00001 /*****************************************************************************/ 00002 /*! 00003 * \file theory_arith_new.h 00004 * 00005 * Author: Dejan Jovanovic 00006 * 00007 * Created: Thu Jun 14 13:38:16 2007 00008 * 00009 * <hr> 00010 * 00011 * License to use, copy, modify, sell and/or distribute this software 00012 * and its documentation for any purpose is hereby granted without 00013 * royalty, subject to the terms and conditions defined in the \ref 00014 * LICENSE file provided with this distribution. 00015 * 00016 * <hr> 00017 * 00018 */ 00019 /*****************************************************************************/ 00020 00021 #ifndef _cvc3__include__theory_arith_new_h_ 00022 #define _cvc3__include__theory_arith_new_h_ 00023 00024 #include "theory_arith.h" 00025 00026 #include <hash_fun.h> 00027 #include <hash_map.h> 00028 #include <queryresult.h> 00029 #include <map> 00030 00031 namespace CVC3 { 00032 00033 00034 /** 00035 * This theory handles basic linear arithmetic. 00036 * 00037 * @author Clark Barrett 00038 * 00039 * @since Sat Feb 8 14:44:32 2003 00040 */ 00041 class TheoryArithNew :public TheoryArith { 00042 00043 /** For concrete model generation */ 00044 CDList<Theorem> d_diseq; 00045 /** Index to the next unprocessed disequality */ 00046 CDO<size_t> d_diseqIdx; 00047 ArithProofRules* d_rules; 00048 CDO<bool> d_inModelCreation; 00049 00050 /** Data class for the strongest free constant in separation inqualities **/ 00051 class FreeConst { 00052 private: 00053 Rational d_r; 00054 bool d_strict; 00055 public: 00056 FreeConst() { } 00057 FreeConst(const Rational& r, bool strict): d_r(r), d_strict(strict) { } 00058 const Rational& getConst() const { return d_r; } 00059 bool strict() const { return d_strict; } 00060 }; 00061 //! Printing 00062 friend std::ostream& operator<<(std::ostream& os, const FreeConst& fc); 00063 //! Private class for an inequality in the Fourier-Motzkin database 00064 class Ineq { 00065 private: 00066 Theorem d_ineq; //!< The inequality 00067 bool d_rhs; //!< Var is isolated on the RHS 00068 const FreeConst* d_const; //!< The max/min const for subsumption check 00069 //! Default constructor is disabled 00070 Ineq() { } 00071 public: 00072 //! Initial constructor. 'r' is taken from the subsumption database. 00073 Ineq(const Theorem& ineq, bool varOnRHS, const FreeConst& c): 00074 d_ineq(ineq), d_rhs(varOnRHS), d_const(&c) { } 00075 //! Get the inequality 00076 const Theorem& ineq() const { return d_ineq; } 00077 //! Get the max/min constant 00078 const FreeConst& getConst() const { return *d_const; } 00079 //! Flag whether var is isolated on the RHS 00080 bool varOnRHS() const { return d_rhs; } 00081 //! Flag whether var is isolated on the LHS 00082 bool varOnLHS() const { return !d_rhs; } 00083 //! Auto-cast to Theorem 00084 operator Theorem() const { return d_ineq; } 00085 }; 00086 //! Printing 00087 friend std::ostream& operator<<(std::ostream& os, const Ineq& ineq); 00088 //! Database of inequalities with a variable isolated on the right 00089 ExprMap<CDList<Ineq> *> d_inequalitiesRightDB; 00090 //! Database of inequalities with a variable isolated on the left 00091 ExprMap<CDList<Ineq> *> d_inequalitiesLeftDB; 00092 //! Mapping of inequalities to the largest/smallest free constant 00093 /*! The Expr is the original inequality with the free constant 00094 * removed and inequality converted to non-strict (for indexing 00095 * purposes). I.e. ax<c+t becomes ax<=t. This inequality is mapped 00096 * to a pair<c,strict>, the smallest (largest for c+t<ax) constant 00097 * among inequalities with the same 'a', 'x', and 't', and a boolean 00098 * flag indicating whether the strongest inequality is strict. 00099 */ 00100 CDMap<Expr, FreeConst> d_freeConstDB; 00101 // Input buffer to store the incoming inequalities 00102 CDList<Theorem> d_buffer; //!< Buffer of input inequalities 00103 CDO<size_t> d_bufferIdx; //!< Buffer index of the next unprocessed inequality 00104 const int* d_bufferThres; //!< Threshold when the buffer must be processed 00105 // Statistics for the variables 00106 /*! @brief Mapping of a variable to the number of inequalities where 00107 the variable would be isolated on the right */ 00108 CDMap<Expr, int> d_countRight; 00109 /*! @brief Mapping of a variable to the number of inequalities where 00110 the variable would be isolated on the left */ 00111 CDMap<Expr, int> d_countLeft; 00112 //! Set of shared terms (for counterexample generation) 00113 CDMap<Expr, bool> d_sharedTerms; 00114 //! Set of shared integer variables (i-leaves) 00115 CDMap<Expr, bool> d_sharedVars; 00116 //Directed Acyclic Graph representing partial variable ordering for 00117 //variable projection over inequalities. 