
Abstract Interpretation of Graphs
Patrick Cousot

Courant Institute of Mathematical Sciences, New York University
Visiting IMDEA Software, Madrid, Spain

Dedicated to Manuel Hermenegildo
for his 60th birthday and many years of friendship

Abstract. Path problems in graphs can be solved by abstraction of a
fixpoint definition of all paths in a finite graph. Applied to the Roy-Floyd-
Warshall shortest path algorithm this yields a naïve 𝑛4 algorithm where
𝑛 is the number of graph vertices. By over-approximating the elementary
paths and cycles and generalizing the classical exact fixpoint abstraction,
we constructively derive the classical 𝑛3 Roy-Floyd-Warshall algorithm.

1 Introduction

1.1 Objectives

[2,9,11,14,15] observed that various graph path algorithms can be designed and
proved correct based on a common algebraic structure and then instantiated
to various path problems up to homomorphisms. We show that this structure
originates from the fixpoint characterization of the set of graph paths using the
set of graph edges, the concatenation and union of sets of paths as basic oper-
ations. The common algebraic structure of graph path algorithms follows from
the fact that these primitives and the fixpoint are preserved by abstraction with
Galois connections. For example [19] designs Bellman–Ford–Moore algorithm [1,
Sect. 2.3.4] by abstraction of a fixpoint definition of all graph paths (where a
path is a vertex or a path concatenated with an arc).

The same approach for the Roy-Floyd-Warshall algorithm [1, Sect. 2.3.5],
[12, p. 26–29], [13], and [18, p. 129] (where a path is an arc or the concatenation
of a path with a path) yields a naïve algorithm in O(𝑛4) where 𝑛 is the number
of vertices of the weighted finite graph (assumed to have no cycle of strictly
negative weight). The derivation of the original Roy-Floyd-Warshall algorithm
in O(𝑛3) is tricky since it is based on the abstraction of an over-approximation
of the elementary paths which is an under-approximation of all graph paths.
It requires a generalization of the classical complete fixpoint abstraction to a
different abstraction for each iterate and the limit.

2 P. Cousot

1.2 Content

Fixpoint transfer theorems state the equality of the abstraction of a least fix-
point and the least fixpoint of an abstract function, under hypotheses such as
the commutation of the abstraction function and the iterated function. Sect. 2
presents a new fixpoint transfer theorem that generalizes the well-known theo-
rem on CPOs [6] to the case where, at each iterate, a different concrete function,
abstract function, and abstraction function are used. Sect. 3 introduces directed
graphs and their classic terminology (finite paths, subpaths, etc.), as well as
the totally ordered group of weights. Sect. 4 expresses the (generally infinite)
set of (finite) paths of a graph as least fixpoints, using four different possible
formulations. Sect. 5 applies the (non extended) fixpoint transfer theorem to
these fixpoints, thus exhibiting the common algebraic structure of path prob-
lems. Sect. 6 presents an application where the function associating to each pair
of vertices the set of paths between them is presented in fixpoint form using a
Galois isomorphism. Sect. 7 introduces path weights and a Galois connection be-
tween sets of paths and their smallest weight. Sect. 8 applies the (non extended)
fixpoint transfer theorem to this Galois connection to find a (greatest) fixpoint
characterization of the shortest path between every pair of vertices. However,
the function iterated must consider, at each step, every vertex. As each step is
performed for every pair of vertices and the number of steps equals the number
of vertices, this leads to a O(𝑛4) cost. Sect. 9 defines elementary (i.e., cycle-free)
paths, and Sect. 10 provides four least fixpoint characterizations of them (sim-
ilar to Sect. 4). Sect. 11 is the crux of the article. It applies the new fixpoint
transfer theorem from Sect. 2 to further simplify the functions iterated to only
elementary path. It exploits the fact that each iteration step 𝑘 uses a slightly
different abstraction, that only considers paths using vertices up to vertex 𝑘.
The commutation condition leads to especially lengthy proofs. The functions
iterated in Sect. 11 remain costly as they take care to exactly enumerate el-
ementary paths, pruning any other path. Sect. 12 considers iterating simpler,
more efficient functions that do not perform the elementary path check after each
concatenation and show that they compute an over-approximation of the set of
elementary paths. Sect. 13 presents this fixpoint in a simple algorithmic form
by computing iterations through a chaotic iteration scheme. Finally, Sect. 14
applies the path weight abstraction to convert the path enumeration algorithm
from Sect. 13 into a shortest-patch algorithm, effectively retrieving exactly the
cubic-time Roy-Floy-Warshall algorithm by calculational design. Sect. 15 con-
cludes.

