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Geometrical intuition
behind the dual problem

*For the plane separating A and B we choose
x2 A the bisecting line between specific
.P, and P_that have minimal distance HPA—PBH2

® «Here, for PA ,
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Geometrical intuition
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Going from the Primal to the Dual

@ Constrained Optimization Problem min;—HwHY

w

S.t.:
viw.x,+b) =1, i=1,...,m

label

@ A convex optimization problem (objective and constraints)

@ Unique solution if datapoints are linearly separable
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Going from the Primal to the Dual

@ Constrained Optimization Problem min;—HwH2

w

S.1..
Viw.x,+b) > 1, i=1,...m
label

@ Lagrange: | L(w, —||w|| Z;\ X, 4b)—1]

@ KKT V,Lw, = W—Z, li\iyi i =0

conditions: /L (w Z Ay



Going from the Primal to the Dual

@ Constrained Optimization Problem minl—||w||2

w

S.t..
yiw.x;+b) = 1, i=1,..,m
label

@ Lagrange: | L(w, —||w|| Z;\ (w.x,+b)—1]

@ KKT V.L(w,b,A) = Z,l yixp =

conditions:  V/, L(w,b,A =_Z__\)\Z,yl, = 0
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Going from the Primal to the Dual

@ Constrained Optimization Problem min;—HwH2

w

S.1..
yiw.x;+b) =1, i=1,...m
label
@ Lagrange: | L(w, —||w|| Z;\ wx-l—b 1]
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Going from the Primal to the Dual

@ Constrained Optimization Problem minl—||w||2

@ Equivalent

Dual Problem:

w

S.t..
y.(w.x,+b) =1, i=1,...

label
max—l—z A vy (X x)-I—ZAZ
2, =1 i=1
S.L..
A0, i=1,..,

ZAiyi=O

i=1
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Solution to the Dual Problem

@ The Dual Problem below | sign(h(x)) = Sig”l(; Ay (x;. x)+b)

admits the following m ,
b = yi—]; Ajyj(xj.x,.), i=1,...,m

solution:
@ Equival n
quivalent max ——ZA Ay (x.x;) + YA
Dual Problem: i i=1 i=1

J

S.t..
A=0, i=1,...,m

ZAiyi=

i=1
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What are Support Vector Machines?

» Linear classifiers b
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® (Mostly) binary classifiers - :
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Main Ideas Behind
Support Vector Machines

N K

: : -
* Maximal margin ﬁ’ | é train
'-I |
@ Dual space ¥ : ke
@
» Linear classifiers L | g 4 S
L . . | o
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. |
* Kernel trick 1% N %
oo ‘i;_“;ﬁr'
Py
I

14



Quadratic Programming

1
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Using the Lagrangian

= Combine target and
constraints

= Minimize over primal

= Maximize over dual

L{x,d)=f (x) ZAf

O(A)=minL(x,A)

y

max O(A),A>0
A
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Dual Spa

ce

Lw,b,d)=w?/2=X,(3w+b—-1)=A,(-w=b-1)

minL(w,b,A) =<

w,b

)
A=A,
Ww=3A,—A,=24,

L 0)=0(],)==-2A1+24,

max Q) => A =A,=1/2,w=1,h=2

A
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Strong Duality

" Primal and dual space optimization:
* Same result!

Primal ’ Dual
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Dual Form

" H
* Hessian matrix maxQ(A)=—0.52" HA+ f" A
A
" Gram matrix
« Lambd v A=0
a’;‘ at t A>0
= Support vector
+ Sparse where, H,=y,y,(x;-x )

[ is aunitvecitor
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Non-linear separation of datasets

» Non-linear separation is impossible in

most problems

[lustration from Prof. Mohri's lecture notes
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Non-separable datasets

@ Solutions:

1) Nonlinear classifiers

+1 -1 +1
O—4—N—+—O0—>
-1 0 1

2) Increase dimensionality of dataset
and add a non-linear mapping ®

x| _| x
A= e
X, |X
X
A2

———TT—4+—1+—
-1 0 1 X
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Kernel Trick

- Kernel fUﬂCtiOn “similarity measure”
= in the original space between 2 data samples

= Inner product
= In the feature space with increased dimension
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Kernel Trick lllustrated

+1 -1 +1
e | NI
1 0 1
—> — h
\ X ‘ ¢ (.X ) = x° ‘. 1+ P
| 1 |
@ 1l o > - M l,
1 0 1 —2 0 V2 X

K(x, xj.):(x;,.xk},.%—l)2

2 2 2
(P(x,)D(x;))=2x,x,+x;x,+1=(x,x +1)=K(x, x;)
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Curse of Dimensionality Due to the
Non-Linear Mapping

" Primal space = Dual space

= Makes optimization = (Can be avoided
much harder

mml<¢T(w)-<15(w)> mfo(A):—O.SATHAJrfTA

y,(@" (w)B(x,))+b)= 1 y{\; ;0

where, H =y y K(x,, x )
[ isaunitvector
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Positive Semi-Definite (P.S.D.)
Kernels (Mercer Condition)

= Dual form is convex
= His P.S.D. O(A)=—05A"HA+f"A
where, H =y.y K(x., x.)
= Kernel must be P.S.D. i~ i it

= Mercer kernels K(x, y)=[(xf p)+1]
* Polynomial
= Gaussian K(x,y)=e

—(x=y)' X (x=p)2
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Advantages of SVM

=-Work very well...
= Error bounds easy to obtain:

» Generalization error small and predictable

SV
— N

=E, +E

E lest lrain generalization

= Fool-proof method:
» (Mostly) three kernels to choose from:
» Gaussian
* Linear and Polynomial
» Sigmoid

» Very small number of parameters to optimize
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Limitations of SVM

= Size limitation:
» Size of kernel matrix is quadratic with the number of
training vectors
-~ Speed limitations:
» 1) During training:
very large quadratic programming problem solved
numerically
» Solutions:
 Chunking
» Sequential Minimal Optimization (SMO)
breaks QP problem into many small QP problems
solved analytically
*» Hardware implementations
» 2) During testing:
number of support vectors
» Solution: Online SVM
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