00118 class VarOrderGraph { 00119 ExprMap<std::vector<Expr> > d_edges; 00120 ExprMap<bool> d_cache; 00121 bool dfs(const Expr& e1, const Expr& e2); 00122 public: 00123 void addEdge(const Expr& e1, const Expr& e2); 00124 //returns true if e1 < e2, false otherwise. 00125 bool lessThan(const Expr& e1, const Expr& e2); 00126 //selects those variables which are largest and incomparable among 00127 //v1 and puts it into v2 00128 void selectLargest(const std::vector<Expr>& v1, std::vector<Expr>& v2); 00129 //selects those variables which are smallest and incomparable among 00130 //v1, removes them from v1 and puts them into v2. 00131 void selectSmallest( std::vector<Expr>& v1, std::vector<Expr>& v2); 00132 00133 }; 00134 00135 VarOrderGraph d_graph; 00136 00137 // Private methods 00138 //! Check the term t for integrality. 00139 /*! \return a theorem of IS_INTEGER(t) or Null. */ 00140 Theorem isIntegerThm(const Expr& e); 00141 //! A helper method for isIntegerThm() 00142 /*! Check if IS_INTEGER(e) is easily derivable from the given 'thm' */ 00143 Theorem isIntegerDerive(const Expr& isIntE, const Theorem& thm); 00144 //! Check if the kids of e are fully simplified and canonized (for debugging) 00145 bool kidsCanonical(const Expr& e); 00146 00147 //! Canonize the expression e, assuming all children are canonical 00148 Theorem canon(const Expr& e); 00149 /*! @brief Canonize and reduce e w.r.t. union-find database; assume 00150 * all children are canonical */ 00151 Theorem canonSimplify(const Expr& e); 00152 /*! @brief Composition of canonSimplify(const Expr&) by 00153 * transitivity: take e0 = e1, canonize and simplify e1 to e2, 00154 * return e0 = e2. */ 00155 Theorem canonSimplify(const Theorem& thm) { 00156 return transitivityRule(thm, canonSimplify(thm.getRHS())); 00157 } 00158 //! Canonize predicate (x = y, x < y, etc.) 00159 Theorem canonPred(const Theorem& thm); 00160 //! Canonize predicate like canonPred except that the input theorem 00161 //! is an equivalent transformation. 00162 Theorem canonPredEquiv(const Theorem& thm); 00163 //! Solve an equation and return an equivalent Theorem in the solved form 00164 Theorem doSolve(const Theorem& e); 00165 //! takes in a conjunction equivalence Thm and canonizes it. 00166 Theorem canonConjunctionEquiv(const Theorem& thm); 00167 //! picks the monomial with the smallest abs(coeff) from the input 00168 //integer equation. 00169 Expr pickIntEqMonomial(const Expr& right); 00170 //! processes equalities with 1 or more vars of type REAL 00171 Theorem processRealEq(const Theorem& eqn); 00172 //! processes equalities whose vars are all of type INT 00173 Theorem processIntEq(const Theorem& eqn); 00174 //! One step of INT equality processing (aux. method for processIntEq()) 00175 Theorem processSimpleIntEq(const Theorem& eqn); 00176 //! Take an inequality and isolate a variable 00177 Theorem isolateVariable(const Theorem& inputThm, bool& e1); 00178 //! Update the statistics counters for the variable with a coeff. c 00179 void updateStats(const Rational& c, const Expr& var); 00180 //! Update the statistics counters for the monomial 00181 void updateStats(const Expr& monomial); 00182 //! Add an inequality to the input buffer. See also d_buffer 00183 void addToBuffer(const Theorem& thm); 00184 Expr pickMonomial(const Expr& right); 00185 public: // ArithTheoremProducer needs this function, so make it public 00186 //! Separate monomial e = c*p1*...*pn into c and 1*p1*...*pn 00187 void separateMonomial(const Expr& e, Expr& c, Expr& var); 00188 //! Check the term t for integrality (return bool) 00189 bool isInteger(const Expr& e) { return !(isIntegerThm(e).isNull()); } 00190 private: 00191 bool lessThanVar(const Expr& isolatedVar, const Expr& var2); 00192 //! Check if the term expression is "stale" 00193 bool isStale(const Expr& e); 00194 //! Check if the inequality is "stale" or subsumed 00195 bool isStale(const Ineq& ineq); 00196 void projectInequalities(const Theorem& theInequality,bool isolatedVarOnRHS); 00197 void assignVariables(std::vector<Expr>&v); 00198 void findRationalBound(const Expr& varSide, const Expr& ratSide, 00199 const Expr& var, 00200 Rational &r); 00201 bool findBounds(const Expr& e, Rational& lub, Rational& glb); 00202 00203 Theorem normalizeProjectIneqs(const Theorem& ineqThm1, 00204 const Theorem& ineqThm2); 00205 //! Take a system of equations and turn it into a solved form 00206 Theorem solvedForm(const std::vector<Theorem>& solvedEqs); 00207 /*! @brief Substitute all vars in term 't' according to the 00208 * substitution 'subst' and canonize the result. 