2 Fixpoint abstraction

We write lfp⊑ 𝑓 (respectively lfp⊑𝑎 𝑓) for the ⊑-least fixpoint of 𝑓 (resp. greater
than or equal to 𝑎), if any. In fixpoint abstraction, it is sometimes necessary to
abstract the iterates and their limit differently (similar to the generalization of
Scott induction in [5]), as in the following

Abstract Interpretation of Graphs 3

Theorem 1 (exact abstraction of iterates) Let ⟨C, ⊑, ⊥, ⨆⟩ be a cpo,
∀𝑖 ∈ N . 𝑓𝑖 ∈ C→C be such that ∀𝑥, 𝑦 ∈ C . 𝑥 ⊑ 𝑦 ⇒ 𝑓𝑖(𝑥) ⊑ 𝑓𝑖+1(𝑦) with
iterates ⟨𝑥𝑖, 𝑖 ∈ N∪{𝜔}⟩ defined by 𝑥0 = ⊥, 𝑥 𝑖+1 = 𝑓𝑖(𝑥 𝑖), 𝑥𝜔 = ⨆𝑖∈N 𝑥 𝑖. Then
these concrete iterates and 𝑓 ≜ ⨆̇𝑖∈N 𝑓𝑖 are well-defined.

Let ⟨A, ≼, 0, ⋎⟩ be a cpo, ∀𝑖 ∈ N . 𝑓𝑖 ∈ A→A be such that ∀𝑥, 𝑦 ∈ A .
𝑥 ≼ 𝑦 ⇒ 𝑓𝑖(𝑥) ≼ 𝑓𝑖+1(𝑦) with iterates ⟨𝑥 𝑖, 𝑖 ∈ N ∪ {𝜔}⟩ defined by 𝑥0 = 0,
𝑥 𝑖+1 = 𝑓𝑖(𝑥

𝑖), 𝑥𝜔 =⋎𝑖∈N 𝑥 𝑖. Then these abstract iterates and 𝑓 ≜ ⋎̇𝑖∈N 𝑓𝑖 are
well-defined.

For all 𝑖 ∈ N∪{𝜔}, let 𝛼𝑖 ∈ C→A be such that 𝛼0(⊥) = 0, 𝛼𝑖+1 ∘ 𝑓𝑖 = 𝑓𝑖 ∘ 𝛼𝑖,
and 𝛼𝜔(⨆𝑖∈N 𝑥𝑖) = ⋎𝑖∈N 𝛼𝑖(𝑥𝑖) for all increasing chains ⟨𝑥𝑖 ∈ C, 𝑖 ∈ N⟩. It
follows that 𝛼𝜔(𝑥𝜔) = 𝑥𝜔.

If, moreover, ∀𝑖 ∈ N . 𝑓𝑖 ∈ C 𝑢𝑐⟶ C is upper-continuous then 𝑥𝜔 = lfp⊑ 𝑓.
Similarly 𝑥𝜔 = lfp≼ 𝑓 when the 𝑓𝑖 are upper-continuous. If both the 𝑓𝑖 and 𝑓𝑖
are upper-continuous then 𝛼𝜔(lfp⊑ 𝑓) = 𝛼𝜔(𝑥𝜔) = 𝑥𝜔 = lfp≼ 𝑓.

–

–

A trivial generalization is to have a different (concrete and) abstract domain at
each iteration and the limit (like e.g. in cofibered domains [20]).

