic
programming systems (E. BOERGER, Italy)

From ACM Portal Consortium Swiss Academic Libraries: ETH Zurich

Zohar Manna and Amir Pnueli: Verification of parameterized programs
in: Specification and Validation Methods (Ed. E. Borger)
Oxford University Press, 1995, 167-230, ISBN:0-19-853854-5
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Amir Pnueli at Lipari School 1993: a student’s report

From Orna Bernholtz (CS, Technion, Haifa): EATCS Bull. 51, 66-68

FIFTH INTERNATIONAL SCHOOL FOR CS RESEARCHERS
(Lipari, Sicily. June 20 - July 3, 1993)

The most substantial principle in doing homework exercises was discov-
ered in the forth day due to the following mystery. How can it be that the
day before we spent all the noon solving Poueli’s mutual exclusion prob-
lem while on tha we eliminated its harder real time version so quickl
in “Specification. and Validation Methods for Programming Languages and
Systems”, but in one day ? such an improvement 7 A big mystery. Then
we realized it. Never face the sea while doing homework, Never ! And thus,
from that day on, every afternoon, Lipari’s citizens and visitors could pass
near Grotta del Saraceno restaurant and see the amazing scene of a group of
strange people, sitting with their back to one of the most enchanted views in
the world and, how terrible, w evolving algebras, high order logics,
hardware design, and declarativé semantics. Well, at least one advantage
discussion about evolving

bras or

Cf. Spec meths which combine transition systems with temporal logic
NB. Vincenzo Gervasi a PhD student of the 1997 Lipari school
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Context and Goal of Ambient ASMs

= Work on a high-level model for client/server WEB systems

— for a comparative (experimental and mathematical) analysis of major
current WEB application architectures

m [his goal implies the need to define a general ambient concept which
is flexible enough to support

— current system modeling and programming practice

e to /solate states of agents concurrently executing in heterogeneous
environments

- statically: scope, module, package, library, etc.
- dynamically: process instances, threads, executing agents, etc.

e to speak and reason about mobility features (concerning places
where agents perform actions)

— modularization of specifications and proofs of their properties
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Approach: Parameterization of ASMs

Use ASM (= FSM where states are Tarski structures) framework to:
m achieve desired generality (via Gurevich's ASM Thesis 2000)

m permit combination of experimental validation (by machine executions)
and mathematical verification of properties of interest

m exploit simplicity of semantical foundation of parameterization
f(z) = f(params, z)
in particular when used with implicit (hidden) parameters

— |dea: introduce implicit parameter curamb expressing a context for
evaluation of terms and execution of machines

— Executions of M in ambient exp can then be described by

amb exp in M
through binding curamb to exp

e supporting conventional implicit oo parameterization

this.f(x) = f(x)
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Transforming ambient ASMs into standard ASMs

m For location symbol f:
f(tl,...,tp)" = f(curamb, t;, ... t)

m For dot-terms: ¢ . f(s1,...,sp))" = f(t%,57,...,5;)

m For logical variable, rule name, ambient independent fct symbol f:
flt, .o tn) =t ... t)

m For rules:

(f(ty, ..., tn) =) =(f(f1,...,tn)" :=t") // location symb f
(amb ¢ in R)* = (let curamb = ¢* in R")

The rest goes by induction

skip, par, if then else, forall, choose, let, seq. . . .
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Looking for Applications to Test the Definition

m Static naming disciplines: isolation of states

m Dynamic naming disciplines: isolation of computations
Exls: Multi-Threading, Process Instantiation

— MULTITHREADJAVAINTERPRETER

— THREADPOOLEXECUTOR task management in J2SE 5.0
m Mlemory sharing disciplines: model for Visitor pattern
m Cardelli’'s and Gordon's calculus for mobility of agents
m Characteristic oo programming patterns

— Delegation (capturing conventional patterns Template,

Responsibility, Proxy, Strategy, State, Bridge)
— Incremental refinement: Decorator

— Encapsulation: Memento
— Views: Publish-Subscribe
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Extending SINGLETHREADJAVAINTERPRETER for Concurrency

