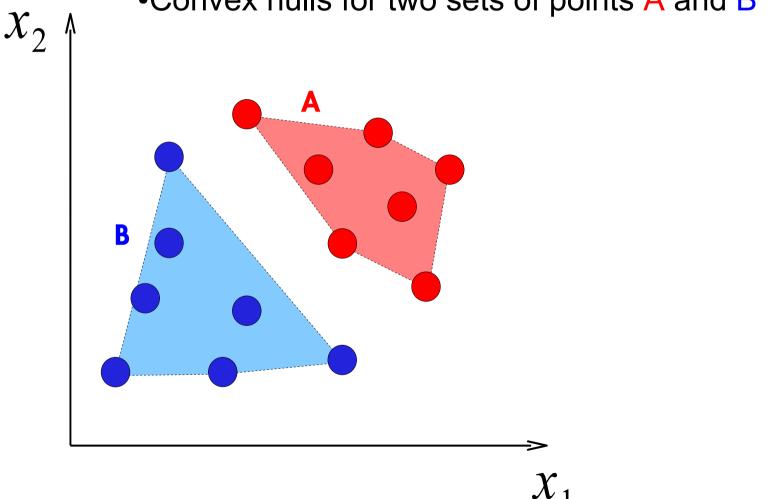
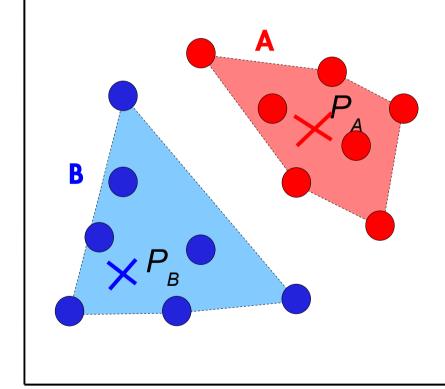
Based on:

KP Bennett, EJ Bredensteiner, "Duality and Geometry in SVM Classifiers", *Proceedings of the International Conference on Machine Learning*, 2000

Convex hulls for two sets of points A and B



*Convex hulls for two sets of points A and B defined by all possible points $P_{_A}$ and $P_{_B}$



$$P_{A} = \sum_{i \in A} \lambda_{i} x_{i} \qquad P_{B} = \sum_{i \in B} \lambda_{i} x_{i}$$

$$\sum_{i \in A} \lambda_i = 1$$

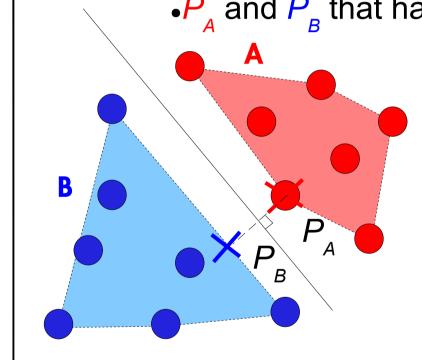
$$\lambda_i \geqslant 0, \quad i \in A$$

$$\sum_{i \in B} \lambda_i = 1$$

$$\lambda_i \geqslant 0, \quad i \in B$$

- •For the plane separating A and B we choose the **bisecting line** between specific
 - $\bullet P_{\Lambda}$ and P_{R} that have minimal distance

$$\|P_A - P_B\|_2$$



- •Here, for P_{A} , a single coeff. is non-zero
- •And for P_B , two coeffs. are non-zero