Proof (of Th. 1) 𝑥0 ≜ ⊥ ⊑ 𝑥1 since ⊥ is the infimum and if 𝑥𝑖 ⊑ 𝑥𝑖+1 then,
by hypothesis, 𝑥𝑖+1 ≜ 𝑓𝑖(𝑥𝑖) ⊑ 𝑓𝑖+1(𝑥𝑖+1) ≜ 𝑥𝑖+2. Its follows that ⟨𝑥𝑖, 𝑖 ∈ N⟩ is an
⊑-increasing chain so that its lub 𝑥𝜔 ≜ ⨆𝑖∈N 𝑥𝑖 is well-defined in the cpo ⟨C, ⊑⟩.
The concrete iterates ⟨𝑥𝑖, 𝑖 ∈ N ∪ {𝜔}⟩ are therefore well-defined.

For 𝑥 ∈ C, reflexivity 𝑥 ⊑ 𝑥 implies 𝑓𝑖(𝑥) ⊑ 𝑓𝑖+1(𝑥) so ⟨𝑓𝑖(𝑥), 𝑖 ∈ N⟩ is an
increasing chain which limit 𝑓(𝑥) ≜ ⨆𝑖∈N 𝑓𝑖(𝑥) is well-defined in the cpo ⟨C, ⊑⟩.

Similarly, the abstract iterates ⟨𝑥𝑖, 𝑖 ∈ N ∪ {𝜔}⟩ and 𝑓 are well-defined.
Let us prove by recurrence on 𝑖 that ∀𝑖 ∈ N . 𝛼𝑖(𝑥𝑖) = 𝑥𝑖.

For the basis, 𝛼0(𝑥0) = 𝛼0(⊥) = 0 = 𝑥0.
Assume, by induction hypothesis, that 𝛼𝑖(𝑥𝑖) = 𝑥𝑖. For the induction step,
𝛼𝑖+1(𝑥𝑖+1)

= 𝛼𝑖+1(𝑓𝑖(𝑥𝑖)) Hdef. concrete iterates of the 𝑓𝑖I
= 𝑓𝑖(𝛼𝑖(𝑥𝑖)) Hcommutation 𝛼𝑖+1 ∘ 𝑓 = 𝑓𝑖 ∘ 𝛼𝑖I
= 𝑓𝑖(𝑥

𝑖) Hind. hyp.I
= 𝑥 𝑖+1 Hdef. abstract iterates of the 𝑓𝑖I
It follows that 𝛼𝜔(𝑥𝜔) = 𝛼𝜔(⨆𝑖∈N 𝑥 𝑖) = ⋎𝑖∈N 𝛼𝑖(𝑥 𝑖) = ⋎𝑖∈N 𝑥 𝑖 = 𝑥𝜔.

If, moreover, ∀𝑖 ∈ N . 𝑓𝑖 ∈ C 𝑢𝑐⟶ C is upper-continuous, then we have
𝑓(𝑥𝜔)

= ⨆
𝑗∈N
𝑓𝑗(⨆
𝑖∈N
𝑥 𝑖) Hdef. 𝑓 and 𝑥𝜔I

= ⨆
𝑗∈N
⨆
𝑖∈N
𝑓𝑗(𝑥 𝑖) H⟨𝑥𝑖, 𝑖 ∈ N⟩ is an ⊑-increasing chain and 𝑓𝑖 is upper-continuousI

= ⨆
𝑗∈N
(⨆
𝑖<𝑗
𝑓𝑗(𝑥 𝑖) ⊔⨆

𝑗=𝑖
𝑓𝑗(𝑥 𝑖) ⊔⨆

𝑖>𝑗
𝑓𝑗(𝑥 𝑖)) Hcase analysisI

4 P. Cousot

= ⨆
𝑗∈N
(𝑓𝑗(𝑥𝑗) ⊔⨆

𝑖>𝑗
𝑓𝑗(𝑥 𝑖))

