Factor Graphs Structured Prediction

Yann LeCun,

The Courant Institute of Mathematical Sciences
New York University

http://yann.lecun.com

http://www.cs.nyu.edu/~yann

Energy-Based Model for Decision-Making

Model: Measures the compatibility between an observed variable X and a variable to be predicted Y through an energy function E(Y,X).

$$Y^* = \operatorname{argmin}_{Y \in \mathcal{Y}} E(Y, X).$$

- Inference: Search for the Y that minimizes the energy within a set
- If the set has low cardinality, we can use exhaustive search.

Complex Tasks: Inference is non-trivial

Decision-Making versus Probabilistic Modeling

Energies are uncalibrated

- The energies of two separately-trained systems cannot be combined
- The energies are uncalibrated (measured in arbitrary untis)

How do we calibrate energies?

- We turn them into probabilities (positive numbers that sum to 1).
- Simplest way: Gibbs distribution
- Other ways can be reduced to Gibbs by a suitable redefinition of the energy.

$$P(Y|X) = \frac{e^{-\beta E(Y,X)}}{\int_{y \in \mathcal{Y}} e^{-\beta E(y,X)}},$$
Partition function Inverse temperature

Perceptron Loss for Binary Classification

$$L_{perceptron}(Y^i, E(W, \mathcal{Y}, X^i)) = E(W, Y^i, X^i) - \min_{Y \in \mathcal{Y}} E(W, Y, X^i).$$

- **Energy:** $E(W, Y, X) = -YG_W(X),$
- **Inference:** $Y^* = \operatorname{argmin}_{Y \in \{-1,1\}} YG_W(X) = \operatorname{sign}(G_W(X)).$
- Loss: $\mathcal{L}_{perceptron}(W, \mathcal{S}) = \frac{1}{P} \sum_{i=1}^{P} \left(sign(G_W(X^i)) Y^i \right) G_W(X^i).$
- **Learning Rule:** $W \leftarrow W + \eta \left(Y^i \text{sign}(G_W(X^i)) \right) \frac{\partial G_W(X^i)}{\partial W},$
- If Gw(X) is linear in W: $E(W, Y, X) = -YW^T\Phi(X)$

$$W \leftarrow W + \eta \left(Y^i - \operatorname{sign}(W^T \Phi(X^i)) \right) \Phi(X^i)$$

Examples of Loss Functions: Generalized Margin Losses

■ First, we need to define the Most Offending Incorrect Answer

Most Offending Incorrect Answer: discrete case

Definition 1 Let Y be a discrete variable. Then for a training sample (X^i, Y^i) , the **most offending incorrect answer** \bar{Y}^i is the answer that has the lowest energy among all answers that are incorrect:

$$\bar{Y}^i = \operatorname{argmin}_{Y \in \mathcal{Y} and Y \neq Y^i} E(W, Y, X^i). \tag{8}$$

Most Offending Incorrect Answer: continuous case

Definition 2 Let Y be a continuous variable. Then for a training sample (X^i, Y^i) , the **most offending incorrect answer** \bar{Y}^i is the answer that has the lowest energy among all answers that are at least ϵ away from the correct answer:

$$\bar{Y}^i = \operatorname{argmin}_{Y \in \mathcal{Y}, ||Y - Y^i|| > \epsilon} E(W, Y, X^i). \tag{9}$$

Examples of Generalized Margin Losses

$$L_{\text{hinge}}(W, Y^{i}, X^{i}) = \max(0, m + E(W, Y^{i}, X^{i}) - E(W, \bar{Y}^{i}, X^{i})),$$

Hinge Loss

- ▶ [Altun et al. 2003], [Taskar et al. 2003 ਤੂੰ
- ▶ With the linearly-parameterized binary classifier architecture, we get linear SV

$$L_{\log}(W, Y^i, X^i) = \log\left(1 + e^{E(W, Y^i, X^i) - E(W, \bar{Y}^i, X^i)}\right).$$

Log Loss

- "soft hinge" loss
- With the linearly-parameterized binary classifier architecture, we get linear Logistic Regression

Negative Log-Likelihood Loss

Conditional probability of the samples (assuming independence)

$$P(Y^{1},...,Y^{P}|X^{1},...,X^{P},W) = \prod_{i=1}^{P} P(Y^{i}|X^{i},W).$$

$$-\log \prod_{i=1}^{P} P(Y^{i}|X^{i},W) = \sum_{i=1}^{P} -\log P(Y^{i}|X^{i},W).$$