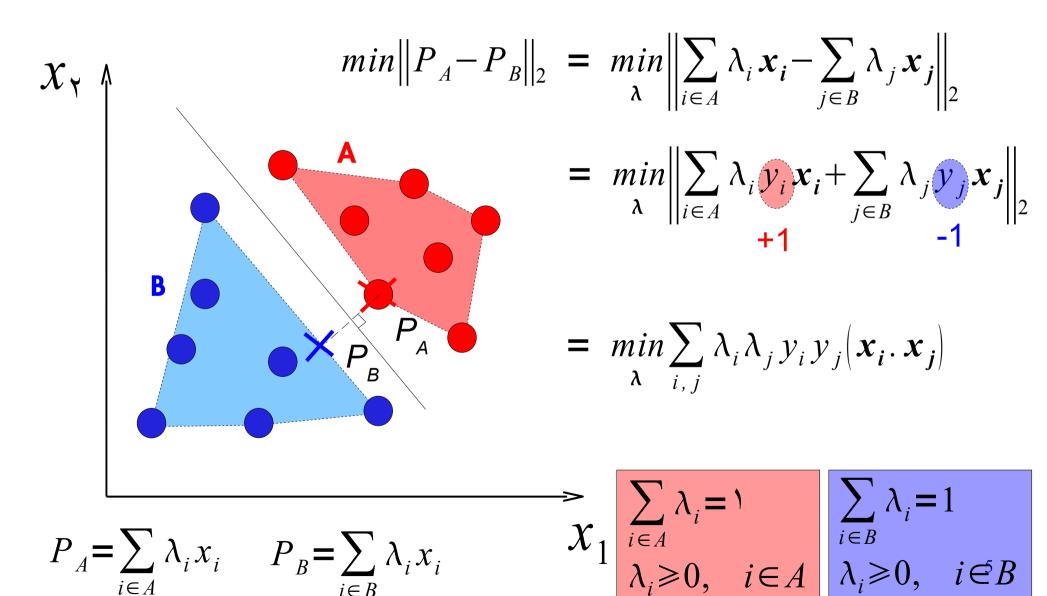
$$P_{A} = \sum_{i \in A} \lambda_{i} x_{i} \qquad P_{B} = \sum_{i \in B} \lambda_{i} x_{i}$$

$$\sum_{i \in A} \lambda_i = 1$$

$$1 \quad \lambda_i \geqslant 0, \quad i \in A$$

$$\sum_{i \in B} \lambda_i = 1$$

$$\lambda_i \geqslant 0, \quad i \in B$$



Constrained Optimization Problem

$$\min_{w} \frac{1}{2} \|w\|^{\Upsilon}$$

$$s.t.:$$

$$y_{i}(w.x_{i}+b) \geq 1, \quad i=1,...,m$$
label input

- A convex optimization problem (objective and constraints)
- Unique solution if datapoints are linearly separable

Constrained Optimization Problem

$$\min_{w} \frac{1}{2} ||w||^{2}$$

$$s.t.:$$

$$y_{i}(w.x_{i}+b) \geq 1, \quad i=1,...,m$$

label input

• Lagrange:
$$L(\mathbf{w}, b, \lambda) = \frac{1}{2} ||\mathbf{w}||^2 - \sum_{i=1}^{m} \lambda_i [y_i(\mathbf{w}, \mathbf{x}_i + b) - 1]$$

Constrained Optimization Problem

$$\min \frac{1}{2} ||\mathbf{w}||^2$$

$$s.t.:$$

$$\mathbf{y}_i(\mathbf{w}.\mathbf{x}_i + b) \ge 1, \quad i = 1,..., m$$
label input

Lagrange:

$$L(\mathbf{w}, b, \lambda) = \frac{1}{2} ||\mathbf{w}||^2 - \sum_{i=1}^{m} \lambda_i [y_i(\mathbf{w}, \mathbf{x}_i + b) - 1]$$

KKT

$$\nabla_{\mathbf{w}} L(\mathbf{w}, b, \boldsymbol{\lambda}) = \mathbf{w} - \sum_{i=1}^{m} \lambda_{i} y_{i} \mathbf{x}_{i} = 0$$

conditions:

$$\nabla_b L(\mathbf{w}, b, \mathbf{\lambda}) = -\sum_{i=1}^m \lambda_i y_i = 0$$

• Constrained Optimization Problem $min \frac{1}{2} ||w||^2$

$$\min_{w} \frac{1}{2} ||w||^{2}
s.t.:
y_{i}(w. x_{i} + b) \ge 1, \quad i = 1,..., m$$

label input

Lagrange:

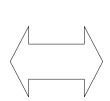
$$L(\mathbf{w}, b, \lambda) = \frac{1}{2} ||\mathbf{w}||^2 - \sum_{i=1}^{m} \lambda_i [y_i(\mathbf{w}, \mathbf{x}_i + b) - 1]$$