Hsince, by recurrence using 𝑥𝑖 ⊑ 𝑥𝑖+1 ⇒ 𝑓𝑖(𝑥𝑖) ⊑ 𝑓𝑖+1(𝑥𝑖+1), we have 𝑖 < 𝑗
⇒ 𝑥𝑖 ⊑ 𝑥𝑗 ⇒ 𝑓𝑖(𝑥𝑖) ⊑ 𝑓𝑗(𝑥𝑗) ⇒ ⨆𝑖<𝑗 𝑓𝑗(𝑥 𝑖) ⊑ 𝑓𝑗(𝑥𝑗) and so, by def. lub ⨆,
⨆𝑖<𝑗 𝑓𝑗(𝑥 𝑖) ⊔ ⨆𝑗=𝑖 𝑓𝑗(𝑥 𝑖) = 𝑓𝑗(𝑥𝑗)I

= (⨆
𝑗∈N
𝑓𝑗(𝑥𝑗)) ⊔ (⨆

𝑗∈N
⨆
𝑖>𝑗
𝑓𝑗(𝑥 𝑖)) Hdef. lub ⨆I

= (⨆
𝑗∈N
𝑓𝑗(𝑥𝑗)) ⊔ ⨆

𝑗∈N
⨆
𝑖⩾𝑗
𝑓𝑖(𝑥 𝑖))

Hsince, 𝑗 < 𝑖 ⇒ 𝑥𝑗 ⊑ 𝑥𝑖 ⇒ 𝑓𝑗(𝑥𝑗) ⊑ 𝑓𝑖(𝑥𝑖) so (⨆𝑗∈N⨆𝑖>𝑗 𝑓𝑗(𝑥 𝑖)) ⊑
(⨆𝑗∈N⨆𝑖>𝑗 𝑓𝑖(𝑥 𝑖)) = (⨆𝑗∈N⨆𝑖⩾𝑗 𝑓𝑖(𝑥 𝑖))I

= (⨆
𝑗∈N
𝑓𝑗(𝑥𝑗))

H(⨆𝑗∈N⨆𝑖>𝑗 𝑓𝑗(𝑥 𝑖)) = (⨆𝑗∈N 𝑓𝑗(𝑥𝑗)) by ⨆ associative, commutative, and
idempotentI

= ⨆
𝑖∈N
𝑥 𝑖+1 = 𝑥0 ⊔ ⨆

𝑗∈N∗
𝑥𝑗 Hdef. 𝑥 𝑖+1 and 𝑗 = 𝑖 + 1 is positiveI

= ⨆
𝑖∈N
𝑥 𝑖 = 𝑥𝜔 H𝑥0 = ⊥ is the infimum and def. 𝑥𝜔I

Therefore 𝑥𝜔 is a fixpoint of 𝑓. Assume that 𝑦 ∈ C is a fixpoint of 𝑓. Let us
prove by recurrence that ∀𝑖 ∈ N . 𝑥𝑖 ⊑ 𝑦. For the basis 𝑥0 = ⊥ ⊑ 𝑦, by def. of the
infimum ⊥. Assume that 𝑥𝑖 ⊑ 𝑦 by induction hypothesis. Then
𝑥𝑖+1

= 𝑓𝑖(𝑥𝑖) Hdef. abstract iteratesI
⊑ 𝑓𝑖(𝑦) Hind. hyp. 𝑥𝑖 ⊑ 𝑦 and 𝑓𝑖 upper-continuous hence increasingI
⊑ ⨆
𝑖∈N
𝑓𝑖(𝑦) Hdef. lub, if it existsI

= 𝑓(𝑦) H⟨𝑓𝑖(𝑦), 𝑖 ∈ N⟩ is increasing with well-defined limit 𝑓(𝑦) ≜ ⨆𝑖∈N 𝑓𝑖(𝑦)I
= 𝑦 Hfixpoint hypothesisI
It follows that 𝑥𝜔 ≜ ⨆𝑖∈N 𝑥𝑖 ⊑ 𝑦 proving that 𝑥𝜔 = lfp⊑ 𝑓 is the ⊑-least fixpoint
of 𝑓. ⊓⊔

