Yann LeCun

MACHINE LEARNING AND
PATTERN RECOGNITION:
Lecture 3.1:

Basis Functions, Kernel Methods

Yann LeCun,

Courant Institute, NYU

Linear Machines: Regression with Mean Square

Linear Regression, Mean Square Loss:
W decision rule: y = W'X
W loss function: L(W,y", X*) = §(y' —W'X")?

roi oyein ! : - :
W gradient of loss: aLmaﬁr’x L — (i — W) X)X
W update rule: W(t 4+ 1) = W(t) +nt) (v — W(t)X)X"

W direct solution: solve linear system [Y°7_, X X[= 37 4 X

T, LaCun: Machine Leaming and Patlem Hecopnition — p. 236

Yann LeCun * New York University

Linear Machines: Perceptron

Perceptron:

W decision rule: y = F(W'X) (F' is the threshold function)
W loss function: L(TV,y', X') = (F(W'X") —y")1 X"

Fogi iyt : : :
W gradient of loss: aL“;ﬁ_..’x) = —(yf — F(W(#)' X)X’
W update rule: W(t +1) = W(t) +n(t)(y' — F(IW(t)' X)) X*

W direct solution: find T such that —y* F(TW'X*) < 0 Vi

Y. Lalun: Machine Leaming and Patiem Eecopnition — p. 336

Yann LeCun * New York University

Linear Machines: Logistic Regression

Logistic Regression, Negative Log-Likelihood Loss function:

W decision rule: y = F(TW'X), with F'(a) = tanh(a) = % (sigmoid

function).

W loss function: L(TV, Y, X*:} = 2log(1 + EKP{—EI!:H”X?:))

roioyiny : :
W gradient of loss: E‘L“’;ﬁ_.—’x) = _ (Y' —F(W'X))) X'

W update rule: W(t + 1) =W(¢) +n(t)(y* — F(W(t)' X)) X*

Y. LalCun: Machine Leaming and Patiem Eecopnition — . 436

Yann LeCun * New York University

General Gradient-Based Supervised Learning Machine

Neural Nets, and many other models:

W decision rule: y = F(TW, X), where F'is some function, and W some parameter
vector.

W loss function: L(TW,y*, X*) = D(y*, F(W, X)), where D(y, f) measures the
“discrepancy” between A and B.

aL[W,y*',x*'j’ _aD(y . f OF (WX
AW — af AW

' gradient of loss:

W update rule: Wt + 1) = W(t) — n(t) 3-‘5‘5:? yi SFI:BT:;__X*}

Three Questions:
% What architecture F'(11, X).

¥ What loss Function L(TW, 3%, X*).
“ What optimization method.

Y, LeCun: Machine Leaming and Patiem Heoopnition — p 5036

Yann LeCun * New York University

Limitations of Linear Machines

The Linearly separable dichotomies are the partitions
that are realizable by a linear classifier (the boundary be-
tween the classes is a hyperplane).

Y. LeCun: Machine Learning and Patem Recopnition — p. 23346

Yann LeCun t New York University

Number of Linearly Separable Dichotomies

The probability that P samples of dimension [V are linearly separable goes to zero
very quickly as P’ grows larger than NV (Cover’s theorem, 19660).

fsh (livearly Separable)
a

W Problem: there are 2" possible
dichotomies of P points.

0 Only about N are linearly separable.
Mr\ﬁ y y sep

@ If P is larger than NN, the probability that

a random dichotomy is linearly separable is
very, very small.

Y, LeCun: Machine Learning and Patem Hecopnilion — p. 24036

Yann LeCun

t New York University

Example of Non-Linearly Separable Dichotomies

W Some seemingly simple dichotomies are
not linearly separable

@ Question: How do we make a given prob-
lem linearly separable?

Y. LeCun: Machine Learning and Patem Eeoopnilion — p. 2536

Yann LeCun t New York University

Making /N Larger: Preprocessing

“ Answer |: we make NV larger by
augmenting the input variables with new
“features”.

“ we map/project X from its original
N -dimensional space into a higher
dimensional space where things are more
likely to be linearly separable, using a
vector function (X).

W E(Y,X,W)=D(Y,R)
W R=f(WV)
"V =®(X)

Y. LeCun: Machine Learning and Patem Eeoopnilion — p. 26306

Yann LeCun * New York University

Adding Cross-Product Terms

1t
x xl x‘ x: %”], @ Polynomial Expansion.
W If our original input variables are

(1, z1,x2), we construct a new feature
vector with the following components:

¢(¥) (I){]'JI].JIE} — {IJIIJIEJI%JIEJIIIE}

i.e. we add all the cross-products of the
original variables.

% we map/project X' from its original N-
dimensional space into a higher dimen-
sional space with N (N +1)/2 dimensions.

X. X2

Y. LeCun: Machine Learning and Patem Eeoopnilion — p. 27036

Yann LeCun t New York University

Polynomial Mapping

“ Many new functions are now separable with the
new architecture.

“ With cross-product features, the family of class
boundaries in the original space is the conic
sections (ellipse, parabola, hyperbola).

W to each possible boundary in the original space

corresponds a linear boundary in the transformed
space.

" Because this 1s essentially a linear classifier with
a preprocessing, we can use standard linear learn-
ing algorithms (perceptron, linear regression, logis-
tic regression...).