KKT

$$\nabla_{w}L(w,b,\lambda) = w - \sum_{i=1}^{m} \lambda_{i} y_{i} x_{i} = \cdot$$

conditions:

$$\nabla_b L(\mathbf{w}, b, \mathbf{\lambda}) = -\sum_{i=1}^m \lambda_i y_i = 0$$



$$w = \sum_{i=1}^{m} \lambda_i y_i x_i$$

$$\sum_{i=1}^{m} \lambda_i y_i = 0$$

Plus KKT:

$$\lambda_i[y_i(\mathbf{w}.\mathbf{x_i}+b)-1]=0, i=1,...,m$$

Constrained Optimization Problem

$$\min \frac{1}{2} ||\mathbf{w}||^2$$

$$s.t.:$$

$$\mathbf{y}_i(\mathbf{w}.\mathbf{x}_i + b) \ge 1, \quad i = 1,..., m$$
label input

Lagrange:

$$L(\boldsymbol{w}, b, \boldsymbol{\lambda}) = \frac{1}{2} \|\boldsymbol{w}\|^2 - \sum_{i=1}^{m} \lambda_i [y_i(\boldsymbol{w}, \boldsymbol{x}_i + b) - 1]$$

$$L(w,b,\lambda) = \frac{1}{2} \|\sum_{i=1}^{m} \lambda_{i} y_{i} x_{i}\|^{2} - \sum_{i,j=1}^{m} \lambda_{i} \lambda_{j} y_{i} y_{j} (x_{i}.x_{j})$$

$$-\sum_{i=1}^{m} \lambda_{i} y_{i} b + \sum_{i=1}^{m} \lambda_{i}$$

$$w = \sum_{i=1}^{m} \lambda_{i} y_{i} x_{i}$$

$$\sum_{i=1}^{m} \lambda_{i} y_{i} = 0$$

$$L(\boldsymbol{w}, b, \boldsymbol{\lambda}) = -\frac{1}{2} \sum_{i,j=1}^{m} \lambda_i \lambda_j y_i y_j (\boldsymbol{x}_i, \boldsymbol{x}_j) + \sum_{i=1}^{m} \lambda_i$$

• Constrained Optimization Problem $min \frac{1}{2} ||w||^2$

$$\begin{aligned} \min \frac{1}{2} \|\mathbf{w}\|^2 \\ s.t.: \\ \mathbf{y}_i(\mathbf{w}.\mathbf{x}_i + b) & \geq 1, \quad i = 1, \dots, m \\ \text{label input} \end{aligned}$$

• Equivalent Dual Problem:

$$\max_{\lambda} \left\{ -\frac{1}{2} \sum_{i,j=1}^{m} \lambda_i \lambda_j y_i y_j (x_i, x_j) + \sum_{i=1}^{m} \lambda_i \right\}$$
s.t.:
$$\lambda_i \ge 0, \quad i = 1, ..., m$$

$$\sum_{i=1}^{m} \lambda_i y_i = 0$$

Solution to the Dual Problem

The Dual Problem below admits the following solution:

$$sign(h(\mathbf{x})) = sign(\sum_{i=1}^{m} \lambda_i y_i(\mathbf{x_i}, \mathbf{x}) + b)$$

$$b = y_i - \sum_{j=1}^{m} \lambda_j y_j(\mathbf{x_j}, \mathbf{x_i}), \quad i = 1, ..., m$$

• Equivalent Dual Problem:

$$\max_{\lambda} \left\{ -\frac{1}{2} \sum_{i,j=1}^{m} \lambda_{i} \lambda_{j} y_{i} y_{j} (\boldsymbol{x}_{i}. \boldsymbol{x}_{j}) + \sum_{i=1}^{m} \lambda_{i} \right\}$$

