
Egon Börger

Ambient Abstract State Machines

Visiting ETH Zürich, Department of Computer Science
on sabbatical leave from Università di Pisa, Italy

Joint work with Vincenzo Gervasi and Antonio Cisternino

Amir Pnueli Memorial Symposium, NYU, May 7-9, 2010 1

ASMs and Temporal Logic: my interaction with Amir Pnueli

Idea (1990) triggered by experience made with applying ASMs for

– definition of ISO-Prolog semantics and WAM implementation

– verification of Prolog2WAM compilation

Fact: Tarski structures (or algebras) as

states of ASMs evolve over time

Conclusion: a perfect fit should be to

use first order temporal logic for ASM verifications & model checking

i.e. for mathematical verifications of ASM behaviors (proving or
model-checking state-related runtime properties, not restricted to
in-/output behavior) and their time-based logical analysis

Invitation to lecture in Lipari School (Manna/Pnueli Books 1991/95)

– 1993 Amir Pnueli: Specification and Validation Methods (OUP 1995)

– 1997 Zohar Manna: Architecture Design and Validation Methods

Amir Pnueli Memorial Symposium, NYU, May 7-9, 2010 2

Amir Pnueli at Lipari Summer School 1993: EATCS Report

From EACSL President in EATCS Bulletin 51, 1993, p.66

From ACM Portal Consortium Swiss Academic Libraries: ETH Zurich

Zohar Manna and Amir Pnueli: Verification of parameterized programs
in: Specification and Validation Methods (Ed. E. Börger)
Oxford University Press, 1995, 167-230, ISBN:0-19-853854-5

Amir Pnueli Memorial Symposium, NYU, May 7-9, 2010 3

Amir Pnueli at Lipari School 1993: a student’s report

From Orna Bernholtz (CS, Technion, Haifa): EATCS Bull. 51, 66-68

. . .

Cf. Spec meths which combine transition systems with temporal logic
NB. Vincenzo Gervasi a PhD student of the 1997 Lipari school

Amir Pnueli Memorial Symposium, NYU, May 7-9, 2010 4

Context and Goal of Ambient ASMs

Work on a high-level model for client/server WEB systems

– for a comparative (experimental and mathematical) analysis of major
current WEB application architectures

This goal implies the need to define a general ambient concept which
is flexible enough to support

– current system modeling and programming practice

• to isolate states of agents concurrently executing in heterogeneous
environments

· statically: scope, module, package, library, etc.

· dynamically: process instances, threads, executing agents, etc.

• to speak and reason about mobility features (concerning places
where agents perform actions)

– modularization of specifications and proofs of their properties

Amir Pnueli Memorial Symposium, NYU, May 7-9, 2010 5

Approach: Parameterization of ASMs

Use ASM (= FSM where states are Tarski structures) framework to:

achieve desired generality (via Gurevich’s ASM Thesis 2000)

permit combination of experimental validation (by machine executions)
and mathematical verification of properties of interest

exploit simplicity of semantical foundation of parameterization

f (x) = f (params , x)

in particular when used with implicit (hidden) parameters

– Idea: introduce implicit parameter curamb expressing a context for
evaluation of terms and execution of machines

– Executions of M in ambient exp can then be described by

amb exp in M

through binding curamb to exp

• supporting conventional implicit oo parameterization

this .f (x) = f (x)

Amir Pnueli Memorial Symposium, NYU, May 7-9, 2010 6

Transforming ambient ASMs into standard ASMs

For location symbol f :

f (t1, . . . , tn)
∗ = f (curamb, t∗1 , . . . , t

∗
n)

For dot-terms: t . f (s1, . . . , sn))
∗ = f (t∗, s∗1 , . . . , s

∗
n)

For logical variable, rule name, ambient independent fct symbol f :

f (t1, . . . , tn)
∗ = f (t∗1 , . . . , t

∗
n)

For rules:

(f (t1, . . . , tn) := t)∗ = (f (t1, . . . , tn)
∗ := t∗) // location symb f

(amb t in R)∗ = (let curamb = t∗ in R∗)

The rest goes by induction

skip,par, if then else, forall, choose, let, seq, . . .

