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L atent Variables

Latent variables are unobserved random variabldisat enter into the energy function
E(Y,Z, X, W).

E

The X variable (input) is always observed, tHiemust be
predicted. The&Z variable islatent: it is not observed. We
need tomarginalize the joint probabilityP(Y, Z| X, W)
E( overZ to getP (Y| X, W):
Y 2,%X W)
/7 /”

PY|X, W) = / P(Y, 2| X, W)dz

The following discussion treats the case where an obsel
vation X Is present. In the unsupervised case, there is nc
observation. We can simply remove the symkXofrom

all the slides below.

X z Y
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L atent Variables. example

Let’s say we have a bunch of images of a Boeing 747 under \v&vi@wing angles
(let's call the angleZ), and another bunch of images of an Airbus A-380, also under
various viewing angles.
Let’'s assume that we are given a “similarity” functiéifY, Z, X') whereY is the label
(Boeing or Aribus),Z is the latent variable (the viewing angle), akdthe image. For
example F(Airbus, 20, X) will give us a low energy ifX is similar to our prototype
image of an Airbus under 20 degree viewing angle. For exanipleould be defined
as:

E(Y7 Z7X) — ||X — RYZ||2

whereRy ~ is our prototype image of plang at angleZ.
When asked about the category of an image, we are never gneendwing angle, but
knowing it would make our task simpler.
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L atent Variables. marginalization

In terms of energy function? (Y, Z| X, W) can be written as:

 exp(—BE(Y, Z,X,W))
P2 W) = T o BBy, 2 X, W))dzdy

Therefore,P(Y|X, W) = [ P(Y, z| X, W)dz becomes:

eXp(_ﬁE(Yv 2 Xa W))

d
Jexp(—BE(y, 2/, X, W))dz'dy "~

PY|X,W) =

since the denominator doesn’t dependzon

_ Jexp(=BE(Y,z, X, W))d=z
P(Y|X7 W) B feXp(_BE(ya Z/7X7 W))dzldy

If Z is a multidimensional variable, this could be very difficidtcompute.
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L atent Variables. example of marginalization

E(Y,Z,X)=|X — Ryz||?

exp(—f||X — Ryz||?)
PY ZIX. W) =
V21X W) = T b BIIX = Ry | 2d=dy

It's a Gaussian with meaRy ~, and variancé /.

=3 exp(—B|IX — Rairbus z|*)
— 27 ¢xp(—PB||X — Rpoeing z[|?) + exp(—0||X — Raibus z[|?)

P(Airbus| X

It's a sum of Gaussians.
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L atent Variables. max likelihood inference

Very often, given an observatioki, we merely want to know the value &f that is the
most likely: Y* = argmax, P(Y| X, W)

[ exp(—BE(Y, 2z, X,W))dz

Y* =
Y T b (—BE(y, 2, X, W))dz'dy

Since the denominator does not depend’gnve can simply remove it:
Y* = argmaXY/eXp(—ﬁE(Y,z,X, W))dz

By taking log and dividing by3, we get:

1
Y* = argminy, — 3 log [/ exp(—0FE(Y,z, X, W))dz

This is thelogsum of the energies for all values &f, also called thédelmholtz free
Energy of the ensemble of states wh&hvaries.
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L atent Variables. example of max likelihood

E(Y,Z,X)=|X — Ryz||?

_ 1
Y* = argminy — 3 log Zexp(—ﬁHX — Ryz||?)
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L atent Variables. zero-temperature limit

Computing the most likely” using the free energy:

1
Y* = argminy, — 3 log [/ exp(—BE(Y,z, X, W))dz

still requires to compute a (possibly horrible) integraéo¥ .
One possible shortcut is to makego to infinity. Then, as we have seen before, the
logsum reduces to thenin, hence:

Blim Y* = argmin, mZin EY,Z, X, W)

In this case, inference is a lot simpler: to find the “besteabfY’, find the
combination of values of bot andY that minimize the energy:

BE(Y*, 2", X,W) =minE(Y, Z, X, W)

and returny *.
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L atent Variables. example of zero-temp limit

E(Y,Z,X)=|X — Ryz||?