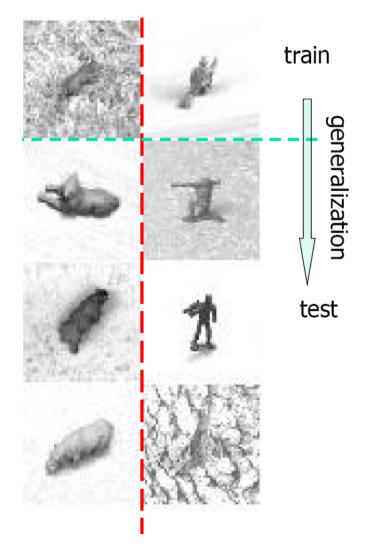
$$s.t.:$$

$$\lambda_{i} \geq 0, \quad i = 1, ..., m$$

$$\sum_{i=1}^{m} \lambda_{i} y_{i} = \cdot$$

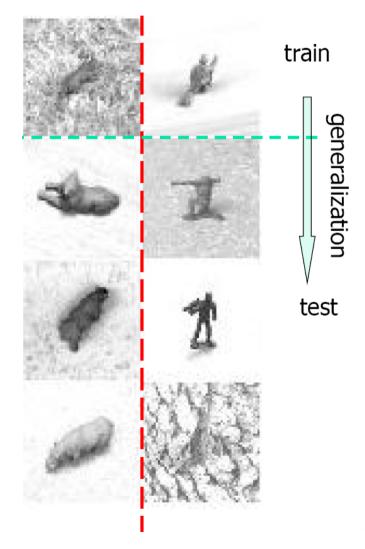
What are Support Vector Machines?

- Linear classifiers
- (Mostly) binary classifiers
- Supervised training
- Good generalization with explicit bounds



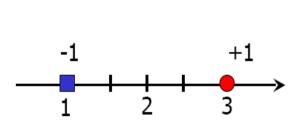
Main Ideas Behind Support Vector Machines

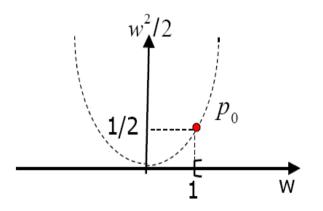
- Maximal margin
- Dual space
- Linear classifiers
 in high-dimensional space
 using non-linear mapping
- Kernel trick



Quadratic Programming

$$\max_{w,b} \min_{i} \frac{|\mathbf{w}^{T} \mathbf{x}_{i} + b|}{\|\mathbf{w}\|} \xrightarrow{\min_{i} |\mathbf{w}^{T} \mathbf{x}_{i} + b| = 1} \underbrace{\min_{w,b} \frac{1}{2} \langle \mathbf{w}^{T} \cdot \mathbf{w} \rangle}_{y_{i}(\langle \mathbf{w}^{T} \cdot \mathbf{x}_{i} \rangle + b) \ge 1}$$





Using the Lagrangian

Combine target and constraints

- Minimize over primal
- Maximize over dual

$$L(x, \lambda) = f_0(x) - \sum_i \lambda_i f_i(x)$$

$$Q(\mathbf{\lambda}) = \min_{x} L(x, \mathbf{\lambda})$$

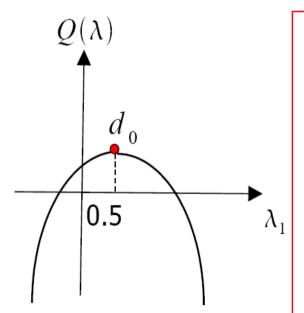
$$\max_{\lambda} Q(\lambda), \lambda > 0$$

Dual Space

$$\min_{w} \frac{w^2}{2}$$

$$(+1)(w \cdot 3 + b) \ge 1$$

$$(-1)(w \cdot 1 + b) \ge 1$$



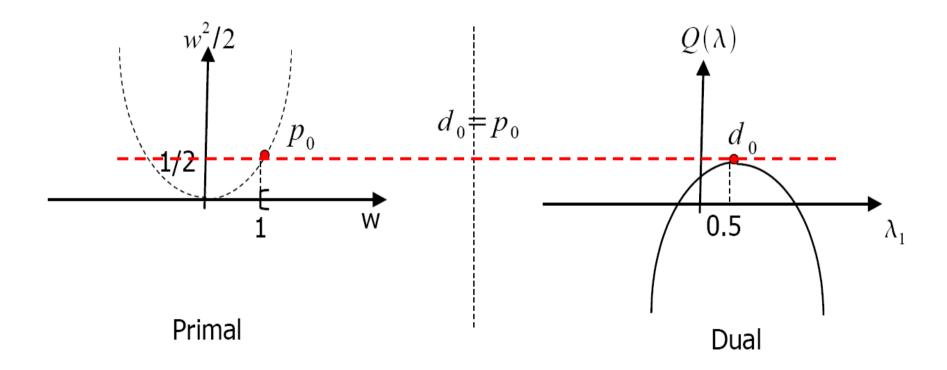
$$L(w,b,\lambda) = w^{2}/2 - \lambda_{1}(3w+b-1) - \lambda_{2}(-w-b-1)$$

$$\min_{w,b} L(w,b,\lambda) \Longrightarrow \begin{cases} \lambda_{1} = \lambda_{2} \\ w = 3\lambda_{1} - \lambda_{2} = 2\lambda_{1} \\ Q(\lambda) = Q(\lambda_{1}) = -2\lambda_{1}^{2} + 2\lambda_{1} \end{cases}$$

$$\max_{\lambda} Q(\lambda) \Longrightarrow \lambda_{1} = \lambda_{2} = 1/2, w = 1, b = 2$$

Strong Duality

- Primal and dual space optimization:
 - Same result!



