CVC3
|
00001 /*****************************************************************************/ 00002 /*! 00003 * \file common_proof_rules.h 00004 * 00005 * Author: Sergey Berezin 00006 * 00007 * Created: Dec 11 18:15:37 GMT 2002 00008 * 00009 * <hr> 00010 * 00011 * License to use, copy, modify, sell and/or distribute this software 00012 * and its documentation for any purpose is hereby granted without 00013 * royalty, subject to the terms and conditions defined in the \ref 00014 * LICENSE file provided with this distribution. 00015 * 00016 * <hr> 00017 * 00018 */ 00019 /*****************************************************************************/ 00020 // CLASS: CommonProofRules 00021 // 00022 // AUTHOR: Sergey Berezin, 12/09/2002 00023 // 00024 // Description: Commonly used proof rules (reflexivity, symmetry, 00025 // transitivity, substitutivity, etc.). 00026 // 00027 // Normally, proof rule interfaces belong to their decision 00028 // procedures. However, in the case of equational logic, the rules 00029 // are so useful, that even some basic classes like Transformer use 00030 // these rules under the hood. Therefore, it is made public, and its 00031 // implementation is provided by the 'theorem' module. 00032 /////////////////////////////////////////////////////////////////////////////// 00033 00034 #ifndef _cvc3__common_proof_rules_h_ 00035 #define _cvc3__common_proof_rules_h_ 00036 00037 #include <vector> 00038 00039 namespace CVC3 { 00040 00041 class Theorem; 00042 class Theorem3; 00043 class Expr; 00044 class Op; 00045 00046 class CommonProofRules { 00047 public: 00048 //! Destructor 00049 virtual ~CommonProofRules() { } 00050 00051 //////////////////////////////////////////////////////////////////////// 00052 // TCC rules (3-valued logic) 00053 //////////////////////////////////////////////////////////////////////// 00054 00055 // G1 |- phi G2 |- D_phi 00056 // ------------------------- 00057 // G1,G2 |-_3 phi 00058 /*! 00059 * @brief Convert 2-valued formula to 3-valued by discharging its 00060 * TCC (\f$D_\phi\f$): 00061 * \f[\frac{\Gamma_1\vdash_2 \phi\quad \Gamma_2\vdash_2 D_{\phi}} 00062 * {\Gamma_1,\,\Gamma_2\vdash_3\phi}\f] 00063 */ 00064 virtual Theorem3 queryTCC(const Theorem& phi, const Theorem& D_phi) = 0; 00065 00066 // G0,a1,...,an |-_3 phi G1 |- D_a1 ... Gn |- D_an 00067 // ------------------------------------------------- 00068 // G0,G1,...,Gn |-_3 (a1 & ... & an) -> phi 00069 /*! 00070 * @brief 3-valued implication introduction rule: 00071 * \f[\frac{\Gamma_0,\,\alpha_1\,\ldots,\,\alpha_n\vdash_3\phi\quad 00072 * (\Gamma_i\vdash D_{\alpha_i})_{i\in[1..n]}} 00073 * {\Gamma_0,\,\Gamma_1, \ldots, \Gamma_n\vdash_3 00074 * (\bigwedge_{i=1}^n\alpha_i)\to\phi}\f] 00075 * 00076 * \param phi is the formula \f$\phi\f$ 00077 * \param assump is the vector of assumptions \f$\alpha_1\ldots\alpha_n\f$ 00078 * \param tccs is the vector of TCCs for assumptions 00079 * \f$D_{\alpha_1}\ldots D_{\alpha_n}\f$ 00080 */ 00081 virtual Theorem3 implIntro3(const Theorem3& phi, 00082 const std::vector<Expr>& assump, 00083 const std::vector<Theorem>& tccs) = 0; 00084 00085 //////////////////////////////////////////////////////////////////////// 00086 // Common rules 00087 //////////////////////////////////////////////////////////////////////// 