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What is a Model?

Z
latent
variables

X
inputs Y

outputs

W

SomeFunction(W,Y,X,Z)

X: input variables. Always observed

Y: output variables. Not observed, except
on training samples.

Z: latent variables. Never observed

SomeFunction(Y, X, Z): model. Mea-
sures the compatibility between the values
of X , Y , and Z.

Inference: find Y (and Z) that are most compatible with an observed X .
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What is a Probabilistic Model?

many probabilistic models parameterize the joint distribution over X ,Y , and Z (e.g.
graphical models).

Z
latent
variables

X
inputs Y

outputs

W

P(Y,X,Z|W)

P(Y|X,W) = SUM_z P(Y,X,z|W) / SUM_yz P(y,X,z|W)

“Causal” generative models parameterize
P (X|Y )

Cond. prob. (without latent vars):

P (Y |X, W ) =
P (W, Y, X)
∫

y
P (W, y, X)

Cond. prob. (with latent vars):

P (Y |X, W ) =

∫

z
P (W, Y, z, X)

∫

yz
P (W, y, z, X)

P (Y |X, W ) must be normalized over Y .
Inference/Decision Making. find Y with largest prob: Y̌ = maxy in{Y } P (Y, X, W )

(note: we don’t need normalization for decision making).
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Training Probabilistic Models

Z
latent
variables

X
inputs Y

outputs

W

P(Y,X,Z|W)

P(Y|X,W) = SUM_z P(Y,X,z|W) / SUM_yz P(y,X,z|W)

Training set: S = {(X1, Y 1), ....(Xp, Y p)}.
Criterion: Max Likelihood

∏

i

P (Y i|Xi, W ) =
∏

i

∫

z
P (W, Y, z, X)

∫

yz
P (W, y, z, X)

Loss Function: Minimum Negative Log Likelihood

L(W,S) = − log
∏

i

P (Y i|Xi, W )

L(W,S) =
∑

i

− log

(
∫

z

P (W, Y, z, X)

)

+ log

(
∫

yz

P (W, y, z, X)

)
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What’s good about probabilistic models?

Compositionality

A well-justified loss function: the Negative Log Likelihood Loss.

Neat Tricks (e.g. EM)
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What’s bad about probabilistic models?

with generative models, normalization over X is useless, difficult, and
restrictive. we should never, ever, EVER have to normalize anything over X

(normalization in high dimensional spaces is silly).

only a tiny number of models are pre-normalized (e.g. Gaussians).

only a very small number of models have tractable partition functions (easily
normalizable).

many models have intractable partition functions.

most models are not even normalizable.

If we only care about making good decisions (picking the best Y ), why should
we have to estimate the correct P (Y |X) over the full range of Y ? We merely
need P (Y |X) to have maxima at the right places.

We have to come up with embarassing justifications for fudge factors that make
things work, but break the nornalization. For example P α

appearance × Pshape in
image recognition, or P α

transition × Pemission in speech recognition.

Learning by maximizing the likelihood solves a more complex problem than we
have to.
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Energy-Based Models

Z
latent
variables

X
inputs Y

outputs

W

E(W,Y,X,Z)

E(W,Y,X,Z)

Associate a scalar energy E(W, Y, X, Z)
to configurations of (Y, X, Z)

W is the parameter vector to be learned.

Inference (without latent vars) consists in
comparing energies: Y is better than Y ′ if
E(W, Y, X, Z) < E(W, Y ′, X, Z).

Inference (with latent vars): Y is bet-
ter than Y ′ if minz E(W, Y, X, z) <

minz E(W, Y ′, X, z).