Gibbs distribution:
$$P(Y|X^i,W) = \sum_{i=1}^{n} -\log T(T|X^i,W).$$

$$\frac{e^{-\beta E(W,Y,X^i)}}{\int_{y\in\mathcal{Y}} e^{-\beta E(W,y,X^i)}}.$$

$$-\log \prod_{i=1}^{P} P(Y^{i}|X^{i}, W) = \sum_{i=1}^{P} \beta E(W, Y^{i}, X^{i}) + \log \int_{y \in \mathcal{Y}} e^{-\beta E(W, y, X^{i})}.$$

We get the NLL loss by dividing by P and Beta:

$$\mathcal{L}_{\text{nll}}(W, \mathcal{S}) = \frac{1}{P} \sum_{i=1}^{P} \left(E(W, Y^i, X^i) + \frac{1}{\beta} \log \int_{y \in \mathcal{Y}} e^{-\beta E(W, y, X^i)} \right).$$

Reduces to the perceptron loss when Beta->infinity

What Make a "Good" Loss Function

Good and bad loss functions

Loss (equation #)	Formula	Margin
energy loss	$E(W, Y^i, X^i)$	none
perceptron	$E(W, Y^i, X^i) - \min_{Y \in \mathcal{Y}} E(W, Y, X^i)$	0
hinge	$\max(0, m + E(W, Y^i, X^i) - E(W, \bar{Y}^i, X^i))$	m
log	$\log\left(1+e^{E(W,Y^i,X^i)-E(W,\bar{Y}^i,X^i)}\right)$	> 0
LVQ2	$\min \left(M, \max(0, E(W, Y^i, X^i) - E(W, \bar{Y}^i, X^i) \right)$	0
MCE	$\left(1 + e^{-\left(E(W,Y^{i},X^{i}) - E(W,\bar{Y}^{i},X^{i})\right)}\right)^{-1}$	> 0
square-square	$E(W, Y^i, X^i)^2 - (\max(0, m - E(W, \bar{Y}^i, X^i)))^2$	m
square-exp	$E(W, Y^{i}, X^{i})^{2} + \beta e^{-E(W, \bar{Y}^{i}, X^{i})}$	> 0
NLL/MMI	$E(W, Y^i, X^i) + \frac{1}{\beta} \log \int_{y \in \mathcal{Y}} e^{-\beta E(W, y, X^i)}$	> 0
MEE	$E(W, Y^{i}, X^{i}) + \frac{1}{\beta} \log \int_{y \in \mathcal{Y}} e^{-\beta E(W, y, X^{i})} $ $1 - e^{-\beta E(W, Y^{i}, X^{i})} / \int_{y \in \mathcal{Y}} e^{-\beta E(W, y, X^{i})} $	> 0

Latent Variable Models

The energy includes "hidden" variables Z whose value is never given to us

$$E(Y, X) = \min_{Z \in \mathcal{Z}} E(Z, Y, X).$$

$$Y^* = \operatorname{argmin}_{Y \in \mathcal{Y}, Z \in \mathcal{Z}} E(Z, Y, X).$$

Latent variables in Weakly Supervised Learning

- Variables that would make the task easier if they were known:
 - Scene Analysis: segmentation of the scene into regions or objects.
 - ▶ Parts of Speech Tagging: the segmentation of the sentence into syntactic units, the parse tree.
 - ▶ Speech Recognition: the segmentation of the sentence into phonemes or phones.
 - ▶ Handwriting Recognition: the segmentation of the line into characters.
- **■** In general, we will search for the value of the latent variable that allows us to get an answer (Y) of smallest energy.

Probabilistic Latent Variable Models

Marginalizing over latent variables instead of minimizing.

$$P(Z, Y|X) = \frac{e^{-\beta E(Z, Y, X)}}{\int_{y \in \mathcal{Y}, z \in \mathcal{Z}} e^{-\beta E(y, z, X)}}.$$

$$P(Y|X) = \frac{\int_{z \in \mathcal{Z}} e^{-\beta E(Z,Y,X)}}{\int_{y \in \mathcal{Y}, z \in \mathcal{Z}} e^{-\beta E(y,z,X)}}.$$

Equivalent to traditional energy-based inference with a redefined energy function:

$$Y^* = \operatorname{argmin}_{Y \in \mathcal{Y}} - \frac{1}{\beta} \log \int_{z \in \mathcal{Z}} e^{-\beta E(z, Y, X)}.$$

Reduces to traditional minimization when Beta->infinity

Energy-Based Factor Graphs

- **■** When the energy is a sum of partial energy functions (or when the probability is a product of factors):
 - ▶ Efficient inference algorithms can be used for inference (without the normalization step).