00088 00089 // ==> u:a |- a 00090 //! \f[\frac{}{a\vdash a}\f] 00091 virtual Theorem assumpRule(const Expr& a, int scope = -1) = 0; 00092 00093 // ==> a == a or ==> a IFF a 00094 //! \f[\frac{}{a = a}\quad or \quad\frac{}{a \Leftrightarrow a}\f] 00095 virtual Theorem reflexivityRule(const Expr& a) = 0; 00096 00097 //! ==> (a == a) IFF TRUE 00098 virtual Theorem rewriteReflexivity(const Expr& a_eq_a) = 0; 00099 00100 // a1 == a2 ==> a2 == a1 (same for IFF) 00101 //! \f[\frac{a_1=a_2}{a_2=a_1}\f] (same for IFF) 00102 virtual Theorem symmetryRule(const Theorem& a1_eq_a2) = 0; 00103 00104 // ==> (a1 == a2) IFF (a2 == a1) 00105 //! \f[\frac{}{(a_1=a_2)\Leftrightarrow (a_2=a_1)}\f] 00106 virtual Theorem rewriteUsingSymmetry(const Expr& a1_eq_a2) = 0; 00107 00108 // (a1 == a2) & (a2 == a3) ==> (a1 == a3) [same for IFF] 00109 //! \f[\frac{a_1=a_2\quad a_2=a_3}{a_1=a_3}\f] (same for IFF) 00110 virtual Theorem transitivityRule(const Theorem& a1_eq_a2, 00111 const Theorem& a2_eq_a3) = 0; 00112 00113 //! Optimized case for expr with one child 00114 virtual Theorem substitutivityRule(const Expr& e, const Theorem& thm) = 0; 00115 00116 //! Optimized case for expr with two children 00117 virtual Theorem substitutivityRule(const Expr& e, const Theorem& thm1, 00118 const Theorem& thm2) = 0; 00119 00120 // (c_1 == d_1) & ... & (c_n == d_n) 00121 // ==> op(c_1,...,c_n) == op(d_1,...,d_n) 00122 /*! @brief 00123 \f[\frac{(c_1=d_1)\wedge\ldots\wedge(c_n=d_n)} 00124 {op(c_1,\ldots,c_n)=op(d_1,\ldots,d_n)}\f] 00125 */ 00126 virtual Theorem substitutivityRule(const Op& op, 00127 const std::vector<Theorem>& thms) = 0; 00128 00129 // (c_1 == d_1) & ... & (c_n == d_n) 00130 // ==> op(c_1,...,c_n) == op(d_1,...,d_n) 00131 /*! @brief 00132 \f[\frac{(c_1=d_1)\wedge\ldots\wedge(c_n=d_n)} 00133 {op(c_1,\ldots,c_n)=op(d_1,\ldots,d_n)}\f] 00134 except that only those arguments are given that \f$c_i\not=d_i\f$. 00135 \param e is the original expression \f$op(c_1,\ldots,c_n)\f$. 00136 \param changed is the vector of indices of changed kids 00137 \param thms are the theorems \f$c_i=d_i\f$ for the changed kids. 00138 */ 00139 virtual Theorem substitutivityRule(const Expr& e, 00140 const std::vector<unsigned>& changed, 00141 const std::vector<Theorem>& thms) = 0; 00142 virtual Theorem substitutivityRule(const Expr& e, const int changed, const Theorem& thm) = 0; 00143 00144 // |- e, |- !e ==> |- FALSE 00145 /*! @brief 00146 \f[\frac{\Gamma_1\vdash e\quad\Gamma_2\vdash \neg e} 00147 {\Gamma_1\cup\Gamma_2\vdash \mathrm{FALSE}} 00148 \f] 00149 */ 00150 virtual Theorem contradictionRule(const Theorem& e, 00151 const Theorem& not_e) = 0; 00152 00153 // |- e OR !e 00154 virtual Theorem excludedMiddle(const Expr& e) = 0; 00155 00156 // e ==> e IFF TRUE 00157 //! \f[\frac{\Gamma\vdash e}{\Gamma\vdash e\Leftrightarrow\mathrm{TRUE}}\f] 00158 virtual Theorem iffTrue(const Theorem& e) = 0; 00159 00160 // e ==> !e IFF FALSE 00161 //! \f[\frac{\Gamma\vdash e}{\Gamma\vdash\neg e\Leftrightarrow\mathrm{FALSE}}\f] 00162 virtual Theorem iffNotFalse(const Theorem& e) = 0; 00163 00164 // e IFF TRUE ==> e 00165 //! \f[\frac{\Gamma\vdash e\Leftrightarrow\mathrm{TRUE}}{\Gamma\vdash e}\f] 00166 virtual Theorem iffTrueElim(const Theorem& e) = 0; 00167 00168 // e IFF FALSE ==> !e 00169 //! \f[\frac{\Gamma\vdash e\Leftrightarrow\mathrm{FALSE}}{\Gamma\vdash\neg e}\f] 00170 virtual Theorem iffFalseElim(const Theorem& e) = 0; 00171 00172 //! e1 <=> e2 ==> ~e1 <=> ~e2 00173 /*! \f[\frac{\Gamma\vdash e_1\Leftrightarrow e_2} 00174 * {\Gamma\vdash\sim e_1\Leftrightarrow\sim e_2}\f] 00175 * Where ~e is the <em>inverse</em> of e (that is, ~(!e') = e'). 