Dual Form

- H
 - Hessian matrix
 - Gram matrix
- Lambda
 - Support vector
 - Sparse

$$\max_{\lambda} Q(\lambda) = -0.5\lambda^{T} H \lambda + f^{T} \lambda$$

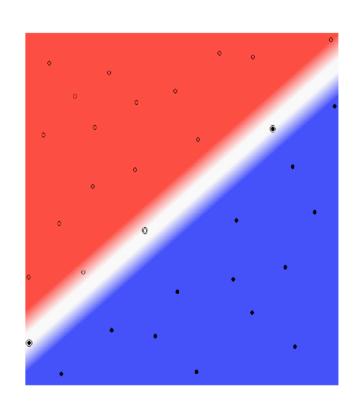
$$y^{T} \lambda = 0$$

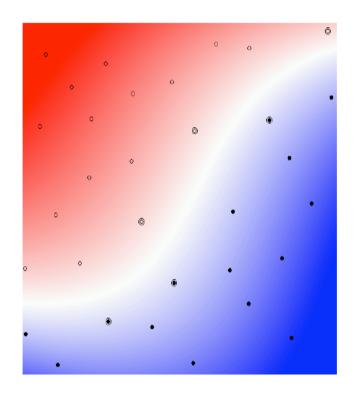
$$\lambda \geq 0$$

$$where, H_{ij} = y_{i} y_{j} \langle x_{i}^{T} \cdot x_{j} \rangle$$

$$f \text{ is a unit vector}$$

Non-linear separation of datasets

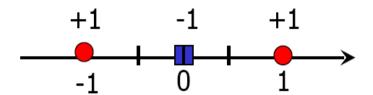




 Non-linear separation is impossible in most problems

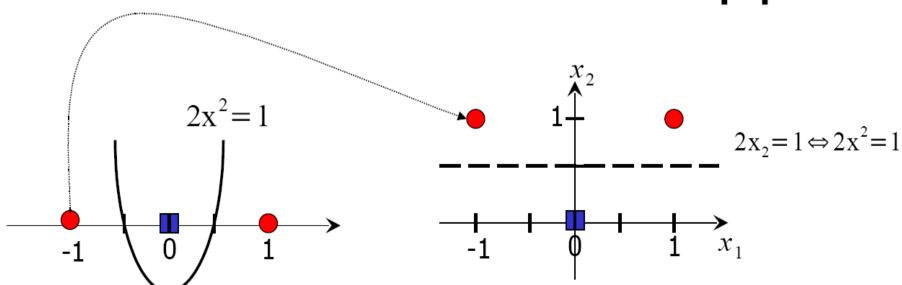
Non-separable datasets

- Solutions:
- 1) Nonlinear classifiers



2) **Increase dimensionality** of dataset and add a **non-linear mapping Φ**

$$\begin{bmatrix} x \end{bmatrix} \longrightarrow \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} x \\ x^2 \end{bmatrix}$$