00209 */ 00210 Theorem substAndCanonize(const Expr& t, ExprMap<Theorem>& subst); 00211 /*! @brief Substitute all vars in the RHS of the equation 'eq' of 00212 * the form (x = t) according to the substitution 'subst', and 00213 * canonize the result. 00214 */ 00215 Theorem substAndCanonize(const Theorem& eq, ExprMap<Theorem>& subst); 00216 //! Traverse 'e' and push all the i-leaves into 'vars' vector 00217 void collectVars(const Expr& e, std::vector<Expr>& vars, 00218 std::set<Expr>& cache); 00219 /*! @brief Check if alpha <= ax & bx <= beta is a finite interval 00220 * for integer var 'x', and assert the corresponding constraint 00221 */ 00222 void processFiniteInterval(const Theorem& alphaLEax, 00223 const Theorem& bxLEbeta); 00224 //! For an integer var 'x', find and process all constraints A <= ax <= A+c 00225 void processFiniteIntervals(const Expr& x); 00226 //! Recursive setup for isolated inequalities (and other new expressions) 00227 void setupRec(const Expr& e); 00228 00229 public: 00230 TheoryArithNew(TheoryCore* core); 00231 ~TheoryArithNew(); 00232 00233 // Trusted method that creates the proof rules class (used in constructor). 00234 // Implemented in arith_theorem_producer.cpp 00235 ArithProofRules* createProofRules(); 00236 00237 // Theory interface 00238 void addSharedTerm(const Expr& e); 00239 void assertFact(const Theorem& e); 00240 void refineCounterExample(); 00241 void computeModelBasic(const std::vector<Expr>& v); 00242 void computeModel(const Expr& e, std::vector<Expr>& vars); 00243 void checkSat(bool fullEffort); 00244 Theorem rewrite(const Expr& e); 00245 void setup(const Expr& e); 00246 void update(const Theorem& e, const Expr& d); 00247 Theorem solve(const Theorem& e); 00248 void checkAssertEqInvariant(const Theorem& e); 00249 void checkType(const Expr& e); 00250 Cardinality finiteTypeInfo(Expr& e, Unsigned& n, 00251 bool enumerate, bool computeSize); 00252 void computeType(const Expr& e); 00253 Type computeBaseType(const Type& t); 00254 void computeModelTerm(const Expr& e, std::vector<Expr>& v); 00255 Expr computeTypePred(const Type& t, const Expr& e); 00256 Expr computeTCC(const Expr& e); 00257 ExprStream& print(ExprStream& os, const Expr& e); 00258 virtual Expr parseExprOp(const Expr& e); 00259 00260 // DDDDDDDDDDDDDDDDDDDDDDDDEEEEEEEEEEEEEEEEEEEEEEEJJJJJJJJJJJJJJJJJJJJJAAAAAAAAAAAAAAAAAAAAAAANNNNNNNNNNNNNNNNNNNNNNN 00261 00262 public: 00263 00264 /** 00265 * EpsRational class ecapsulates the rationals with a symbolic small \f$\epsilon\f$ added. Each rational 00266 * number is presented as a pair \f$(q, k) = q + k\epsilon\f$, where \f$\epsilon\f$ is treated symbolically. 00267 * The operations on the new rationals are defined as 00268 * <ul> 00269 * <li>\f$(q_1, k_1) + (q_2, k_2) \equiv (q_1 + q_2, k_1 + k_2)\f$ 00270 * <li>\f$a \times (q, k) \equiv (a \times q, a \times k)\f$ 00271 * <li>\f$(q_1, k_1) \leq (q_2, k_2) \equiv (q_1 < q_2) \vee (q_1 = q_2 \wedge k_1 \leq k_2)\f$ 00272 * </ul> 00273 * 00274 * Note that the operations on the infinite values are not defined, as they are never used currently. Infinities can 00275 * only be asigned or compared. 00276 */ 00277 class EpsRational { 00278 00279 protected: 00280 00281 /** Type of rationals, normal and the two infinities */ 00282 typedef enum { FINITE, PLUS_INFINITY, MINUS_INFINITY } RationalType; 00283 00284 /** The type of this rational */ 00285 RationalType type; 00286 00287 /** The rational part */ 00288 Rational q; 00289 00290 /** The epsilon multiplier */ 00291 Rational k; 00292 00293 /** 00294 * Private constructor to construt infinities. 00295 */ 00296 EpsRational(RationalType type) : type(type) {} 00297 00298 public: 00299 00300 /** 00301 * Returns if the number is a plain rational. 00302 * 00303 * @return true if rational, false otherwise 00304 */ 00305 inline bool isRational() const { return k == 0; } 00306 00307 /** 00308 * Returns if the number is a plain integer. 00309 * 00310 * @return true if rational, false otherwise 00311 */ 00312 inline bool isInteger() const { return k == 0 && q.isInteger(); } 00313 00314 /** 00315 * Returns the floor of the number \f$x = q + k \epsilon\f$ using the following formula 00316 * \f[ 00317 * \lfloor \beta(x) \rfloor = \left\{ 00318 * \begin{tabular}{ll} 00319 * $\lfloor q \rfloor$ & $\mathrm{if\ } q \notin Z$\\ 00320 * $q$ & $\mathrm{if\ } q \in Z \mathrm{\ and\ } k \geq 0$\\ 00321 * $q - 1$ & $\mathrm{if\ } q \in Z \mathrm{\ and\ } k < 0$ 00322 * \end{tabular}\right. 