Decision making (without latent vars): Y̌ = miny in{Y } E(W, y, X)

Decision making (with latent vars): Y̌ = miny∈{Y },z∈{Z} E(W, y, X, z)
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EBM Energy Surfaces

Examples: An EBM that computes Y = X2.
On the left: E(Y, X) is quadratic in Y . It corresponds to a Gaussian model of
P (Y |X).
On the right: E(Y, X) is saturated. Although it gives the same answers as the EBM on
the left, it has no probabilistic equivalent because

∫

y
exp(−E(Y, X)) does not

converge.
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Probabilistic Models from Energy-Based Models

Z
latent
variables

X
inputs Y

outputs

W

E(W,Y,X,Z)

−log P(Y|X,W) =
 SUM_z E(W,Y,X,z) + log SUM_yz E(W,yX,z)

Any joint probability model can be approached as
close as we want by an equivalent EBM. If
P (Y, X, Z) is non-zero everywhere:
E(Y, X, Z) = C − 1

β
log P (Y, X, Z) where C is

an arbitrary constant and β a strictly positive
constant.

not all EBMs can be turned into a probabilistic
model. Only those for which
∫

y
exp(−βE(W, y, X)) converges:

P (Y |X) =
exp(−βE(W, Y, X))
∫

y
exp(−βE(W, y, X))

Any single probabilistic model will have many equivalent EBMs when it comes to
comparison-based inference or decision. Because many energy surfaces have minima
at the same places.
We have a lot more flexibility when building EBMs
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What’s good/bad about EBM?

What’s bad about EBMs:

There is no simple compositionality...

... but we don’t care because we are going to train our whole system end-to-end.
With end-to-end learning, we do not need compositionality.

What’s good about EBMs:

We have complete freedom for the form and parameterization of the energy
function (including things that can’t be normalized).

because we don’t need to normalize, we can use a much larger repertoire of
model architectures.

No need to find excuses for fudge factors: your energy function is your
prerogative. The Probabilist Police can’t tell you you are wrong because you are
outside of their jurisdiction.

No need for computing (intractable) partition functions

No need to find excuses as to why your favorite approximation of the partition
function is legitimate.

Pretty much every model we know is some form of EBM.
QUESTION: what loss functions can we use for training?.
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Examples of EBM

Almost every type of model we know is some form of EBM. It all depends on how
E(W, Y, X, Z) is parameterized.
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EBMs as Factor Graphs

An EBM whose energy function can be “fac-
torized” as a sum of individual functions (fac-
tors) is equivalent to a graphical model repre-
sented as a factor graph.
Any traditional graphical model can be formu-
lated as a factor graph, but the converse is not
true. Each factor is akin to −log of the poten-
tial functions of a clique of variable nodes.

Efficient inference algorithms such as (loopy) belief propagation can be used to
compute the marginals of Y , or the lowest energy configuration [Kschischang, Frey,
Loeliger, 2001].
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EBM for Invariant Recognition

EBM Architecture for invariant object recognition

Each object model matches the output of the feature extractor to a reference
representation that is transformed by the pose parameters.
Inference finds the category and the pose that minimize the energy.
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EBM for Sequence Labeling

Segmentation
      Graph

Gseg

Recognition
Transfomer

recT

Interpretation
    Graph

Gint

W
Neural Net
Weights

NN NN NN NN NN

4 4 1

(−1) (+1) (−1)
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3 [0.1](0)
5 [2.3](0)

3 [3.4](0)
4 [4.4](0)

4 [0.6](+1)
9 [1.2](0)

Segmenter

Path Selector

Energy = cost of shortest path

3 [0.1](0) 4 [2.4](0)

3 [3.4](0) 4 [0.6](+1)

Viterbi

3 [0.1](0)

4 [0.6](+1)

Path
Z
Latent
Variables

Label
"34"
Y
Output
Variables

Word recognition, Speech recognition,
natural language processing.

Looking for the shortest path in a trel-
lis is like minimizing an energy where
the latent variable Z is the path, and the
output Y is the labeling along the path.
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Training EBMs

Training will consist in finding a W that minimizes a loss function L(W,S),
over the training set S.

We must devise loss functions that “carve” the energy landscape so that the
energy is small around training samples and high everywhere else..

We seek loss functions that do not require evaluating intractable integrals, but
which, nevertheless, drive the machine to approach the desired behavior.

Basic idea: “dig holes” at (X, Y ) locations near training samples, while
“building hills” at un-desired locations, particularly the ones that are
erroneously picked by the inference algorithm.