Observe that the 𝑓𝑖 can be chosen to be all identical equal to 𝑓 ∈ C 𝑢𝑐⟶ C in
which case 𝑥 ⊑ 𝑦 ⇒ 𝑓𝑖(𝑥) ⊑ 𝑓𝑖+1(𝑦) follows from 𝑓 being upper-continuous hence
monotonically increasing. Then 𝛼𝜔(lfp⊑ 𝑓) = 𝛼𝜔(𝑥𝜔) = 𝑥𝜔. Similarly, the choice
𝑓𝑖 = 𝑓 ∈ A

𝑢𝑐⟶ A yields 𝛼𝜔(𝑥𝜔) = 𝑥𝜔 = lfp≼ 𝑓. If, moreover, all 𝛼𝑖 are identical,
we get the classical [6, theorem 7.1.0.4(3)]

Corollary 1 (exact fixpoint abstraction) Let ⟨C, ⊑, ⊥, ⨆⟩ and ⟨A, ≼,
0, ⋎⟩ be cpos, 𝑓 ∈ C 𝑢𝑐⟶ C, 𝑓 ∈ A 𝑢𝑐⟶ A, and 𝛼 ∈ C 𝑢𝑐⟶ A be upper-
continuous, such that 𝛼(⊥) = 0 and 𝛼 ∘ 𝑓 = 𝑓 ∘ 𝛼. Then 𝛼(lfp⊑ 𝑓) = lfp≼ 𝑓 =
𝑥𝜔 where 𝑥0 ≜ 0, 𝑥𝑖+1 ≜ 𝑓𝑖(𝑥

𝑖), and 𝑥𝜔 ≜⋎𝑖∈N 𝑥𝑖.

–

–

Abstract Interpretation of Graphs 5

By considering ⟨C, ⊑⟩ = ⟨A, ≼⟩, 𝑓 = 𝑓, and the identity abstraction 𝛼(𝑥) = 𝑥,
we get Tarski-Kleene-Scott’s fixpoint theorem. Th. 1 and Cor. 1 easily extend
to fixpoint over-approximation 𝛼(lfp⊑ 𝑓) ≼ lfp≼ 𝑓.

3 Weighted graphs

3.1 Graphs

A (directed) graph or digraph 𝐺 = ⟨𝑉, 𝐸⟩ is a pair of a set 𝑉 of vertices (or nodes
or points) and a set 𝐸 ∈ ℘(𝑉 ×𝑉) of edges (or arcs). A (directed) edge ⟨𝑥, 𝑦⟩ ∈ 𝑉
has origin 𝑥 and end 𝑦 collectively called extremities (so the graphs we consider
are always directed). A graph is finite when the set of 𝑉 of vertices (hence 𝐸) is
finite.

A path 𝜋 from 𝑦 to 𝑧 in a graph 𝐺 = ⟨𝑉, 𝐸⟩ is a finite sequence of vertices
𝜋 = 𝑥1…𝑥𝑛 ∈ 𝑉𝑛, 𝑛 > 1, starting at origin 𝑦 = 𝑥1, finishing at end 𝑧 = 𝑥𝑛, and
linked by edges ⟨𝑥𝑖, 𝑥𝑖+1⟩ ∈ 𝐸, 𝑖 ∈ [1, 𝑛[. Let 𝑉>1 ≜ ⋃𝑛>1 𝑉𝑛 be the sequences of
vertices of length at least 2. Formally the set Π(𝐺) ∈ ℘(𝑉>1) of all paths of a
graph 𝐺 = ⟨𝑉, 𝐸⟩ is

Π(𝐺) ≜ ⋃
𝑛>1
Π𝑛(𝐺) (1)

Π𝑛(𝐺) ≜ {𝑥1…𝑥𝑛 ∈ 𝑉𝑛 ∣ ∀𝑖 ∈ [1, 𝑛[. ⟨𝑥𝑖, 𝑥𝑖+1⟩ ∈ 𝐸} (𝑛 > 1)

The length |𝜋| of the path 𝜋 = 𝑥1…𝑥𝑛 ∈ 𝑉𝑛 is the number of edges that is
𝑛 − 1 > 0. We do not consider the case 𝑛 = 1 of paths of length 0 with only one
vertex since paths must have at least one edge. A subpath is a strict contiguous
part of another path (without holes and which, being strict, is not equal to that
path).