00323 * \f] 00324 */ 00325 inline Rational getFloor() const { 00326 if (q.isInteger()) { 00327 if (k >= 0) return q; 00328 else return q - 1; 00329 } else 00330 // If not an integer, just floor it 00331 return floor(q); 00332 } 00333 00334 00335 /** 00336 * Returns the rational part of the number 00337 * 00338 * @return the rational 00339 */ 00340 inline Rational getRational() const { return q; } 00341 00342 /** The infinity constant */ 00343 static const EpsRational PlusInfinity; 00344 /** The negative infinity constant */ 00345 static const EpsRational MinusInfinity; 00346 /** The zero constant */ 00347 static const EpsRational Zero; 00348 00349 00350 /** The blank constructor */ 00351 EpsRational() : type(FINITE), q(0), k(0) {} 00352 00353 /** Copy constructor */ 00354 EpsRational(const EpsRational& r) : type(r.type), q(r.q), k(r.k) {} 00355 00356 /** 00357 * Constructor from a rational, constructs a new pair (q, 0). 00358 * 00359 * @param q the rational 00360 */ 00361 EpsRational(const Rational q) : type(FINITE), q(q), k(0) {} 00362 00363 /** 00364 * Constructor from a rational and a given epsilon multiplier, constructs a 00365 * new pair (q, k). 00366 * 00367 * @param q the rational 00368 * @param k the epsilon multiplier 00369 */ 00370 EpsRational(const Rational q, const Rational k) : type(FINITE), q(q), k(k) {} 00371 00372 /** 00373 * Addition operator for two EpsRational numbers. 00374 * 00375 * @param r the number to be added 00376 * @return the sum as defined in the class 00377 */ 00378 inline EpsRational operator + (const EpsRational& r) const { 00379 DebugAssert(type == FINITE, "EpsRational::operator +, adding to infinite number"); 00380 DebugAssert(r.type == FINITE, "EpsRational::operator +, adding an infinite number"); 00381 return EpsRational(q + r.q, k + r.k); 00382 } 00383 00384 /** 00385 * Addition operator for two EpsRational numbers. 00386 * 00387 * @param r the number to be added 00388 * @return the sum as defined in the class 00389 */ 00390 inline EpsRational& operator += (const EpsRational& r) { 00391 DebugAssert(type == FINITE, "EpsRational::operator +, adding to infinite number"); 00392 q = q + r.q; 00393 k = k + r.k; 00394 return *this; 00395 } 00396 00397 /** 00398 * Subtraction operator for two EpsRational numbers. 00399 * 00400 * @param r the number to be added 00401 * @return the sum as defined in the class 00402 */ 00403 inline EpsRational operator - (const EpsRational& r) const { 00404 DebugAssert(type == FINITE, "EpsRational::operator -, subtracting from infinite number"); 00405 DebugAssert(r.type == FINITE, "EpsRational::operator -, subtracting an infinite number"); 00406 return EpsRational(q - r.q, k - r.k); 00407 } 00408 00409 /** 00410 * Multiplication operator EpsRational number and a rational number. 00411 * 00412 * @param a the number to be multiplied 00413 * @return the product as defined in the class 00414 */ 00415 inline EpsRational operator * (const Rational& a) const { 00416 DebugAssert(type == FINITE, "EpsRational::operator *, multiplying an infinite number"); 00417 return EpsRational(a * q, a * k); 00418 } 00419 00420 /** 00421 * Division operator EpsRational number and a rational number. 00422 * 00423 * @param a the number to be multiplied 00424 * @return the product as defined in the class 00425 */ 00426 inline EpsRational operator / (const Rational& a) const { 00427 DebugAssert(type == FINITE, "EpsRational::operator *, dividing an infinite number"); 00428 return EpsRational(q / a, k / a); 00429 } 00430 00431 /** 00432 * Equality comparison operator. 00433 */ 00434 inline bool operator == (const EpsRational& r) const { return (q == r.q && k == r.k); } 00435 00436 /** 00437 * Les then or equal comparison operator. 00438 */ 00439 inline bool operator <= (const EpsRational& r) const { 00440 switch (r.type) { 00441 case FINITE: 00442 if (type == FINITE) 00443 // Normal comparison 00444 return (q < r.q || (q == r.q && k <= r.k)); 00445 else 00446 // Finite number is bigger only of the negative infinity 00447 return type == MINUS_INFINITY; 00448 case PLUS_INFINITY: 00449 // Everything is less then or equal than +inf 00450 return true; 00451 case MINUS_INFINITY: 00452 // Only -inf is less then or equal than -inf 00453 return (type == MINUS_INFINITY); 00454 default: 00455 // Ohohohohohoooooo, whats up 00456 FatalAssert(false, "EpsRational::operator <=, what kind of number is this????"); 00457 } 00458 return false; 00459 } 00460 00461 /** 00462 * Les then comparison operator. 00463 */ 00464 inline bool operator < (const EpsRational& r) const { return !(r <= *this); } 00465 00466 /** 00467 * Bigger then equal comparison operator. 00468 */ 00469 inline bool operator > (const EpsRational& r) const { return !(*this <= r); } 00470 00471 /** 00472 * Returns the string representation of the number. 