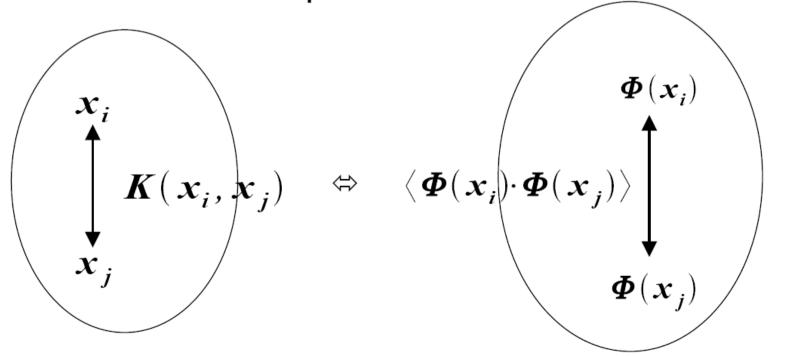


Kernel Trick

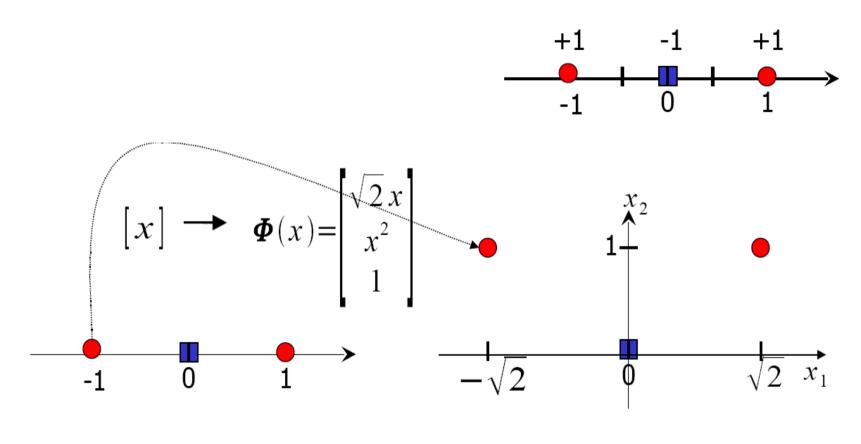
- Kernel function
 - in the original space

"similarity measure" between 2 data samples

- Inner product
 - In the feature space with increased dimension



Kernel Trick Illustrated



$$K(x_i, x_j) = (x_i x_j + 1)^2$$

$$\langle \boldsymbol{\Phi}(x_i) \cdot \boldsymbol{\Phi}(x_j) \rangle = 2x_i x_j + x_i^2 x_j^2 + 1 = (x_i x_j + 1)^2 = \boldsymbol{K}(x_i, x_j)$$
 23

Curse of Dimensionality Due to the Non-Linear Mapping

- Primal space
 - Makes optimization much harder
- Dual space
 - Can be avoided

$$\min_{w,b} \frac{1}{2} \langle \boldsymbol{\Phi}^{T}(\boldsymbol{w}) \cdot \boldsymbol{\Phi}(\boldsymbol{w}) \rangle$$
$$y_{i}(\langle \boldsymbol{\Phi}^{T}(\boldsymbol{w}) \cdot \boldsymbol{\Phi}(\boldsymbol{x}_{i}) \rangle + b) \geq 1$$

$$\max_{\lambda} Q(\lambda) = -0.5 \lambda^{T} H \lambda + f^{T} \lambda$$

$$y^{T} \lambda = 0$$

$$\lambda \ge 0$$

$$where, H_{ij} = y_{i} y_{j} K(x_{i}, x_{j})$$

$$f \text{ is a unit vector}$$

Positive Semi-Definite (P.S.D.) Kernels (Mercer Condition)

- Dual form is convex
 - H is P.S.D.
 - Kernel must be P.S.D.

$$Q(\lambda) = -0.5 \lambda^{T} H \lambda + f^{T} \lambda$$
where, $H_{ij} = y_{i} y_{j} K(x_{i}, x_{j})$

- Mercer kernels
 - Polynomial
 - Gaussian

$$K(\mathbf{x}, \mathbf{y}) = [\langle \mathbf{x}^T \mathbf{y} \rangle + 1]^p$$

$$K(x, y) = e^{-(x-y)^T \Sigma^{-1}(x-y)/2}$$

Advantages of SVM

- → Work very well...
- → Error bounds easy to obtain:
 - Generalization error small and predictable

$$E_{test} = E_{train} + E_{generalization} - \frac{|SV|}{N}$$

- → Fool-proof method:
 - (Mostly) three kernels to choose from:
 - Gaussian
 - Linear and Polynomial
 - Sigmoid
 - Very small number of parameters to optimize

Limitations of SVM

- → Size limitation:
 - Size of kernel matrix is quadratic with the number of training vectors
- → Speed limitations:
 - 1) During training: very large quadratic programming problem solved numerically
 - Solutions:
 - Chunking
 - Sequential Minimal Optimization (SMO)
 breaks QP problem into many small QP problems
 solved analytically
 - Hardware implementations
 - 2) During testing: number of support vectors
 - Solution: Online SVM