= mono-core involves thread context saving/restoring upon rescheduling
m synchronization involves
— active threads being put to wait when needed locks are not available
— notifications about availability of locks

One can simplify (and generalize for multi-core archs) by abstracting
from rescheduling details via providing context to RUN via curamb

MULTITHREADJAVAINTERPRETER =
let ¢ = schedule({t € Thread | Runnable(t)})
/ /requested locks if become available must be acquired
HANDLELOCKACQUISITION(q) seq RUN(gq)
where RUN(q) =
if Active(q) and q = executingThread then
amb ¢ in SINGLETHREADJAVAINTERPRETER // JBook
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JBook Submachines for Lock Acquisition

The unique executingThread (mono-core) may not be Active because
waiting for lock availability (synchronizing or notified, but now runnable).
HANDLELOCKACQUISITION(¢q) =
if ¢ = executingThread then
if not Active(q) then ACQUIRELOCKS(q)
else MAKEEXECUTINGACTIVE(q)
MAKEEXECUTINGACTIVE(q) =
Active(q) = true
executingThread := ¢
ACQUIRELOCKS(q)
ACQUIRELOCKS(q) =
if Synchronizing(q) then SYNCHRONIZE(q)
if Notified(q) then WAKEUP(q)
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Thread Pool Management (J2SE 5.0 Exl)

m Goal: separate RUNning an application from thread management
— assignment of threads to tasks upon TASKENTRY
— decoupling of threads from tasks upon TASKCOMPLETION
— creation of threads
— suspension of threads
e making them idle to possibly RUNTASKFROMQUEUE
— deletion of threads
e if one cannot any more RUNTASKFROMQUEUE so that the

thread has to EXIT
THREADPOOLEXECUTOR =
TASKENTRY
TASKCOMPLETION
TASKFROMQUEUEOREXIT
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TASKENTRY (task) = if Enters(task) then

if | CreatedThread |< corePoolSize then // fill corePoolSize
let t = new (CreatedThread) in RUN(?, task)
elseif | CreatedThread |< maxzPoolSize then [/ use Idle threads
if forsome ¢ € CreatedThread Idle(t) then
choose t € {t € CreatedThread | Idle(t)} RUN(t, task)
else
if BlockingFreePlaceable(task, queue) then
INSERT(task, queue) // first fill queue before creating threads
else let t = new (CreatedThread) in RUN(t, task)
else
if forall ¢t € CreatedThread Running(t) then
if | queue |< marQueuesize then INSERT(task, queue)
else REJECT(task)
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Decoupling thread from task upon completion

TASKCOMPLETION( task, thread) =
if thread € CreatedThread and Completed(task, thread)
and Running(thread) then
if queue # empty then RUNTASKFROMQUEUE(thread)
else

Idle(thread) := true

completionTime(thread) := now
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Reassign idle thread or delete it upon timeout

TASKFROMQUEUEOREXIT(thread) =
if Idle(thread) and thread € Created Thread then
if now — completionTime(thread) < keepAlive Time(thread)
and queue # empty
then RUNTASKFROMQUEUE(thread)
elseif | CreatedThread |> corePoolSize then
DELETE(thread, Created Thread)
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RUN: application logic interface to thread management

RUN(thread, task) =
program(thread) =
amb task in EXECUTE(thread)
Running(thread) := true

RUNTASKFROMQUEUE(thread) =
let task = next(queue)

RUN(thread, task)
DELETE(task, queue)

Ambient separation in behavioral interfaces supports modular verifns:

m ASM-based analysis of C# thread model (LNCS 3052, TCS 343)

m Proofs for conservative theory extensions corresponding to incremental
model extensions in Batory/Borger: Modularizing Theorems for

Software Product Lines: The Jbook Case Study. J.UCS 2008
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Mobile Agents (Cardelli & Gordon)

m ambient processes n|P| interpreted as process P located to run at n
m | P| definable in ASM framework by amb n in P
m tree structure induced by the nesting of ambients:

—ambName, element of a domain AmbName, considered as root of
the tree induced by amb n in P, which is also identified with n

—locAg(n): (possibly empty) dynamic set of (non-ambient) processes
say P1,..., P, called local agents of the ambient process and
viewed as running at n