00473 * 00474 * @return the string representation of the number 00475 */ 00476 std::string toString() const { 00477 switch (type) { 00478 case FINITE: 00479 return "(" + q.toString() + ", " + k.toString() + ")"; 00480 case PLUS_INFINITY: 00481 return "+inf"; 00482 case MINUS_INFINITY: 00483 return "-inf"; 00484 default: 00485 FatalAssert(false, "EpsRational::toString, what kind of number is this????"); 00486 } 00487 return "hm, what am I?"; 00488 } 00489 }; 00490 00491 /** 00492 * Registers the atom given from the core. This atoms are stored so that they can be used 00493 * for theory propagation. 00494 * 00495 * @param e the expression (atom) that is part of the input formula 00496 */ 00497 void registerAtom(const Expr& e); 00498 00499 private: 00500 00501 /** A set of all integer variables */ 00502 std::set<Expr> intVariables; 00503 00504 /** 00505 * Return a Gomory cut plane derivation of the variable $x_i$. Mixed integer 00506 * Gomory cut can be constructed if 00507 * <ul> 00508 * <li>\f$x_i\f$ is a integer basic variable with a non-integer value 00509 * <li>all non-basic variables in the row of \f$x_i\f$ are assigned to their 00510 * upper or lower bounds 00511 * <li>all the values on the right side of the row have rational values (non 00512 * eps-rational values) 00513 * </ul> 00514 */ 00515 Theorem deriveGomoryCut(const Expr& x_i); 00516 00517 /** 00518 * Tries to rafine the integer constraint of the theorem. For example, 00519 * x < 1 is rewritten as x <= 0, and x <(=) 1.5 is rewritten as x <= 1. 00520 * The constraint should be in the normal form. 00521 * 00522 * @param thm the derivation of the constraint 00523 */ 00524 Theorem rafineIntegerConstraints(const Theorem& thm); 00525 00526 /** Are we consistent or not */ 00527 CDO<QueryResult> consistent; 00528 00529 /** The theorem explaining the inconsistency */ 00530 Theorem explanation; 00531 00532 /** 00533 * The structure necessaty to hold the bounds. 00534 */ 00535 struct BoundInfo { 00536 /** The bound itself */ 00537 EpsRational bound; 00538 /** The assertion theoreem of the bound */ 00539 Theorem theorem; 00540 00541 /** Constructor */ 00542 BoundInfo(const EpsRational& bound, const Theorem& thm): bound(bound), theorem(thm) {} 00543 00544 /** The empty constructor for the map */ 00545 BoundInfo(): bound(0), theorem() {} 00546 00547 /** 00548 * The comparator, just if we need it. Compares first by expressions then by bounds 00549 */ 00550 bool operator < (const BoundInfo& bI) const { 00551 // Get tje expressoins 00552 const Expr& expr1 = (theorem.isRewrite() ? theorem.getRHS() : theorem.getExpr()); 00553 const Expr& expr2 = (bI.theorem.isRewrite() ? bI.theorem.getRHS() : bI.theorem.getExpr()); 00554 00555 std::cout << expr1 << " @ " << expr2 << std::endl; 00556 00557 // Compare first by the expressions (right sides of expressions) 00558 if (expr1[1] == expr2[1]) 00559 // If the same, just return the bound comparison (plus a trick to order equal bounds, different relations) 00560 if (bound == bI.bound && expr1.getKind() != expr2.getKind()) 00561 return expr1.getKind() == LE; // LE before GE -- only case that can happen 00562 else 00563 return bound < bI.bound; 00564 else 00565 // Return the expression comparison 00566 return expr1[1] < expr2[1]; 00567 } 00568 }; 00569 00570 00571 /** 00572 * The structure necessaty to hold the bounds on expressions (for theory propagation). 00573 */ 00574 struct ExprBoundInfo { 00575 /** The bound itself */ 00576 EpsRational bound; 00577 /** The assertion theoreem of the bound */ 00578 Expr e; 00579 00580 /** Constructor */ 00581 ExprBoundInfo(const EpsRational& bound, const Expr& e): bound(bound), e(e) {} 00582 00583 /** The empty constructor for the map */ 00584 ExprBoundInfo(): bound(0) {} 00585 00586 /** 00587 * The comparator, just if we need it. Compares first by expressions then by bounds 00588 */ 00589 bool operator < (const ExprBoundInfo& bI) const { 00590 00591 // Compare first by the expressions (right sides of expressions) 00592 if (e[1] == bI.e[1]) 00593 // If the same, just return the bound comparison (plus a trick to order equal bounds, different relations) 00594 if (bound == bI.bound && e.getKind() != bI.e.getKind()) 00595 return e.getKind() == LE; // LE before GE -- only case that can happen 00596 else 00597 return bound < bI.bound; 00598 else 00599 // Return the expression comparison 00600 return e[1] < bI.e[1]; 00601 } 00602 }; 00603 00604 /** The map from variables to lower bounds (these must be backtrackable) */ 00605 CDMap<Expr, BoundInfo> lowerBound; 00606 /** The map from variables to upper bounds (these must be backtrackable) */ 00607 CDMap<Expr, BoundInfo> upperBound; 00608 /** The current real valuation of the variables (these must be backtrackable for the last