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Energy-Based Model for Decision-Mm
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Complex Tasks: Inference is non-trivial
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! h LS "this" "This is easy"  (pronoun verb adj)

(d) (e) (®)

Yann LeCun t New York University




; Decision-M ling

& Energies are uncalibrated

» The energies of two separately-trained systems cannot be combined
» The energies are uncalibrated (measured in arbitrary untis)

& How do we calibrate energies?
» We turn them into probabilities (positive numbers that sum to 1).

» Simplest way: Gibbs distribution
» Other ways can be reduced to Gibbs by a suitable redefinition of the

energy.
e_ﬁE(Y:X)
P(Y|X) =
( ‘ ) f E_ﬁE(y:X) j
Y
Partition function Inverse temperature
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| Perceptron Loss for Binary Classification
S IS

Lyerceptron(Y', EOW, ¥, X")) = E(W,Y", X*) — min E(W,Y, X").

@ Energy: EW)Y, X)=-YGw(X),

@ Inference: Y™ = argminy ;4 13 — YGw (X) = sign(Gw (X)).

P
1 . i 7 )
@ Loss: L"perceptron(vva S) — F Z (Slgn(GW (X )) -Y ) Gw (X )
i=1
. : L O0Gw (X!
& Learning Rule: W —W+n (Y@ _ sign(GW(X“)) gvg/ ) :
@ If Gw(X) is linear in W:  E(W. VY, X) = _yw?T (X))

W — W+ (Y —sign(WT®(X7))) ®(X7)
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i Examples of Loss Functions: Generalized Margin Losses
[ —

& First, we need to define the Most Offending Incorrect Answer

& Most Offending Incorrect Answer: discrete case

Definition 1 Let Y be a discrete variable. Then for a training sample (X', Y"), the

most offending incorrect answer Y is the answer that has the lowest energy among
all answers that are incorrect:

V' = argminy ¢ yopay2yi E(W, Y, X*). (8)

& Most Offending Incorrect Answer: continuous case

Definition 2 Let Y be a continuous variable. Then for a training sample (X', Y"), the

most offending incorrect answer Y is the answer that has the lowest energy among
all answers that are at least e away from the correct answer:

Y?! = argming ¢y 1y _yis E(W.Y, X"). 9)
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’ Examples of Generalized Margin Losses

Lhinge(W,Y*, X") = max (0,m + E(W,Y*, X*) — E(W,Y", X")),

& Hinge Loss

» [Altun et al. 2003], [Taskar et al. 200% 3 .|

» With the linearly-parameterized binary ol
classifier architecture, we get linear S\

Liog (W, Y X’i) — log (1 4 GE(W,W,X@)—E(W,?@',X‘@)) .

& Log Loss

» “soft hinge” loss

» With the linearly-parameterized binary
classifier architecture, we get linear
Logistic Regression

Loss: L
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’ egative Log-Likelihood Loss

m%-

& Conditional probability of the samples (assuming independence)

P

P!, YP X xPow) =] POy X W),
P P =1

—log | [ POV X", W) =) —log P(Y'| X', ).

=1 1=1

. e_JBE(W:IY:Xz)
& Gibbs distribution: P(Y|XZ , W) —

—BE(W,y,X%) "
fyeye BE(W,y )

P P
~log [ POV |X", W) = Y BEOV, Y, X) + log / e,
=1 =1 ye

& We get the NLL loss by dividing by P and Beta:
P

Lan(W,S) = %Z (E(W, Y XT) + %log/

6—6E(W,y,xi)) .
i=1 yey

& Reduces to the perceptron loss when Beta->infinity
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| What Make a ‘“Good’’ Loss Function