The vertices of a path 𝜋 = 𝑥1…𝑥𝑛 ∈ Π𝑛(𝐺) of a graph 𝐺 is the set V(𝜋) =
{𝑥1…𝑥𝑛} of vertices appearing in that path 𝜋.

A cycle is a path 𝑥1…𝑥𝑛 ∈ Π𝑛(𝐺) with 𝑥𝑛 = 𝑥1, 𝑛 > 1. Self-loops i.e. ⟨𝑥,
𝑥⟩ ∈ 𝐸 yield a cycle 𝑥𝑥 of length 1.

3.2 Totally ordered groups

A totally (or linearly) ordered group ⟨𝔾, ⩽, 0, +⟩ is a group ⟨𝔾, 0, +⟩ with a total
order ⩽ on 𝔾 satisfying the translation-invariance condition ∀𝑎, 𝑏, 𝑐 ∈ 𝔾 . (𝑎 ⩽
𝑏) ⇒ (𝑎 + 𝑐 ⩽ 𝑏 + 𝑐). An element 𝑥 ∈ 𝔾 of a totally ordered group ⟨𝔾, ⩽, 0, +⟩ is
said to be strictly negative if and only if 𝑥 ⩽ 0 ∧ 𝑥 ≠ 0.

If 𝑆 ⊆ 𝔾 then we define min 𝑆 to be the greatest lower bound of 𝑆 in 𝔾 or
−∞:

min 𝑆 = 𝑚 ⇔ 𝑚 ∈ 𝔾 ∧ (∀𝑥 ∈ 𝑆 . 𝑚 ⩽ 𝑥 ∧ (∀𝑦 ∈ 𝑆 . 𝑦 ⩽ 𝑥 ⇒ 𝑦 ⩽ 𝑚)
= −∞ ⇔ ∀𝑥 ∈ 𝑆 . ∃𝑦 ∈ 𝑆 . 𝑦 < 𝑥 (where −∞ ∉ 𝔾)
= ∞ ⇔ 𝑆 = ∅ (where ∞ ∉ 𝔾)

6 P. Cousot

So if 𝔾 has no infimum min𝔾 = max∅ = −∞ ∉ 𝔾. Similarly, max 𝑆 is the least
upper bound of 𝑆 in 𝔾, if any; −∞ otherwise, with max𝔾 = min∅ = ∞ ∉ 𝔾
when 𝔾 has no supremum. Extending + by 𝑥 + ∞ = ∞ + 𝑥 = ∞ +∞ = ∞ and
𝑥+−∞ = −∞+𝑥 = −∞+−∞ = −∞ for all 𝑥 ∈ 𝔾, we have min{𝑥+𝑦 ∣ 𝑥 ∈ 𝑆1 ∧𝑦 ∈
𝑆2} = min 𝑆1 +min 𝑆2.

3.3 Weighted graphs

We now equip graphs with weights e.g. to measure the distance between vertices.
A weighted graph on a totally ordered group ⟨𝔾, ⩽, 0, +⟩ is a triple ⟨𝑉, 𝐸, 𝛚⟩ of a
set 𝑉 of vertices and a set 𝐸 ∈ ℘(𝑉 ×𝑉) of edges of a graph ⟨𝑉, 𝐸⟩, and a weight
𝛚 ∈ 𝐸→𝔾 mapping edges ⟨𝑥, 𝑦⟩ ∈ 𝐸 to values 𝛚(⟨𝑥, 𝑦⟩) ∈ 𝔾 taken in the totally
ordered group 𝔾.

4 Fixpoint characterization of the paths of a graph

The concatenation of sets of finite paths is

𝑃⦾ 𝑄 ≜ {𝑥1…𝑥𝑛𝑦2…𝑦𝑚 ∣ 𝑥1…𝑥𝑛 ∈ 𝑃 ∧ 𝑦1𝑦2…𝑦𝑚 ∈ 𝑄 ∧ 𝑥𝑛 = 𝑦1}. (2)

We have the following well-defined fixpoint characterization of the paths of a
graph [7, Sect. 4].