succesefull checkSAT!!!) */ 00609 CDMap<Expr, EpsRational> beta; 00610 00611 typedef Hash::hash_map<Expr, Theorem> TebleauxMap; 00612 //typedef google::sparse_hash_map<Expr, Theorem, Hash::hash<Expr> > TebleauxMap; 00613 //typedef std::map<Expr, Theorem> TebleauxMap; 00614 00615 typedef std::set<Expr> SetOfVariables; 00616 typedef Hash::hash_map<Expr, SetOfVariables> DependenciesMap; 00617 00618 /** Maps variables to sets of variables that depend on it in the tableaux */ 00619 DependenciesMap dependenciesMap; 00620 00621 /** The tableaux, a map from basic variables to the expressions over the non-basic ones (theorems that explain them how we got there) */ 00622 TebleauxMap tableaux; 00623 00624 /** Additional tableaux map from expressions asserted to the corresponding theorems explaining the introduction of the new variables */ 00625 TebleauxMap freshVariables; 00626 00627 /** A set containing all the unsatisfied basic variables */ 00628 std::set<Expr> unsatBasicVariables; 00629 00630 /** The vector to keep the assignments from fresh variables to expressions they represent */ 00631 std::vector<Expr> assertedExpr; 00632 /** The backtrackable number of fresh variables asserted so far */ 00633 CDO<unsigned int> assertedExprCount; 00634 00635 /** A set of BoundInfo objects */ 00636 typedef std::set<ExprBoundInfo> BoundInfoSet; 00637 00638 /** Internal variable to see wheather to propagate or not */ 00639 bool propagate; 00640 00641 /** 00642 * Propagate all that is possible from given assertion and its bound 00643 */ 00644 void propagateTheory(const Expr& assertExpr, const EpsRational& bound, const EpsRational& oldBound); 00645 00646 /** 00647 * Store all the atoms from the formula in this set. It is searchable by an expression 00648 * and the bound. To get all the implied atoms, one just has to go up (down) and check if the 00649 * atom or it's negation are implied. 00650 */ 00651 BoundInfoSet allBounds; 00652 00653 /** 00654 * Adds var to the dependencies sets of all the variables in the sum. 00655 * 00656 * @param var the variable on the left side 00657 * @param sum the sum that defines the variable 00658 */ 00659 void updateDependenciesAdd(const Expr& var, const Expr& sum); 00660 00661 /** 00662 * Remove var from the dependencies sets of all the variables in the sum. 00663 * 00664 * @param var the variable on the left side 00665 * @param sum the sum that defines the variable 00666 */ 00667 void updateDependenciesRemove(const Expr& var, const Expr& sum); 00668 00669 /** 00670 * Updates the dependencies if a right side of an expression in the tableaux is changed. For example, 00671 * if oldExpr is x + y and newExpr is y + z, var will be added to the dependency list of z, and removed 00672 * from the dependency list of x. 00673 * 00674 * @param oldExpr the old right side of the tableaux 00675 * @param newExpr the new right side of the tableaux 00676 * @param var the variable that is defined by these two expressions 00677 * @param skipVar a variable to skip when going through the expressions 00678 */ 00679 void updateDependencies(const Expr& oldExpr, const Expr& newExpr, const Expr& var, const Expr& skipVar); 00680 00681 /** 00682 * Update the values of variables that have appeared in the tableaux due to backtracking. 00683 */ 00684 void updateFreshVariables(); 00685 00686 /** 00687 * Updates the value of variable var by computing the value of expression e. 00688 * 00689 * @param var the variable to update 00690 * @param e the expression to compute 00691 */ 00692 void updateValue(const Expr& var, const Expr& e); 00693 00694 /** 00695 * Returns a string representation of the tableaux. 00696 * 00697 * @return tableaux as string 00698 */ 00699 std::string tableauxAsString() const; 00700 00701 /** 00702 * Returns a string representation of the unsat variables. 00703 * 00704 * @return unsat as string 00705 */ 00706 std::string unsatAsString() const; 00707 00708 /** 00709 * Returns a string representation of the current bounds. 00710 * 00711 * @return tableaux as string 00712 */ 00713 std::string boundsAsString(); 00714 00715 /** 00716 * Gets the equality of the fresh variable tableaux variable corresponding to this expression. If the expression has already been 00717 * asserted, the coresponding variable is returned, othervise a fresh variable is created and the theorem is returned. 