00176 */ 00177 virtual Theorem iffContrapositive(const Theorem& thm) = 0; 00178 00179 // !!e ==> e 00180 //! \f[\frac{\Gamma\vdash\neg\neg e}{\Gamma\vdash e}\f] 00181 virtual Theorem notNotElim(const Theorem& not_not_e) = 0; 00182 00183 // e1 AND (e1 IFF e2) ==> e2 00184 /*! @brief 00185 \f[\frac{\Gamma_1\vdash e_1\quad \Gamma_2\vdash(e_1\Leftrightarrow e_2)} 00186 {\Gamma_1\cup\Gamma_2\vdash e_2} 00187 \f] 00188 */ 00189 virtual Theorem iffMP(const Theorem& e1, const Theorem& e1_iff_e2) = 0; 00190 00191 // e1 AND (e1 IMPLIES e2) ==> e2 00192 /*! @brief 00193 \f[\frac{\Gamma_1\vdash e_1\quad \Gamma_2\vdash(e_1\Rightarrow e_2)} 00194 {\Gamma_1\cup\Gamma_2\vdash e_2} 00195 \f] 00196 */ 00197 virtual Theorem implMP(const Theorem& e1, const Theorem& e1_impl_e2) = 0; 00198 00199 // AND(e_1,...e_n) ==> e_i 00200 //! \f[\frac{\vdash e_1\wedge\cdots\wedge e_n}{\vdash e_i}\f] 00201 virtual Theorem andElim(const Theorem& e, int i) = 0; 00202 00203 // e1, e2 ==> AND(e1, e2) 00204 /*! @brief 00205 \f[\frac{\Gamma_1\vdash e_1\quad \Gamma_2\vdash e_2} 00206 {\Gamma_1\cup\Gamma_2\vdash e_1\wedge e_2} 00207 \f] 00208 */ 00209 virtual Theorem andIntro(const Theorem& e1, const Theorem& e2) = 0; 00210 00211 // e1, ..., en ==> AND(e1, ..., en) 00212 /*! @brief 00213 \f[\frac{\Gamma_1\vdash e_1\quad \cdots \quad\Gamma_n\vdash e_n} 00214 {\bigcup_{i=1}^n\Gamma_i\vdash \bigwedge_{i=1}^n e_i} 00215 \f] 00216 */ 00217 virtual Theorem andIntro(const std::vector<Theorem>& es) = 0; 00218 00219 // G,a1,...,an |- phi 00220 // ------------------------------------------------- 00221 // G |- (a1 & ... & an) -> phi 00222 /*! 00223 * @brief Implication introduction rule: 00224 * \f[\frac{\Gamma,\,\alpha_1\,\ldots,\,\alpha_n\vdash\phi} 00225 * {\Gamma\vdash(\bigwedge_{i=1}^n\alpha_i)\to\phi}\f] 00226 * 00227 * \param phi is the formula \f$\phi\f$ 00228 * \param assump is the vector of assumptions \f$\alpha_1\ldots\alpha_n\f$ 00229 */ 00230 virtual Theorem implIntro(const Theorem& phi, 00231 const std::vector<Expr>& assump) = 0; 00232 00233 //! e1 => e2 ==> ~e2 => ~e1 00234 /*! \f[\frac{\Gamma\vdash e_1\Rightarrow e_2} 00235 * {\Gamma\vdash\sim e_2\Rightarrow\sim e_1}\f] 00236 * Where ~e is the <em>inverse</em> of e (that is, ~(!e') = e'). 00237 */ 00238 virtual Theorem implContrapositive(const Theorem& thm) = 0; 00239 00240 //! ==> ITE(TRUE, e1, e2) == e1 00241 virtual Theorem rewriteIteTrue(const Expr& e) = 0; 00242 //! ==> ITE(FALSE, e1, e2) == e2 00243 virtual Theorem rewriteIteFalse(const Expr& e) = 0; 00244 //! ==> ITE(c, e, e) == e 00245 virtual Theorem rewriteIteSame(const Expr& e) = 0; 00246 00247 // NOT e ==> e IFF FALSE 00248 //! \f[\frac{\vdash\neg e}{\vdash e\Leftrightarrow\mathrm{FALSE}}\f] 00249 virtual Theorem notToIff(const Theorem& not_e) = 0; 00250 00251 // e1 XOR e2 ==> e1 IFF (NOT e2) 00252 //! \f[\frac{\vdash e_1 XOR e_2}{\vdash e_1\Leftrightarrow(\neg e_2)}\f] 00253 virtual