M&b

& Good and bad loss functions

Loss (equation #) | Formula Margin
energy loss EW,Y!, X?) none
perceptron EW,Y", X") —minyecy E(W,Y, X") 0
hinge max (0,m + E(W,Y", X*) — E(W,Y", X")) m
log log (1 4+ BWY X)) —BE(W,Y",X") ~ 0
LVQ2 min (M, max(0, E(W,Y*, X*) — E(W,Y", X")) 0
MCE (14 e~ (EOWYXD=EORYTXD) ) - >0
square-square E(W,Y" X")? — (maX(O, m — E(W, Y?, Xi)))2 m
square-exp E(W,Y?, X")? 4 ge” BEWY5XY) | >0
NLL/MMI E(W, Y X7 f élog ey e-ﬁE(Wﬂ;X ) >0
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& The energy includes ‘‘hidden” variables Z whose value is never given to us

E(Y,X)=min E(Z,Y, X).

A=A
* .
Y" = argminyy 7.z E(Z,Y, X).
BW. Y, X) E(W,Z,Y,X)

IRGLOREE R e .
( L’ ] * I
>3] ] '
L . |
| T |
‘ | . |
T | DUt el I
Gface (X) : * ' ' X ' : :
§ : | |
A | CraceX)| | Grace )| |Crace(X)|= = = = | Grace(X | |
| |
l ] 1
1 llI l I

face" (= 1) position "face" (= 1)

or of or
"no face" (=0) face "no face" (= 0)
Y Z Y
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& Variables that would make the task easier if they were known:

» Scene Analysis: segmentation of the scene into regions or
objects.

» Parts of Speech Tagging: the segmentation of the sentence
into syntactic units, the parse tree.

» Speech Recognition: the segmentation of the sentence into
phonemes or phones.

» Handwriting Recognition: the segmentation of the line into
characters.

& In general, we will search for the value of the latent variable that
allows us to get an answer (Y) of smallest energy.
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Probabilistic Latent Variable Models

& Marginalizing over latent variables instead of minimizing.

e_ﬁE(Zn}/:X)
P(Z,Y|X) = [ ey sez € PE@=X)
o—BE(Z,Y,X)
P(Y|X) = Jzez

fyey zEZ G_ﬁE(y?Z:X) ‘

& Equivalent to traditional energy-based inference with a redefined
energy function:

1
Y* — argminyey — E log/ 6_6E(23Y7X)‘
zEZ

& Reduces to traditional minimization when Beta->infinity
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| Energy-Based Factor Graphs

m“.ﬁt_m‘_‘,;

& When the energy is a sum of partial energy functions (or when the
probability is a product of factors):

» Efficient inference algorithms can be used for inference (without the
normalization step).

ElX.zD) | [E2Z1.22)| [E3(22.23)| |E4(Z3.Y)
VA VA VA VAN
X 71 72 73 Y
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Effic1ent Inference Energy-Based Factor Graphs

& Example:

& The energy is a sum of “factor” functions
»Z1,Z2, Y1 are binary

» Z2 is ternary Factor graph
» A nalve exhaustive 2R
inference would require
2X2X2X3=24 energy /\
evaluations (= 96 factor / \
evaluations) {mx ) ][Eszl 2| | Bzavi) [Edyl 1@)]
» BUT: Ea only has 2 possible AN AN /\ AN
input configurations, Eb X/\Zl/ \Zz/ \Yl/ \Y2

and Ec have 4, and Ed 6.

» Hence, we can precompute : : 2
the 16 factor vaﬁues, aﬁd Equivalent trellis
put them on the arcs in a
trellis.

» A path in the trellis is a
config of variable >

» The cost of the path is the
energy of the config Zol Z,
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Example The Condltlonal Random Fleld Archltecture

& A CREF is an energy-based factor graph in which:

» the factors are linear in the parameters (shallow factors)
» The factors take neighboring output variables as inputs
» The factors are often all identical

_

o

[f(X, Y1,Y2)J [f(X,Yz,Ys)] [f(Xays,Yzl)]

Y, Y. TN Ys Y,
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Example The Condltlonal Random Fleld Archltecture

& Applications:

» X is a sentence, Y is a sequence of Parts of Speech Tags (there is
one Yi for each possible group of words).