00718 * 00719 * @param leftSide the left side of the asserted constraint 00720 * @return the equality theorem s = leftSide 00721 */ 00722 Theorem getVariableIntroThm(const Expr& leftSide); 00723 00724 /** 00725 * Find the coefficient standing by the variable var in the expression expr. Expresion is expected to be 00726 * in canonical form, i.e either a rational constant, an arithmetic leaf (i.e. variable or term from some 00727 * other theory), (MULT rat leaf) where rat is a non-zero rational constant, leaf is an arithmetic leaf or 00728 * (PLUS \f$const term_0 term_1 ... term_n\f$) where each \f$term_i\f$ is either a leaf or (MULT \f$rat leaf\f$) 00729 * and each leaf in \f$term_i\f$ must be strictly greater than the leaf in \f$term_{i+1}\f$. 00730 * 00731 * @param var the variable 00732 * @param expr the expression to search in 00733 */ 00734 const Rational& findCoefficient(const Expr& var, const Expr& expr); 00735 00736 /** 00737 * Return true iof the given variable is basic in the tableaux, i.e. it is on the left side, expressed 00738 * in terms of the non-basic variables. 00739 * 00740 * @param x the variable to be checked 00741 * @return true if the variable is basic, false if the variable is non-basic 00742 */ 00743 bool isBasic(const Expr& x) const; 00744 00745 /** 00746 * Returns the coefficient at a_ij in the current tableaux, i.e. the coefficient 00747 * at x_j in the row of x_i. 00748 * 00749 * @param x_i a basic variable 00750 * @param x_j a non-basic variable 00751 * @return the reational coefficient 00752 */ 00753 Rational getTableauxEntry(const Expr& x_i, const Expr& x_j); 00754 00755 /** 00756 * Swaps a basic variable \f$x_r\f$ and a non-basic variable \f$x_s\f$ such 00757 * that ars \f$a_{rs} \neq 0\f$. After pivoting, \f$x_s\f$ becomes basic and \f$x_r\f$ becomes non-basic. 00758 * The tableau is updated by replacing equation \f[x_r = \sum_{x_j \in N}{a_{rj}xj}\f] with 00759 * \f[x_s = \frac{x_r}{a_{rs}} - \sum_{x_j \in N }{\frac{a_{rj}}{a_rs}x_j}\f] and this equation 00760 * is used to eliminate \f$x_s\f$ from the rest of the tableau by substitution. 00761 * 00762 * @param x_r a basic variable 00763 * @param x_s a non-basic variable 00764 */ 00765 void pivot(const Expr& x_r, const Expr& x_s); 00766 00767 /** 00768 * Sets the value of a non-basic variable \f$x_i\f$ to \f$v\f$ and adjusts the value of all 00769 * the basic variables so that all equations remain satisfied. 00770 * 00771 * @param x_i a non-basic variable 00772 * @param v the value to set the variable \f$x_i\f$ to 00773 */ 00774 void update(const Expr& x_i, const EpsRational& v); 00775 00776 /** 00777 * Pivots the basic variable \f$x_i\f$ and the non-basic variable \f$x_j\f$. It also sets \f$x_i\f$ to \f$v\f$ and adjusts all basic 00778 * variables to keep the equations satisfied. 00779 * 00780 * @param x_i a basic variable 00781 * @param x_j a non-basic variable 00782 * @param v the valie to assign to x_i 00783 */ 00784 void pivotAndUpdate(const Expr& x_i, const Expr& x_j, const EpsRational& v); 00785 00786 /** 00787 * Asserts a new upper bound constraint on a variable and performs a simple check for consistency (not complete). 00788 * 00789 * @param x_i the variable to assert the bound on 00790 */ 00791 QueryResult assertUpper(const Expr& x_i, const EpsRational& c, const Theorem& thm); 00792 00793 /** 00794 * Asserts a new lower bound constraint on a variable and performs a simple check for consistency (not complete). 00795 * 00796 * @param x_i the variable to assert the bound on 00797 */ 00798 QueryResult assertLower(const Expr& x_i, const EpsRational& c, const Theorem& thm); 00799 00800 /** 00801 * Asserts a new equality constraint on a variable by asserting both upper and lower bound. 00802 * 00803 * @param x_i the variable to assert the bound on 00804 */ 00805 QueryResult assertEqual(const Expr& x_i, const EpsRational& c, const Theorem& thm); 00806 00807 /** 00808 * Type of noramlization GCD = 1 or just first coefficient 1 00809 */ 00810 typedef enum { NORMALIZE_GCD, NORMALIZE_UNIT } NormalizationType; 00811 00812 /** 00813 * Given a canonized term, compute a factor to make all coefficients integer and relatively prime 00814 */ 00815 Expr computeNormalFactor(const Expr& rhs, NormalizationType type = NORMALIZE_GCD); 00816 00817 /** 00818 * Normalize an equation (make all coefficients rel. prime integers) 00819 */ 00820 Theorem normalize(const Expr& e, NormalizationType type = NORMALIZE_GCD); 00821 00822 /** 00823 * Normalize an equation (make all coefficients rel. prime integers) accepts a rewrite theorem over 00824 * eqn|ineqn and normalizes it and returns a theorem to that effect. 00825 */ 00826 Theorem normalize(const Theorem& thm, NormalizationType type = NORMALIZE_GCD); 00827 00828 /** 00829 * Canonise the equation using the tebleaux equations, i.e. replace all the tableaux right sides 00830 * with the corresponding left sides and canonise the result. 