— subAmb(n): (possibly empty) dynamic set of subambients, say
amb mp in ¢, ..., amb m, in @),
— ambBody(n) = P in amb n in P is interpreted as parallel
composition of the elements of subtrees(n)
P=P|...|Py|ambm in @;... | amb m, in @),
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ASM Interpreter for ambient changing operations

m ambient process change by three actions: Entry, Exit, Open

mcan be viewed as tree operations performed on derived location
curAmbProc (read: a set of nodes equipped with tree structure)

MOBILEAGENTSINTERPRETER =
choose R € {ENTRY, EXIT, OPEN} in
R

m restriction operator definable: (vn)P = P(n/new(AmbName))

m none of the remaining 17 structural congruence rules of Cardelli &
Gordon needed
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ENTRY into an ambient as subambient

Entry from where?

m Sibling ambient chosen as neighbourhood from where to enter into an
ambient m

S =n[in m.P | Q] becomes n|P | Q] € subtrees(m)
—if sibling(.S) contains a process with ambName m

in m.P Q
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ENTRY

= if EntryAction(curAmbProc) # () // there is some entry action
then choose
S =amb n in ((in m.P) | Q) € EntryAction(curAmbProc)
if sibling(.S) contains a process with ambient name m then
choose amb m in R € sibling(S)
DELETE(S, subtrees(parent(m)))
// m disappears as sibling of target ambient m
INSERT(amb n in (P | @), subtrees(m))
// modified n becomes subambient of m
where
EntryAction(curAmbProc) =
{n € curAmbProc | ambBody(n) = (in m.P) | Q}
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Exit of a subambient

Exit to where?

m Sibling ambient chosen as neighbourhood where to exit as subambient
of an ambient m
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ExiT

EXIT =
if ExitAction(curAmbProc) # () // there is some exit action
then choose
S =amb n in ((out m.P) | Q) € ExitAction(curAmbProc)
if parent(n) = m then
DELETE(S, subtrees(m)) // n disappears as subambient of m
INSERT(amb n in (P | Q)), subtrees(parent(m)))
// modified n becomes sibling ambient of m

where FritAction(curAmbProc) =
{n € curAmbProc | ambBody(n) = (out m.P) | Q}
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Ambient dissolving action OPEN

Operating at which level upon a process to open its ambient?

m dissolving the boundary of an ambient named m “located at the same
level”

msibling ambient chosen as neighbourhood

m replaces a subtree pair (open m.P,amb m in @) of siblings in
curAmbProc by the new siblings pair (P, Q)

openm.P ambminQ P Q
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OPEN

= if AmbDissolvAction(curAmbProc) # ()

// there is some ambient dissolving action

then choose S| = open m.P; € AmbDissolvAction(curAmbProc)

if sibling(.S1) contains a process with ambient m then

choose S5 = amb m in Py € sibling(.5)

forall i € {1,2}
DELETE(S;, subtrees(p))
INSERT(P;, subtrees(p))

where

AmbDissolvAction(curAmbProc) =

{open m.P; | open m.P; € curAmbProc}

X contains a process with ambient m =

forsome () amb min ) € X
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Sharing memory (ExI: Visitor pattern)

Element Visitor
ACCEPT(V)

VISITCONCRELEM(e)
subglass

ConcreteElement subclass

ACCEPT(visitor) ConcreteVisitor

VISITCONCRELEM(ce)

visitedClass (visitor) = ce = class (self)

m operation on concrete element ce as VISITCONCRELEM of a
wmsitor accepted by ce so that visitor can appropriately access ce's
state to execute VISITCONCRELEM( ce)

s ACCEPT(uisitor) = wisitor . VISITCONCRELEM(self)
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oo Patterns: Delegation Scheme (1) to subclasses

1. AbstractClass
OPERATION
subiclass
7 Proxy
ConcreteClass
delegate

Delegation equation for OPERATION calls for specific Request

DELEGATE(OPERATION, delegate)( Request) =

amb delegate in OPERATION .0 ( )(Request)

delegate
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Instantiating Delegation by definition of delegate

m external definition as part of the signature
— statically determined by:

e class structure: Template = “skeleton of an algorithm ... deferring
some steps to subclasses”, i.e. define delegate = ConcreteClass

e data-structure fct: chain traversal in ChainOfResponsibility
where (see below) select = first jqin