Whereas probabilistic models trained with max likelihood shape the entire
energy surface, our EBM loss function will merely dig holes at the right places
and build hills only where needed to avoid erroneous inferences.
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Loss Functions for EBMs

training set S = {(X i, Y i) , i = 1..P}

Loss:

L(W,S) = R

(

1

P

P
∑

i=1

L(W, Y i, Xi)

)

L(W, Y i, Xi) is the per-sample loss function for sample (X i, Y i). L is
assumed to have a lower bound.

R is a monotonically increasing function. In the following we assume
R=identity

the loss is invariant under permutations of the samples, and under multiple
repetitions of the same training set.

What form can L(W, Y, X) take?
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Condition on the Energy

Condition for correct output on sample (X i, Y i): there is a margin m > 0, such
that:

E(W, Y i, Xi) < E(W, Y, Xi) − m , ∀Y ∈ {Y }, Y 6= Y i

Assumption: L depends on Xi only through the set of energies
{E(W, Y, Xi) , Y ∈ {Y }}.

For example, if {Y } = {0, 1, . . . , k − 1}

L(W, Y i, Xi) = L(Y i, E(W, 0, Xi), . . . , E(W, k − 1, X i))

We want to design L so that making an update of W to decrease L(W, Y i, Xi)

will automatically decrease the difference E(W, Y i, Xi) − E(W, Y, Xi) for
values of Y such that E(W, Y i, Xi) < E(W, Y, Xi) − m.
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Examples of Loss Functions

Energy Loss: Lenergy(W, Y i, Xi) = E(W, Y i, Xi).
Only works if the architecture is such that decreasing E(W, Y i, Xi) will
automatically increase E(W, Y, X i) for y 6= Y i.

Generalized Perceptron Loss:
Lptron(W, Y i, Xi) = E(W, Y i, Xi) − minY ∈{Y } E(W, Y, Xi)

Does not work because the margin is zero. This reduces to the traditional linear
perceptron loss when E(W, Y, X) = −Y W.X .

Generalized Margin Loss:
Lgmargin(W, Y i, Xi) = Q[E(W, Y i, Xi), E(W, Ȳ , Xi)]

Where Q is an increasing function of E(W, Y i, Xi) and a decreasing function
of E(W, Ȳ , Xi).

Negative Log Likelihood Loss: Lnll(W, Y i, Xi) = E(W, Y i, Xi)−Fβ(W, Xi)

with: Fβ(W, Xi) = − 1
β

log
(

∫

Y ∈{Y }
exp[−βE(W, Y, X i)]

)
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Special Cases of the Generalized Margin Loss

Lgmargin(W, Y i, Xi) = Q[E(W, Y i, Xi), E(W, Ȳ , Xi)]

m Eplus − Eminus

L

Hinge Loss:

Lhinge(W, Y i, Xi) = max(0, m + E(W, Y i, Xi) − E(W, Ȳ , Xi))

m

L

Eplus

Eminus

Square-Square Loss:

Lsqsq(W, Y i, Xi) = E(W, Y i, Xi)2 + (m − E(W, Ȳ , Xi))2

m

L

Eplus

Eminus

Square-Exp Loss:

Lsqexp(W, Y i, Xi) = E(W, Y i, Xi)2 + K exp(−E(W, Ȳ , Xi))

Y. LeCun: Machine Learning and Pattern Recognition – p. 19/21



EBM Demos

Initially, the forbidden sphere around Y i is 0.2,
then 0.1.

Demo 1: Y = X2,
Architecture A, Square
Energy Loss. It works
because E(Y, X) is a fixed
quadratic function of Y .

Demo 2: Y = X2,
Architecture B, Square
Energy. It collapses.

Demo 3: Y = X2,
Architecture B,
Square-Square Margin Loss

Demo 4: Y = X2,
Architecture B, Negative Log
Likelihood Loss. Few
iterations, but each iteration is
expensive

Demo 5: eye pattern, Archi-
tecture B, Negative Log Like-
lihood Loss.Y. LeCun: Machine Learning and Pattern Recognition – p. 20/21



EBM

The normalization of probabilistic models is an unnecessary aggravation

Energy-based models with appropriate loss functions avoid the estimation of
intractable partition functions and their derivative.

EBMs give us complete freedom in the choice of architecture that model the
joint “compatibility” (energy) between variables.

We can use building blocks that are not normally allowed in probabilistic
models (like neural nets).
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