MACHINE LEARNING AND PATTERN RECOGNITION:

Lecture 3.1:

Basis Functions, Kernel Methods

Yann LeCun,

Courant Institute, NYU

Linear Machines: Regression with Mean Square

Linear Regression, Mean Square Loss:

- decision rule: y = W'X
- loss function: $L(W, y^i, X^i) = \frac{1}{2}(y^i W'X^i)^2$
- **gradient** of loss: $\frac{\partial L(W, y^i, X^i)}{\partial W}' = -(y^i W(t)'X^i)X^i$
- update rule: $W(t+1) = W(t) + \eta(t)(y^i W(t)'X^i)X^i$
- \blacksquare direct solution: solve linear system $[\sum_{i=1}^P X^i X^{i'}]W = \sum_{i=1}^P y^i X^i$

Linear Machines: Perceptron

Perceptron:

- decision rule: y = F(W'X) (F is the threshold function)
- loss function: $L(W, y^i, X^i) = (F(W'X^i) y^i)W'X^i$
- \blacksquare gradient of loss: $\frac{\partial L(W,y^i,X^i)}{\partial W}' = -(y^i F(W(t)'X^i))X^i$
- update rule: $W(t+1) = W(t) + \eta(t)(y^i F(W(t)'X^i))X^i$
- direct solution: find W such that $-y^i F(W'X^i) < 0 \quad \forall i$

Linear Machines: Logistic Regression

Logistic Regression, Negative Log-Likelihood Loss function:

- decision rule: y = F(W'X), with $F(a) = \tanh(a) = \frac{1 \exp(a)}{1 + \exp(a)}$ (sigmoid function).
- loss function: $L(W, y^i, X^i) = 2 \log(1 + \exp(-y^i W' X^i))$
- gradient of loss: $\frac{\partial L(W, y^i, X^i)}{\partial W}' = -(Y^i F(W'X)))X^i$
- update rule: $W(t+1) = W(t) + \eta(t)(y^i F(W(t)'X^i))X^i$

General Gradient-Based Supervised Learning Machine

Neural Nets, and many other models:

- decision rule: y = F(W, X), where F is some function, and W some parameter vector.
- loss function: $L(W, y^i, X^i) = D(y^i, F(W, X^i))$, where D(y, f) measures the "discrepancy" between A and B.
- **gradient** of loss: $\frac{\partial L(W, y^i, X^i)}{\partial W}' = \frac{\partial D(y^i, f)}{\partial f} \frac{\partial F(W, X^i)}{\partial W}$
- update rule: $W(t+1) = W(t) \eta(t) \frac{\partial D(y^i, f)}{\partial f} \frac{\partial F(W, X^i)}{\partial W}$

Three Questions:

- What architecture F(W, X).
- What loss Function $L(W, y^i, X^i)$.
- What optimization method.

Limitations of Linear Machines

The *Linearly separable* dichotomies are the partitions that are realizable by a linear classifier (the boundary between the classes is a hyperplane).

Number of Linearly Separable Dichotomies

The probability that P samples of dimension N are linearly separable goes to zero very quickly as P grows larger than N (Cover's theorem, 1966).

- Problem: there are 2^P possible dichotomies of P points.
- Only about N are linearly separable.
- If P is larger than N, the probability that a random dichotomy is linearly separable is very, very small.

Example of Non-Linearly Separable Dichotomies

- Some seemingly simple dichotomies are not linearly separable
- Question: How do we make a given problem linearly separable?

Making N Larger: Preprocessing

- Answer 1: we make N larger by augmenting the input variables with new "features".
- we map/project X from its original N-dimensional space into a higher dimensional space where things are more likely to be linearly separable, using a vector function Φ(X).
- $\blacksquare E(Y, X, W) = D(Y, R)$
- $\blacksquare R = f(W'V)$
- $V = \Phi(X)$

Adding Cross-Product Terms

- Polynomial Expansion.
- If our original input variables are $(1, x_1, x_2)$, we construct a new *feature vector* with the following components:

$$\Phi(1, x_1, x_2) = (1, x_1, x_2, x_1^2, x_2^2, x_1 x_2)$$

i.e. we add all the cross-products of the original variables.

we map/project X from its original N-dimensional space into a higher dimensional space with N(N+1)/2 dimensions.

Polynomial Mapping

- Many new functions are now separable with the new architecture.
- With cross-product features, the family of class boundaries in the original space is the conic sections (ellipse, parabola, hyperbola).
- to each possible boundary in the original space corresponds a linear boundary in the transformed space.
- Because this is essentially a linear classifier with a preprocessing, we can use standard linear learning algorithms (perceptron, linear regression, logistic regression...).