Amir Pnueli Memorial Symposium, NYU, May 7-9, 2010 7

Looking for Applications to Test the Definition

Static naming disciplines: isolation of states

Dynamic naming disciplines: isolation of computations
Exls: Multi-Threading, Process Instantiation

–MultiThreadJavaInterpreter

–ThreadPoolExecutor task management in J2SE 5.0

Memory sharing disciplines: model for Visitor pattern

Cardelli’s and Gordon’s calculus for mobility of agents

Characteristic oo programming patterns

– Delegation (capturing conventional patterns Template,
Responsibility, Proxy, Strategy, State, Bridge)

– Incremental refinement: Decorator

– Encapsulation: Memento

– Views: Publish-Subscribe

Amir Pnueli Memorial Symposium, NYU, May 7-9, 2010 8

Extending SingleThreadJavaInterpreter for Concurrency

mono-core involves thread context saving/restoring upon rescheduling

synchronization involves

– active threads being put to wait when needed locks are not available

– notifications about availability of locks

One can simplify (and generalize for multi-core archs) by abstracting
from rescheduling details via providing context to Run via curamb

MultiThreadJavaInterpreter =

let q = schedule({t ∈ Thread | Runnable(t)})
//requested locks if become available must be acquired

HandleLockAcquisition(q) seq Run(q)

where Run(q) =

if Active(q) and q = executingThread then

amb q in SingleThreadJavaInterpreter // JBook

Amir Pnueli Memorial Symposium, NYU, May 7-9, 2010 9

JBook Submachines for Lock Acquisition

The unique executingThread (mono-core) may not be Active because
waiting for lock availability (synchronizing or notified, but now runnable).

HandleLockAcquisition(q) =

if q = executingThread then

if not Active(q) then AcquireLocks(q)

else MakeExecutingActive(q)

MakeExecutingActive(q) =

Active(q) := true

executingThread := q

AcquireLocks(q)

AcquireLocks(q) =

if Synchronizing(q) then Synchronize(q)

if Notified(q) then WakeUp(q)

Amir Pnueli Memorial Symposium, NYU, May 7-9, 2010 10

Thread Pool Management (J2SE 5.0 Exl)

Goal: separate Running an application from thread management

– assignment of threads to tasks upon TaskEntry

– decoupling of threads from tasks upon TaskCompletion

– creation of threads

– suspension of threads

•making them idle to possibly RunTaskFromQueue

– deletion of threads

• if one cannot any more RunTaskFromQueue so that the
thread has to Exit

ThreadPoolExecutor =

TaskEntry

TaskCompletion

TaskFromQueueOrExit

Amir Pnueli Memorial Symposium, NYU, May 7-9, 2010 11

TaskEntry(task) = if Enters(task) then

if | CreatedThread |< corePoolSize then // fill corePoolSize

let t = new (CreatedThread) in Run(t , task)

elseif | CreatedThread |< maxPoolSize then // use Idle threads

if forsome t ∈ CreatedThread Idle(t) then

choose t ∈ {t ∈ CreatedThread | Idle(t)} Run(t , task)

else

if BlockingFreePlaceable(task , queue) then

Insert(task , queue) // first fill queue before creating threads

else let t = new (CreatedThread) in Run(t , task)

else

if forall t ∈ CreatedThread Running(t) then

if | queue |< maxQueuesize then Insert(task , queue)

else Reject(task)

Amir Pnueli Memorial Symposium, NYU, May 7-9, 2010 12

Decoupling thread from task upon completion

TaskCompletion(task , thread) =

if thread ∈ CreatedThread and Completed(task , thread)

and Running(thread) then

if queue 6= empty then RunTaskFromQueue(thread)

else

Idle(thread) := true

completionTime(thread) := now

Amir Pnueli Memorial Symposium, NYU, May 7-9, 2010 13

Reassign idle thread or delete it upon timeout

TaskFromQueueOrExit(thread) =

if Idle(thread) and thread ∈ CreatedThread then

if now − completionTime(thread) ≤ keepAliveTime(thread)

and queue 6= empty

then RunTaskFromQueue(thread)

elseif | CreatedThread |> corePoolSize then

Delete(thread ,CreatedThread)

Amir Pnueli Memorial Symposium, NYU, May 7-9, 2010 14

Run: application logic interface to thread management

Run(thread , task) =

program(thread) :=

amb task in Execute(thread)

Running(thread) := true

RunTaskFromQueue(thread) =

let task = next(queue)

Run(thread , task)

Delete(task , queue)

Ambient separation in behavioral interfaces supports modular verifns:

ASM-based analysis of C# thread model (LNCS 3052, TCS 343)

Proofs for conservative theory extensions corresponding to incremental
model extensions in Batory/Börger: Modularizing Theorems for
Software Product Lines: The Jbook Case Study. J.UCS 2008

Amir Pnueli Memorial Symposium, NYU, May 7-9, 2010 15

Mobile Agents (Cardelli & Gordon)

ambient processes n[P] interpreted as process P located to run at n

n[P] definable in ASM framework by amb n in P

tree structure induced by the nesting of ambients:

– ambName, element of a domain AmbName, considered as root of
the tree induced by amb n in P , which is also identified with n