Theorem 2 (Fixpoint characterization of the paths of a graph) The
paths of a graph 𝐺 = ⟨𝑉, 𝐸⟩ are
Π(𝐺) = lfp⊆𝓛Π, 𝓛Π(𝑋) ≜ 𝐸 ∪ 𝑋⦾ 𝐸 (Th.2.a)
= lfp⊆𝓡Π, 𝓡Π(𝑋) ≜ 𝐸 ∪ 𝐸⦾𝑋 (Th.2.b)
= lfp⊆𝓑Π, 𝓑Π(𝑋) ≜ 𝐸 ∪ 𝑋⦾𝑋 (Th.2.c)
= lfp⊆𝐸𝓟Π, 𝓟Π(𝑋) ≜ 𝑋 ∪ 𝑋⦾𝑋 (Th.2.d) ⊓⊔

–

–

𝓛Π stands for a forward definition of paths using a left-recursive transformer;
𝓡Π stands for a backward definition of paths using a right-recursive transformer;
𝓑Π stands for a bidirectional definition of paths using a right- and left-recursive
transformer; 𝓟Π stands for a recursive transformer using paths only which iter-
ations are initialized by edges.

Proof (of Th. 2) We observe that ⋃𝑖∈Δ(𝑋𝑖⦾𝐸) = ⋃𝑖∈Δ{𝜋𝑥𝑦 ∣ 𝜋𝑥 ∈ 𝑋𝑖 ∧⟨𝑥, 𝑦⟩ ∈ 𝐸}
= {𝜋𝑥𝑦 ∣ 𝜋𝑥 ∈ ⋃𝑖∈Δ𝑋𝑖 ∧ ⟨𝑥, 𝑦⟩ ∈ 𝐸} = (⋃𝑖∈Δ𝑋𝑖)⦾ 𝐸 so that the transformer 𝓛Π
preserves non-empty joins so is upper-continuous. Same for 𝓡Π.

Let ⟨𝑋𝑖, 𝑖 ∈ N⟩ be a ⊆-increasing chain of elements of ℘(𝑉>1). ⦾ is com-
ponentwise increasing so ⋃𝑖∈N(𝑋𝑖 ⦾ 𝑋𝑖) ⊆ (⋃𝑖∈N𝑋𝑖 ⦾ ⋃𝑖∈N𝑋𝑖). Conversely if
𝜋 ∈ (⋃𝑖∈N𝑋𝑖 ⦾ ⋃𝑖∈N𝑋𝑖) then 𝜋 = 𝜋𝑖𝑥𝜋𝑗 where 𝜋𝑖𝑥 ∈ 𝑋𝑖 and 𝑥𝜋𝑗 ∈ 𝑋𝑗. Assume
𝑖 ⩽ 𝑗. Because 𝑋𝑖 ⊆ 𝑋𝑗, 𝜋𝑖𝑥 ∈ 𝑋𝑗 so 𝜋 = 𝜋𝑖𝑥𝜋𝑗 ∈ 𝑋𝑗 ⦾𝑋𝑗 ⊆ ⋃𝑘∈N𝑋𝑘 ⦾𝑋𝑘 proving

Abstract Interpretation of Graphs 7

that ⋃𝑖∈N(𝑋𝑖 ⦾ 𝑋𝑖) ⊇ (⋃𝑖∈N𝑋𝑖 ⦾ ⋃𝑖∈N𝑋𝑖). We conclude, by antisymmetry, that
𝓑Π and 𝓟Π are upper-continuous.

It follows, by Tarski-Kleene-Scott’s fixpoint theorem, that the least fixpoints
do exist.

We consider case (Th.2.c). By upper continuity, we can apply Cor. 1. Let us
calculate the iterates ⟨𝓑Π𝑘, 𝑘 ∈ N⟩ of the fixpoint of transformer 𝓑Π.

𝓑Π0 = ∅, by def. of the iterates.
𝓑Π1(∅) = 𝓑Π(𝓑Π0) = 𝐸 = Π2(𝐺) contains the paths of length 1 which are

made of a single arc. If the graph has no paths longer than mere arcs, all paths
are covered after 1 iteration.