E(Y”, 2%, X, W) =min ||X - Ryz||*

and returny *.
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Example: Mixture Models

We haveK normalized densitie®*(Y'|WW*), each of which has a positive coefficient

a” (whose sum ovek is 1), and a switch controlled by a discrete latent varigbkhat

picks one of the component densities. There is no idpubnly an “output”Y (whose
distribution is to be modeled) and a latent variaBle

The likelihood for one sampl&*:

P(Y', ZIW) =) o P(YI[WF)
k

with >, o* = 1. Using Bayes’ rule, we can compute the

posterior prob of the mixture components for each data
pointY*:

. . o P (Y WF
(v = P(z = Ky’ w) = R
7 J

These quantities are called “responsabilities”.
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Learning a Mixture M odel with Gradient

We can learn a mixture with gradient descent, but there ahrbetter methods as we
will see later. The negative log-likelihood of the data is:

L =—log H P(YHW) =Y —logP(Y'|W)

Let us consider the likelihood of one data polfit

L' = —logP(Y'|W) = —logZakPk(Yi\W)
k

oL 1 AP, (Y |W)
oW — P(Yi[W) ;O"“ oW
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Learning a Mixture M odel with Gradient (cont)

oLt 1 AP, (Y| W)
oW — P(YiW) 20 g

_ 0 0log Py (Y'|W)

“PYHW) oW oW

k k

The gradient is the weighted sum of gradients of the indiaidaomponents weighted
by the responsalbilities.
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Example: Gaussian Mixture

PYIW) =S apl2nVE| "2 exp(—1/2(Y — M*Y (V) (Y — M*))
k

This is used a lot in speech recognition.
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The Expectation-M aximization Algorithm

Optimizing likelihoods with gradient is the only option inree cases, but there is a
considerably more efficient procedure known as EM.

Every time we update the parameté&¥ys the distribution over latent variablés must
be updated as well (because it depends$lan

The basic idea of ENb to keep the distribution ovef constant while we find the
optimal W, then we recompute the new distribution ovethat result from the new
W, and we iterate. This process is sometimes caléeadinate descent.
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EM: TheTrick

The negative log likelihood for a sampi€ is:
L' = —log P(Y'|W) = —1og/P(Y’i,Z|W)dZ

For any distributiony(Z) we can write:

P(Y', Z|W)

q(Z) “

L' = —log/Q(Z)

We now use Jensen’s inequality, which says that for any a@ftanctionG (such as
log)

G / p(2)f(2)dz) < — / p(2)G(f(2))dz

We get:
Y*, Z|W)
q(Z)
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L'< F' = —/q(Z)log il



EM

7

EM minimizesF* by alternately

finding theq(Z) that mininizesF' (E-step)

then finding thél” that minimizest’ M -step)
E-step:q(Z)"* — argmin F*(q(Z)", W?)
M-step: W (Z)**T! «— argminy, F*(q(Z)t1, W)
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M Step

We can decompose the free energy:

Yi, Z|W)

q(Z) “

Fi(g(2),W) = — / 2(2)log 24

= —/q(Z) log P(Y', Z|W)dZ + /q(Z) log q(Z)dZ
The first term is the expected energy with distributigty ), the second is the entropy
of ¢(Z), and does not depend .

So in the M-step, we only need to consider the first term whemmmzing with
respect toy(~7).

W (Z)**! « argming, — / q¢(Z)log P(Y", Z|W)dZ
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E Step

Proposition the value ofy(Z) that minimizes the free energyi$2) = P(Z|Y*, W)
This is the posterior distrib over the latent variabled giteh sample and the current

parameter.

Proof:
P(Yi, Z|W)

FY (P(Z|Y" —— | P(Z|Y? ] . d7Z
(P W) W) = = [ P W)log ol

— —/P(Z|Yi,W) log P(Y'|\W)dZ =

—1ogP(Yi|W)/P(Z\Yi,W) = —log P(Y'|W).1

z
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