Theorem xorToIff(const Expr& e) = 0; 00254 00255 //! ==> (e1 <=> e2) <=> [simplified expr] 00256 /*! Rewrite formulas like FALSE/TRUE <=> e, e <=> NOT e, etc. */ 00257 virtual Theorem rewriteIff(const Expr& e) = 0; 00258 00259 // AND and OR rewrites check for TRUE and FALSE arguments and 00260 // remove them or collapse the entire expression to TRUE and FALSE 00261 // appropriately 00262 00263 //! ==> AND(e1,e2) IFF [simplified expr] 00264 virtual Theorem rewriteAnd(const Expr& e) = 0; 00265 00266 //! ==> OR(e1,...,en) IFF [simplified expr] 00267 virtual Theorem rewriteOr(const Expr& e) = 0; 00268 00269 //! ==> NOT TRUE IFF FALSE 00270 virtual Theorem rewriteNotTrue(const Expr& e) = 0; 00271 00272 //! ==> NOT FALSE IFF TRUE 00273 virtual Theorem rewriteNotFalse(const Expr& e) = 0; 00274 00275 //! ==> NOT NOT e IFF e, takes !!e 00276 virtual Theorem rewriteNotNot(const Expr& e) = 0; 00277 00278 //! ==> NOT FORALL (vars): e IFF EXISTS (vars) NOT e 00279 virtual Theorem rewriteNotForall(const Expr& forallExpr) = 0; 00280 00281 //! ==> NOT EXISTS (vars): e IFF FORALL (vars) NOT e 00282 virtual Theorem rewriteNotExists(const Expr& existsExpr) = 0; 00283 00284 //From expr EXISTS(x1: t1, ..., xn: tn) phi(x1,...,cn) 00285 //we create phi(c1,...,cn) where ci is a skolem constant 00286 //defined by the original expression and the index i. 00287 virtual Expr skolemize(const Expr& e) = 0; 00288 00289 /*! skolem rewrite rule: Introduces axiom |- Exists(x) phi(x) <=> phi(c) 00290 * where c is a constant defined by the expression Exists(x) phi(x) 00291 */ 00292 virtual Theorem skolemizeRewrite(const Expr& e) = 0; 00293 00294 //! Special version of skolemizeRewrite for "EXISTS x. t = x" 00295 virtual Theorem skolemizeRewriteVar(const Expr& e) = 0; 00296 00297 //! |- EXISTS x. e = x 00298 virtual Theorem varIntroRule(const Expr& e) = 0; 00299 00300 /*! @brief If thm is (EXISTS x: phi(x)), create the Skolemized version 00301 and add it to the database. Otherwise returns just thm. */ 00302 /*! 00303 * \param thm is the Theorem(EXISTS x: phi(x)) 00304 */ 00305 virtual Theorem skolemize(const Theorem& thm) = 0; 00306 00307 //! Retrun a theorem "|- e = v" for a new Skolem constant v 00308 /*! 00309 * This is equivalent to skolemize(d_core->varIntroRule(e)), only more 00310 * efficient. 00311 */ 00312 virtual Theorem varIntroSkolem(const Expr& e) = 0; 00313 00314 // Derived rules 00315 00316 //! ==> TRUE 00317 virtual Theorem trueTheorem() = 0; 00318 00319 //! AND(e1,e2) ==> [simplified expr] 00320 virtual Theorem rewriteAnd(const Theorem& e) = 0; 00321 00322 //! OR(e1,...,en) ==> [simplified expr] 00323 virtual Theorem rewriteOr(const Theorem& e) = 0; 00324 00325 // TODO: do we really need this? 00326 virtual std::vector<Theorem>& getSkolemAxioms() = 0; 00327 00328 //TODO: do we need this? 00329 virtual void clearSkolemAxioms() = 0; 00330 00331 virtual Theorem ackermann(const Expr& e1, const Expr& e2) = 0; 00332 00333 // Given a propositional atom containing embedded ite's, lifts first ite condition 00334 // to form a Boolean ITE 00335 // |- P(...ite(a,b,c)...) <=> ite(a,P(...b...),P(...c...)) 00336 virtual Theorem liftOneITE(const Expr& e) = 0; 00337 00338 }; // end of class CommonProofRules 00339 00340 } // end of namespace CVC3 00341 00342 #endif