» X is an image, Y is a set of labels for each window in the image

(vegetation, building, sky....).
émm

il A
P[5

[f(Xa YlaYQ)} [f(X7 Y27Y3)] [f(X7 Y37}/‘4)]

Y, Y. TN Ys Yy
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_Shallow Factors / Deep Graph

& Linearly Parameterized Factors (shallow factors)

! With the NLL LOSS . AE(I/V, Y, X)
» Lafferty's Conditional

Random Field Y
» Kumar&Hebert's DRF.
@ with Hinge Loss:

» Taskar's Max Margin
Markov Nets

& with Perceptron Loss
» Collins's sequence /m\

labeling model Y; Y- Ys; Y,

& With Log Loss:

» Altun/Hofmann

sequence labeling
model X
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& The previous picture shows a chain graph of factors with 2
inputs.

& The extension of this procedure to trees, with factors that can
have more than 2 inputs the ‘“min-sum” algorithm (a non-
probabilistic form of belief propagation)

& Basically, it is the sum-product algorithm with a different semi-
ring algebra (min instead of sum, sum instead of product), and
no normalization step.

» [Kschischang, Frey, Loeliger, 2001][McKay's book]
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Keed-Forward, Causal, and Bi-directional Models

& EBFG are all ‘“‘undirected”, but the architecture determines the
complexity of the inference in certain directions

Distance

omplicated
unction

X Y X Y X Y
& Feed-Forward & ““Causal” & Bi-directional
» Predicting Y » Predicting Y » X->Y and Y->X are
from X is easy from X is both hard if the two
» Predicting X hard factors don't agree.
from Y is hard » Predicting X » They are both easy if
from Y is easy the factors agree
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Deep Factors / Deep Graph: ASR with TDNN/DTW

& Trainable Automatic Speech Recognition system with convolutional

nets (TDNN) and dynamic time warping (DTW)

A E(Wa Z> Y) X)
& Training the feature . —1 \
/ -
extractor as part of the [/ : ‘1 -
whole process. L"/, 7 DTW
@ with the LVQ2 Loss : —F q
_ feature | vectors
» Driancourt and )
Bottou's speech . "'T. N
recognizer (1991) 1\ l
& with NLL: [ TDNN ] :
» Bengio's speech A word templates :
|

recognizer (1992)

» Haffner's speech

Path

recognizer (1993)

X (acoustic vectors) A
Yann LeCun

word in
the lexicon

Y
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; Deep Factors / Deep Graph: ASR with TDNN/HM

& Discriminative Automatic Speech Recognition system with HMM and
various acoustic models

» Training the acoustic model (feature extractor) and a
(normalized) HMM in an integrated fashion.
& With Minimum Empirical Error loss
» Ljolje and Rabiner (1990)

< with NLL:
» Bengio (1992)
» Haffner (1993)
» Bourlard (1994)

& With MCE
» Juang et al. (1997)

& Late normalization scheme (un-normalized HMM)

» Bottou pointed out the label bias problem (1991)
» Denker and Burges proposed a solution (1995)
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Haffner 1998]

» Trained with NLL loss
[Bengio, LeCun 1994],

Really Deep Factors/ oo
Viterbi iy ittty Ittt
’ epr ——— Transformer 4 ? i
; o i
Grsel O—> . I
& Handwriting Recognition with M !
Graph Transformer Networks A i
/ |
& Un-normalized hierarchical Path Selector P N |
HMMs 4 i
» Trained with Perceptron loss Gro : o |
[LeCun, Bottou, Bengio, : i :
i
|
|
|
|
|
|
|
|
|
|

[LeCun, Bottou, Bengio, TRGCO%HMOH
Haffner 1998] rAnStormer
& Answer = sequence of symbols O
5€g | | |
& Latent variable = segmentation (13427) (path )

X Y VA
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