00831 * 00832 * @param eq the equation to canonise 00833 * @return the explaining theorem 00834 */ 00835 Theorem substAndCanonizeModTableaux(const Theorem& eq); 00836 00837 /** 00838 * Canonise the sum using the tebleaux equations, i.e. replace all the tableaux right sides 00839 * with the corresponding left sides and canonise the result. 00840 * 00841 * @param sum the canonised sum to canonise 00842 * @return the explaining theorem 00843 */ 00844 Theorem substAndCanonizeModTableaux(const Expr& sum); 00845 00846 /** 00847 * Sustitute the given equation everywhere in the tableaux. 00848 * 00849 * @param eq the equation to use for substitution 00850 */ 00851 void substAndCanonizeTableaux(const Theorem& eq); 00852 00853 /** 00854 * Given an equality eq: \f$\sum a_i x_i = y\f$ and a variable $var$ that appears in 00855 * on the left hand side, pivots $y$ and $var$ so that $y$ comes to the right-hand 00856 * side. 00857 * 00858 * @param eq the proof of the equality 00859 * @param var the variable to move to the right-hand side 00860 */ 00861 Theorem pivotRule(const Theorem& eq, const Expr& var); 00862 00863 /** 00864 * Knowing that the tableaux row for \f$x_i\f$ is the problematic one, generate the 00865 * explanation clause. The variables in the row of \f$x_i = \sum_{x_j \in \mathcal{N}}{a_ij x_j}\f$ are separatied to 00866 * <ul> 00867 * <li>\f$\mathcal{N}^+ = \left\lbrace x_j \in \mathcal{N} \; | \; a_{ij} > 0 \right\rbrace\f$ 00868 * <li>\f$\mathcal{N}^- = \left\lbrace x_j \in \mathcal{N} \; | \; a_{ij} < 0\right\rbrace\f$ 00869 * </ul> 00870 * Then, the explanation clause to be returned is 00871 * \f[\Gamma = \left\lbrace x_j \leq u_j \; | \; x_j \in \mathcal{N}^+\right\rbrace \cup \left\lbrace l_j \leq x_j \; | \; 00872 * x_j \in \mathcal{N}^-\right\rbrace \cup \left\lbrace l_i \leq x_i \right\rbrace\f] 00873 * 00874 * @param var_it the variable that caused the clash 00875 * @return the theorem explainang the clash 00876 */ 00877 Theorem getLowerBoundExplanation(const TebleauxMap::iterator& var_it); 00878 00879 /** 00880 * Knowing that the tableaux row for \f$x_i\f$ is the problematic one, generate the 00881 * explanation clause. The variables in the row of \f$x_i = \sum_{x_j \in \mathcal{N}}{a_ij x_j}\f$ are separatied to 00882 * <ul> 00883 * <li>\f$\mathcal{N}^+ = \left\lbrace x_j \in \mathcal{N} \; | \; a_{ij} > 0 \right\rbrace\f$ 00884 * <li>\f$\mathcal{N}^- = \left\lbrace x_j \in \mathcal{N} \; | \; a_{ij} < 0\right\rbrace\f$ 00885 * </ul> 00886 * Then, the explanation clause to be returned is 00887 * \f[\Gamma = \left\lbrace x_j \leq u_j \; | \; x_j \in \mathcal{N}^-\right\rbrace \cup \left\lbrace l_j \leq x_j \; | \; 00888 * x_j \in \mathcal{N}^+\right\rbrace \cup \left\lbrace x_i \leq u_i \right\rbrace\f] 00889 * 00890 * @param var_it the variable that caused the clash 00891 * @return the theorem explainang the clash 00892 */ 00893 Theorem getUpperBoundExplanation(const TebleauxMap::iterator& var_it); 00894 00895 Theorem addInequalities(const Theorem& le_1, const Theorem& le_2); 00896 00897 /** 00898 * Check the satisfiability 00899 */ 00900 QueryResult checkSatSimplex(); 00901 00902 /** 00903 * Check the satisfiability of integer constraints 00904 */ 00905 QueryResult checkSatInteger(); 00906 00907 /** 00908 * The last lemma that we asserted to check the integer satisfiability. We don't do checksat until 00909 * the lemma split has been asserted. 00910 */ 00911 CDO<Theorem> integer_lemma; 00912 00913 public: 00914 00915 /** 00916 * Gets the current lower bound on variable x. 00917 * 00918 * @param x the variable 00919 * @return the current lower bound on x 00920 */ 00921 EpsRational getLowerBound(const Expr& x) const; 00922 00923 /** 00924 * Get the current upper bound on variable x. 00925 * 00926 * @param x the variable 00927 * @return the current upper bound on x 00928 */ 00929 EpsRational getUpperBound(const Expr& x) const; 00930 00931 /** 00932 * Gets the theorem of the current lower bound on variable x. 00933 * 00934 * @param x the variable 00935 * @return the current lower bound on x 00936 */ 00937 Theorem getLowerBoundThm(const Expr& x) const; 00938 00939 /** 00940 * Get the theorem of the current upper bound on variable x. 00941 * 00942 * @param x the variable 00943 * @return the current upper bound on x 00944 */ 00945 Theorem getUpperBoundThm(const Expr& x) const; 00946 00947 /** 00948 * Gets the current valuation of variable x (beta). 00949 * 00950 * @param x the variable 00951 * @return the current value of variable x 00952 */ 00953 EpsRational getBeta(const Expr& x); 00954 00955 // DDDDDDDDDDDDDDDDDDDDDDDDEEEEEEEEEEEEEEEEEEEEEEEJJJJJJJJJJJJJJJJJJJJJAAAAAAAAAAAAAAAAAAAAAAANNNNNNNNNNNNNNNNNNNNNNN 00956 00957 }; 00958 00959 } 00960 00961 #endif