— dynamic: Responsibility = “giving more than one object a chance
to handle the request”, i.e. define

delegate = select({o € ReceivingObj( Request) |
CanHandle(o, OPERATION)( Request)})

m internal definition by a location delegate

—in a dedicated class: Proxy to ‘provide a placeholder for another
object’ so that delegate is ‘the real object that the proxy represents’.
Dto for Strateqgy, State: interchangeable/state dependent impls

—in AbstractClass: Bridge
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Delegation (2) to ‘outsourced’ classes (Bridge)

“both the abstractions and their implementations should be extensible by
subclassing”: implementations become run-time configurable/assignable

m delegate is an AbstractClass location

m ConcreteImplementor is subclass of another class Implementor

AbstractClass Implementor
OPERATION OPERATIONIMPL
| delegate Z
subclass

Concretelmplementor

‘Typically the Implementor interface provides only primitive operations ...
Abstract(Class defines higher-level operations based on these primitives’
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Incremental Refinement (Decorator Pattern)

‘attach additional responsibilities to an object dynamically’ as ‘a
flexible alternative to subclassing for extending functionality’

Component subclass
< Decorator
OPERATION
T component
subclass ’
/ subclass
ConcreteComponent s ConcreteDecorator
cd. OPERATION = ADDEDBEHAVIOR

amb component in OPERATION
ADDEDBEHAVIOR

Variation: ADDEDBEHAVIOR executed in the component ambient

Amir Pnueli Memorial Symposium, NYU, May 7-9, 2010 28



Encapsulation (Memento Pattern)

Without violating encapsulation, capture and externalize an object’s
internal state so that the object can be restored to this state later.

Originator Memento
curState > SETSTATE
curState
CREATEMEMENTO
GETSTATE
SETMEMENTO (m)

CREATEMEMENTO = let m = new (Memento) in
amb m in SETSTATE(curState)
RETURN m // ambient can be an entire internal state!
SETMEMENTO(m) = RETURN amb m in GETSTATE
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Views (Publish-Subscribe Pattern)

define a one-to-many dependency between objects so that when one
object changes state, all its dependents are notified and updated

Subject
observers
ATTACH Observer
DETACH STATEUPDATE
NOTIFY T
,.--""'ll'mplementationOf implementationOf
ConcreteSubject
ConcreteObserver
subjectState STATEUPDATE = |
GETSTATE observedState:=view X SUbJEZt
SETSTATE(val) (observer,subjectSate(subject)) observedotate
STATEUPDATE =

observedState := view(amb subject in GETSTATE)
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Unfolding Publish-Subscribe Memory Sharing

NOTIFY = forall o € observers amb o in STATEUPDATE

STATEUPDATE =
observedState := view(amb subject in GETSTATE)

GETSTATE = RETURN subjectState
SETSTATE(val) = (subjectState := val)
Unfolding the definitions shows the intended memory sharing:

amb o0 in STATEUPDATE // evaluate for curamb = o

= observedState(o) := view(o,
let curamb = subject(o) in (GETSTATE)*)

= observedState(o) := view(o,let curamb = subject(0) in
RETURN subjectState(curamb))

= observedState(o) := view(o, subjectState(subject(o)))
NB. o, subjectState are ambient independent
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Conclusion and Outlook: ad maiora

The defined ambient concept seems to support the practice of
m system development (from modeling to programming)

m system verification

by modular (also refinement driven) design and proof techniques.

We are currently using it to
m develop a high-level model for client/server WEB systems

m analyze current WEB application architectures using this model for
— experiments (testing or model checking runtime properties)
— mathematical verification (proving runtime properties)
two good reasons to
advocate encore using temporal logics for analyzing ASMs

building upon dynamic logics for ASMs in ASM-theories in KIV, LTL in
ASM-theories in PVS, ASM-logic by Stark (2001-2005) and Nanchen
(Diss ETHZ 2007) and Wang (Diss Kiel 2010)
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