Y, LeCun: Machine Learning and Patem Eecopnilion — p. 2536

Yann LeCun t New York University

Problems with Polynomial Mapping

W We can generalize this idea to higher degree polynomials, adding cross-product
terms with 3, 4 or more variables.

“ Unfortunately, the number of terms is the number of combinations d choose IV,

which grows like N?, where d is the degree, and N the number of original
variables.

@ In particular, the number of free parameters that must be learned is also of order
,n,v.*ri
© This is impractical for large NV and for d > 2.

“ Example: handwritten digit recognition (16x16 pixel images). Number of
variables: 256. Degree 2: 32.896 variables. Degree 3: 2.796.160. Degre 4
247.460,160.....

Y. LeCun: Machine Learning and Patem Eeoopnilion — p. 290306

Yann LeCun * New York University

Next Idea: Tile the Space

place a number of equally-spaced “bumps™ that cover the entire input space.
% For classification, the bumps can be
Gaussians

q:’. @1 ¢3 ‘I)(‘ @ For regression, the basis functions can be

wavelets, sine/cosine, splines (pieces of
polynomials)....

“ problem: this does not work with more
than a few dimensions.

“ The number of bumps necessary to cover an
x N dimensional space grows exponentially

with V.

Y. LeCun: Machine Learning and Patem Hecopniliom — p. 300306

Yann LeCun t New York University

Sample-Centered Basis Functions (Kernels)

Place the center of a basis function around each training sample. That way, we only
spend resources on regions of the space where we actually have training samples.
“ Discriminant function:

oo,] X, W) =) WiK(X, X*)
: k=1

W K(X, X') often takes the form of a radial
basis function:
K(X,X') = exp(b|]|X — X'||?) ora
polynomial K (X, X') = (X. X' 4+1)™

0 This is a very common architecture, which can
be used with a number of energy functions.

“ In particular, this is the architecture of the so-

X called Support Vector Machine (SVM), but the
Y energy function of the SVM is a bit special. We
will study it later in the course.

Y. LeCun: Machine Learning and Patem Eecopnilion — p. 31306

t New York University

Yann LeCun

The Kernel Trick

W If the kernel function K (X, X') verifies

i the Mercer conditions, then there exist a
x mapping ®, such that
O(X).P(X) = K(X,X").

" The Mercer conditions are that /X must be

"‘P symmetric, and must be positive definite
d)(f‘) (i.e (X, X) must be positive for all X).
\ & In other words, if we want to map our X
'_" '1 into a high-dimensional space (so as to
@ a make them linearly separable), and all we
Dfph have to do in that space is compute dot

products, we can take a shortcut and

simply compute K (X*, X*) without going

x‘ I through the high-dimensional space.
K(‘f @ This is called the “kernel trick™. It is used in
‘ » many so-called Kernel-based methods, in-

cluding Support Vector Machines.

Y. LeCun: Machine Learning and Patem Recopnition — p. 3236

Yann LeCun t New York University

Examples of Kernels

B Quadratic kernel: ®(X) = (1, 2z, V2z2, vV2z1 22, 22, 22) then
KX, X")=0(X).®o(X") = (XX +1)°

“ Polynomial kernel: this generalizes to any degree d. The kernel that corresponds
to ®(X') bieng a polynomial of degree d is
KX, X")=o(X).®X') = (X.X"+ l}f“

W Gaussian Kernel:

K(X,X') = exp(-b[|X — X'||*)

This kernel, sometimes called the Gaussian Radial Basis Function, is very
commonly used.

Y. LeCun: Machine Learning and Patem Eecopnilion — p. 33306

t New York University

Yann LeCun

Sparse Basis Functions

= Place the center of a basis function around
areas containing training samples.

“ Idea l: use an unsupervised clustering
algorithm (such as K-means or mixture of
Gaussians) to place the centers of the basis
functions in areas of high sample density.

W Idea 2: adjust the basis function centers

through gradient descent in the loss func-
tion.

The discriminant function F' is:

k=K
F(X,W,U',...,.U)= > WiK(X,U")
k=1

Y. LeCun: Machine Learning and Patem Heoopnilion — . 30306

Yann LeCun t New York University

Other Idea: Random Directions

“ Partition the space in lots of little domains by
randomly placing lits of hyperplanes.

W Use many variables of the type q(TW*X), where ¢
is the threshold function (or some other squashing
function) and T}, is a randomly picked vector.

This is the original Perceptron.

Without the non-linearity, the whole system
would be linear (product of linear operations), and
therefore would be no more powerful than a linear
classifier.

@ problem: a bit of a wishful thinking, but it works
occasionally.

Y, LeCun: Machine Learning and Pattem Hecopnilion — p. 3656

Yann LeCun t New York University

Neural Net with a Single Hidden Layer

A particularly interesting type of basis function is the sigmoid unit: 1, = tanh(U'*X)

e W a network using these basis functions,
f~ whose output is R = S =1 WV, is
DY R called a single hidden-layer neural
i
network.

“ Similarly to the RBF network, we can
compute the gradient of the loss function

with respect to the U*:

OL(W) _ OL(W),., Otanh(U;X)
ous OR 7 0U;

~ OL(W)
~ OR
Any well-behaved function can be approximated as close as we wish by such networks
(but /' might be very large).

Witanh'(U; X)X’

Y, LeCun: Machine Learning and Pattem Hecopnilion — p. 3736

t New York University

Yann LeCun