Efficient Inference: Energy-Based Factor Graphs

- Example:
 - Z1, Z2, Y1 are binary
 - Z2 is ternary
 - A naïve exhaustive inference would require 2x2x2x3=24 energy evaluations (= 96 factor evaluations)
 - ▶ BUT: Ea only has 2 possible input configurations, Eb and Ec have 4, and Ed 6.
 - Hence, we can precompute the 16 factor values, and put them on the arcs in a trellis.
 - A path in the trellis is a config of variable
 - The cost of the path is the energy of the config

The energy is a sum of "factor" functions

Factor graph

Example: The Conditional Random Field Architecture

- A CRF is an energy-based factor graph in which:
 - the factors are linear in the parameters (shallow factors)
 - The factors take neighboring output variables as inputs
 - The factors are often all identical

Example: The Conditional Random Field Architecture

Applications:

- X is a sentence, Y is a sequence of Parts of Speech Tags (there is one Yi for each possible group of words).
- X is an image, Y is a set of labels for each window in the image (vegetation, building, sky....).

Shallow Factors / Deep Graph

Linearly Parameterized Factors (shallow factors)

with the NLL Loss:

- Lafferty's Conditional Random Field
- Kumar&Hebert's DRF.

with Hinge Loss:

Taskar's Max Margin Markov Nets

with Perceptron Loss

Collins's sequence labeling model

With Log Loss:

Altun/Hofmann sequence labeling model

Energy-Based Belief Prop

- The previous picture shows a chain graph of factors with 2 inputs.
- The extension of this procedure to trees, with factors that can have more than 2 inputs the "min-sum" algorithm (a non-probabilistic form of belief propagation)
- Basically, it is the sum-product algorithm with a different semiring algebra (min instead of sum, sum instead of product), and no normalization step.
 - [Kschischang, Frey, Loeliger, 2001][McKay's book]

Feed-Forward, Causal, and Bi-directional Models

■ EBFG are all "undirected", but the architecture determines the complexity of the inference in certain directions

- Feed-Forward
 - Predicting Y from X is easy
 - Predicting X from Y is hard

- "Causal"
 - Predicting Y from X is hard
 - Predicting X from Y is easy

- Bi-directional
 - X->Y and Y->X are both hard if the two factors don't agree.
 - They are both easy if the factors agree

Deep Factors / Deep Graph: ASR with TDNN/DTW

- Trainable Automatic Speech Recognition system with convolutional nets (TDNN) and dynamic time warping (DTW)
- Training the feature extractor as part of the whole process.
- with the LVQ2 Loss:
 - Driancourt and Bottou's speech recognizer (1991)
- with NLL:
 - Bengio's speech recognizer (1992)
 - Haffner's speech recognizer (1993)

Deep Factors / Deep Graph: ASR with TDNN/HMM

- Discriminative Automatic Speech Recognition system with HMM and various acoustic models
 - Training the acoustic model (feature extractor) and a (normalized) HMM in an integrated fashion.
- With Minimum Empirical Error loss
 - Ljolje and Rabiner (1990)
- with NLL:
 - Bengio (1992)
 - Haffner (1993)
 - Bourlard (1994)
- With MCE
 - Juang et al. (1997)
- Late normalization scheme (un-normalized HMM)
 - Bottou pointed out the label bias problem (1991)
 - Denker and Burges proposed a solution (1995)

Really Deep Factors / Really Deep Graph

- Handwriting Recognition with Graph Transformer Networks
- Un-normalized hierarchical HMMs
 - Trained with Perceptron loss [LeCun, Bottou, Bengio, Haffner 1998]
 - ► Trained with NLL loss [Bengio, LeCun 1994], [LeCun, Bottou, Bengio, Haffner 1998]
- Answer = sequence of symbols
- Latent variable = segmentation