Problems with Polynomial Mapping

- We can generalize this idea to higher degree polynomials, adding cross-product terms with 3, 4 or more variables.
- Unfortunately, the number of terms is the number of combinations d choose N, which grows like N^d, where d is the degree, and N the number of original variables.
- In particular, the number of free parameters that must be learned is also of order N^d.
- This is impractical for large N and for d > 2.
- Example: handwritten digit recognition (16x16 pixel images). Number of variables: 256. Degree 2: 32,896 variables. Degree 3: 2,796,160. Degre 4: 247,460,160.....

Next Idea: Tile the Space

place a number of equally-spaced "bumps" that cover the entire input space.

- For classification, the bumps can be Gaussians
- For regression, the basis functions can be wavelets, sine/cosine, splines (pieces of polynomials)....
- problem: this does not work with more than a few dimensions.
- The number of bumps necessary to cover an N dimensional space grows exponentially with N.

Sample-Centered Basis Functions (Kernels)

Place the center of a basis function around each training sample. That way, we only spend resources on regions of the space where we actually have training samples.

Discriminant function:

$$f(X, W) = \sum_{k=1}^{k=P} W_k K(X, X^k)$$

K(X, X') often takes the form of a radial basis function:

$$K(X, X') = \exp(b||X - X'||^2)$$
 or a polynomial $K(X, X') = (X.X' + 1)^m$

- This is a very common architecture, which can be used with a number of energy functions.
- In particular, this is the architecture of the socalled Support Vector Machine (SVM), but the energy function of the SVM is a bit special. We will study it later in the course.

The Kernel Trick

- If the kernel function K(X, X') verifies the *Mercer conditions*, then there exist a mapping Φ , such that $\Phi(X).\Phi(X') = K(X, X').$
- The Mercer conditions are that K must be symmetric, and must be positive definite (i.e K(X, X) must be positive for all X).
- In other words, if we want to map our X into a high-dimensional space (so as to make them linearly separable), and all we have to do in that space is compute dot products, we can take a shortcut and simply compute K(X¹, X²) without going through the high-dimensional space.
- This is called the "kernel trick". It is used in many so-called Kernel-based methods, including Support Vector Machines.

Y. LeCun: Machine Learning and Pattern Recognition - p. 32/36

Examples of Kernels

 \blacksquare Quadratic kernel: $\Phi(X)=(1,\sqrt{2}x_1,\sqrt{2}x_2,\sqrt{2}x_1x_2,x_1^2,x_2^2)$ then

$$K(X, X') = \Phi(X).\Phi(X') = (X.X' + 1)^2$$

- Polynomial kernel: this generalizes to any degree d. The kernel that corresponds to $\Phi(X)$ bieng a polynomial of degree d is $K(X,X') = \Phi(X).\Phi(X') = (X.X'+1)^d$.
- Gaussian Kernel:

$$K(X, X') = \exp(-b||X - X'||^2)$$

This kernel, sometimes called the Gaussian Radial Basis Function, is very commonly used.

Sparse Basis Functions

- Place the center of a basis function around areas containing training samples.
- Idea 1: use an unsupervised clustering algorithm (such as K-means or mixture of Gaussians) to place the centers of the basis functions in areas of high sample density.
- Idea 2: adjust the basis function centers through gradient descent in the loss function.

The discriminant function F is:

$$F(X, W, U^1, \dots, U^K) = \sum_{k=1}^{k=K} W_k K(X, U^k)$$

Y. LeCun: Machine Learning and Pattern Recognition – p. 34/36

Other Idea: Random Directions

- Partition the space in lots of little domains by randomly placing lits of hyperplanes.
- Use many variables of the type q(W^kX), where q is the threshold function (or some other squashing function) and W_k is a randomly picked vector.
- This is the original Perceptron.
- Without the non-linearity, the whole system would be linear (product of linear operations), and therefore would be no more powerful than a linear classifier.
- problem: a bit of a wishful thinking, but it works occasionally.

Neural Net with a Single Hidden Layer

A particularly interesting type of basis function is the sigmoid unit: $V_k = \tanh(U'^k X)$

- a network using these basis functions, whose output is $R = \sum_{k=1}^{k=K} W_k V_k$ is called a *single hidden-layer neural* network.
- Similarly to the RBF network, we can compute the gradient of the loss function with respect to the U^k:

$$\frac{\partial L(W)}{\partial U^j} = \frac{\partial L(W)}{\partial R} W_j \frac{\partial tanh(U_j'X)}{\partial U_j}$$

$$= \frac{\partial L(W)}{\partial R} W_j tanh'(U'_j X) X'$$

Any well-behaved function can be approximated as close as we wish by such networks (but K might be very large).