– locAg(n): (possibly empty) dynamic set of (non-ambient) processes,
say P1, . . . ,Pp, called local agents of the ambient process and
viewed as running at n

– subAmb(n): (possibly empty) dynamic set of subambients, say
amb m1 in Q1, . . ., amb mq in Qq

– ambBody(n) = P in amb n in P is interpreted as parallel
composition of the elements of subtrees(n)

P = P1 | . . . | Pp | amb m1 in Q1 . . . | amb mq in Qq

Amir Pnueli Memorial Symposium, NYU, May 7-9, 2010 16

ASM Interpreter for ambient changing operations

ambient process change by three actions: Entry, Exit, Open

can be viewed as tree operations performed on derived location
curAmbProc (read: a set of nodes equipped with tree structure)

MobileAgentsInterpreter =

choose R ∈ {Entry,Exit,Open} in
R

restriction operator definable: (νn)P = P(n/new (AmbName))

none of the remaining 17 structural congruence rules of Cardelli &
Gordon needed

Amir Pnueli Memorial Symposium, NYU, May 7-9, 2010 17

Entry into an ambient as subambient

Entry from where?

Sibling ambient chosen as neighbourhood from where to enter into an
ambient m

S = n[in m.P | Q] becomes n[P | Q] ∈ subtrees(m)

– if sibling(S) contains a process with ambName m

Amir Pnueli Memorial Symposium, NYU, May 7-9, 2010 18

Entry

= if EntryAction(curAmbProc) 6= ∅ // there is some entry action

then choose

S = amb n in ((in m.P) | Q) ∈ EntryAction(curAmbProc)

if sibling(S) contains a process with ambient name m then

choose amb m in R ∈ sibling(S)

Delete(S , subtrees(parent(m)))

// n disappears as sibling of target ambient m

Insert(amb n in (P | Q), subtrees(m))

// modified n becomes subambient of m

where

EntryAction(curAmbProc) =

{n ∈ curAmbProc | ambBody(n) = (in m.P) | Q}

Amir Pnueli Memorial Symposium, NYU, May 7-9, 2010 19

Exit of a subambient

Exit to where?

Sibling ambient chosen as neighbourhood where to exit as subambient
of an ambient m

Amir Pnueli Memorial Symposium, NYU, May 7-9, 2010 20

Exit

Exit =

if ExitAction(curAmbProc) 6= ∅ // there is some exit action

then choose

S = amb n in ((out m.P) | Q) ∈ ExitAction(curAmbProc)

if parent(n) = m then

Delete(S , subtrees(m)) // n disappears as subambient of m

Insert(amb n in (P | Q), subtrees(parent(m)))

// modified n becomes sibling ambient of m

where ExitAction(curAmbProc) =

{n ∈ curAmbProc | ambBody(n) = (out m.P) | Q}

Amir Pnueli Memorial Symposium, NYU, May 7-9, 2010 21

Ambient dissolving action Open

Operating at which level upon a process to open its ambient?

dissolving the boundary of an ambient named m “located at the same
level”

sibling ambient chosen as neighbourhood

replaces a subtree pair (open m.P , amb m in Q) of siblings in
curAmbProc by the new siblings pair (P ,Q)

Amir Pnueli Memorial Symposium, NYU, May 7-9, 2010 22

Open

= if AmbDissolvAction(curAmbProc) 6= ∅
// there is some ambient dissolving action

then choose S1 = open m.P1 ∈ AmbDissolvAction(curAmbProc)

if sibling(S1) contains a process with ambient m then

choose S2 = amb m in P2 ∈ sibling(S1) let p = parent(S1)

forall i ∈ {1, 2}
Delete(Si , subtrees(p))

Insert(Pi , subtrees(p))

where

AmbDissolvAction(curAmbProc) =

{open m.P1 | open m.P1 ∈ curAmbProc}
X contains a process with ambient m =

forsome Q amb m in Q ∈ X

Amir Pnueli Memorial Symposium, NYU, May 7-9, 2010 23

Sharing memory (Exl: Visitor pattern)

operation on concrete element ce as VisitConcrElem of a
visitor accepted by ce so that visitor can appropriately access ce’s
state to execute VisitConcrElem(ce)

Accept(visitor) = visitor . VisitConcrElem(self)

Amir Pnueli Memorial Symposium, NYU, May 7-9, 2010 24

oo Patterns: Delegation Scheme (1) to subclasses

Delegation equation for Operation calls for specific Request

Delegate(Operation, delegate)(Request) =

amb delegate in OperationclassOf (delegate)(Request)

Amir Pnueli Memorial Symposium, NYU, May 7-9, 2010 25

Instantiating Delegation by definition of delegate

external definition as part of the signature

– statically determined by:

• class structure: Template = “skeleton of an algorithm ... deferring
some steps to subclasses”, i.e. define delegate = ConcreteClass

• data-structure fct: chain traversal in ChainOfResponsibility
where (see below) select = firstchain

– dynamic : Responsibility = “giving more than one object a chance
to handle the request”, i.e. define

delegate = select({o ∈ ReceivingObj (Request) |
CanHandle(o,Operation)(Request)})

internal definition by a location delegate

– in a dedicated class: Proxy to ‘provide a placeholder for another
object’ so that delegate is ‘the real object that the proxy represents’.
Dto for Strategy , State: interchangeable/state dependent impls

– in AbstractClass : Bridge

Amir Pnueli Memorial Symposium, NYU, May 7-9, 2010 26

Delegation (2) to ‘outsourced’ classes (Bridge)

“both the abstractions and their implementations should be extensible by
subclassing”: implementations become run-time configurable/assignable

delegate is an AbstractClass location

ConcreteImplementor is subclass of another class Implementor

‘Typically the Implementor interface provides only primitive operations ...
AbstractClass defines higher-level operations based on these primitives’

Amir Pnueli Memorial Symposium, NYU, May 7-9, 2010 27

Incremental Refinement (Decorator Pattern)

‘attach additional responsibilities to an object dynamically’ as ‘a
flexible alternative to subclassing for extending functionality’

Variation: AddedBehavior executed in the component ambient

Amir Pnueli Memorial Symposium, NYU, May 7-9, 2010 28

Encapsulation (Memento Pattern)

Without violating encapsulation, capture and externalize an object’s
internal state so that the object can be restored to this state later.

CreateMemento = let m = new (Memento) in

amb m in SetState(curState)

Return m // ambient can be an entire internal state!

SetMemento(m) = Return amb m in GetState

Amir Pnueli Memorial Symposium, NYU, May 7-9, 2010 29

Views (Publish-Subscribe Pattern)

define a one-to-many dependency between objects so that when one
object changes state, all its dependents are notified and updated

StateUpdate =

observedState := view (amb subject in GetState)

Amir Pnueli Memorial Symposium, NYU, May 7-9, 2010 30

Unfolding Publish-Subscribe Memory Sharing

Notify = forall o ∈ observers amb o in StateUpdate

StateUpdate =

observedState := view (amb subject in GetState)

GetState = Return subjectState

SetState(val) = (subjectState := val)

Unfolding the definitions shows the intended memory sharing :

amb o in StateUpdate // evaluate for curamb = o

= observedState(o) := view (o,

let curamb = subject(o) in (GetState)∗)
= observedState(o) := view (o, let curamb = subject(o) in

Return subjectState(curamb))

= observedState(o) := view (o, subjectState(subject(o)))

NB. o, subjectState are ambient independent

Amir Pnueli Memorial Symposium, NYU, May 7-9, 2010 31

Conclusion and Outlook: ad maiora

The defined ambient concept seems to support the practice of

system development (from modeling to programming)

system verification

by modular (also refinement driven) design and proof techniques.

We are currently using it to

develop a high-level model for client/server WEB systems

analyze current WEB application architectures using this model for

– experiments (testing or model checking runtime properties)

– mathematical verification (proving runtime properties)

two good reasons to

advocate encore using temporal logics for analyzing ASMs

building upon dynamic logics for ASMs in ASM-theories in KIV, LTL in
ASM-theories in PVS, ASM-logic by Stärk (2001-2005) and Nanchen
(Diss ETHZ 2007) and Wang (Diss Kiel 2010)

Amir Pnueli Memorial Symposium, NYU, May 7-9, 2010 32

References

L. Cardelli and A. D. Gordon: Mobile Ambients, LNCS 1378 (1998)

S. Oaks and H. Wong: Java Threads, O’Reilly 2004

E. Gamma and R. Helm and R. Johnson and J. Vlissides:
Design Patterns, Addison-Wesley 1994

R. Stärk and J. Schmid and E. Börger, Java and the JVM .
Definition, Verification, Validation. Springer 2001

D. Batory and E. Börger: Modularizing Theorems for Software Product
Lines: The Jbook Case Study. J.UCS 14.12 (2008) 2059-2082

R. Stärk and E. Börger, An ASM specification of C# threads and the
.NET memory model . LNCS 3052 (2004) pp. 38-60

R. Stärk: Formal specification and verification of the C# thread
model . TCS 343 (2005)

E. Börger and R. Stärk, Abstract State Machines.
A Method for High-Level System Design and Analysis. Springer 2003

Amir Pnueli Memorial Symposium, NYU, May 7-9, 2010 33