Assume, by recurrence hypothesis on 𝑘, that 𝓑Π𝑘 = ⋃2
𝑘−1

𝑛=2 Π𝑛(𝐺) contains
exactly all paths of 𝐺 of length less than or equal to 2𝑘−1. We have
𝓑Π𝑘+1 ≜ 𝓑Π(𝓑Π𝑘) Hdef. iteratesI

= 𝐸 ∪𝓑Π𝑘 ⦾𝓑Π𝑘 Hdef. 𝓑ΠI
= 𝐸 ∪ {𝑥1…𝑥𝑛𝑦2…𝑦𝑚 ∣ 𝑥1…𝑥𝑛 ∈𝓑Π𝑘 ∧ 𝑥𝑛𝑦2…𝑦𝑚 ∈𝓑Π𝑘} Hdef. ⦾I
= 𝐸 ∪ {𝑥1…𝑥𝑛𝑦2…𝑦𝑚 ∣ 𝑥1…𝑥𝑛 ∈

2𝑘−1

⋃
𝑛=2
Π𝑛(𝐺) ∧ 𝑥𝑛𝑦2…𝑦𝑚 ∈

2𝑘−1

⋃
𝑛=2
Π𝑛(𝐺)}

Hind. hyp.I
= 𝐸 ∪

2𝑘

⋃
𝑛=3
Π𝑛(𝐺)

H(⊆) the concatenation of two paths of length at least 1 and at most 2𝑘−1
is at least of length 2 and at most of length 2 × 2𝑘−1 = 2𝑘.
(⊇) Conversely, any path of length at most 2𝑘 has either length 1 in 𝐸
or can be decomposed into two paths 𝜋 = 𝑥1…𝑥𝑛 and 𝜋′ = 𝑥𝑛𝑦2…𝑦𝑚
of length at most 2𝑘−1. By induction hypothesis, 𝜋, 𝜋′ ∈ ⋃2

𝑘−1

𝑛=2 Π𝑛(𝐺) I
By recurrence on 𝑘, for all 𝑘 ∈ N∗, 𝓑Π𝑘 =

2𝑘−1

⋃
𝑛=2
Π𝑛(𝐺) contains exactly all paths

from 𝑥 to 𝑦 of length less than or equal to 2𝑘−1.
Finally, we must prove that the limit lfp⊆𝓑Π = ⋃

𝑘∈N
𝓑Π𝑘 is Π(𝐺) that is con-

tains exactly all paths of 𝐺.
Any path in Π(𝐺) has a length 𝑛 > 0 such that 𝑛 ⩽ 2𝑘−1 for some 𝑘 > 0 so

belongs to 𝓑Π𝑛(∅) hence to the limit, proving Π(𝐺) ⊆ lfp⊆𝓑Π.
Conversely any path in lfp⊆𝓑Π = ⋃

𝑘∈N
𝓑Π𝑘 belongs to some iterate 𝓑Π𝑘 which

contains exactly all paths of length less than or equal to 2𝑘 so belongs to Π2𝑘(𝐺)
hence to Π(𝐺), proving lfp⊆𝓑Π ⊆ Π(𝐺). By antisymmetry Π(𝐺) = lfp⊆𝓑Π.

The equivalent form 𝓟Π follows from lfp⊑ 𝑓 = lfp⊑ 𝜆𝑥 .𝑥⊔𝑓(𝑥) and lfp⊑ 𝜆𝑥 . 𝑎⊔
𝑓(𝑥) = lfp⊑𝑎 𝑓 when 𝑎 ⊑ 𝑓(𝑎). The proofs for (Th.2.a,b) are similar with the 𝑘th-

iterate of the form
𝑘
⋃
𝑛=2
Π𝑛(𝐺). ⊓⊔

8 P. Cousot

5 Abstraction of the paths of a graph

A path problem in a graph 𝐺 = ⟨𝑉, 𝐸⟩ consists in specifying/computing an
abstraction 𝛼(Π(𝐺)) of its paths Π(𝐺) defined by a Galois connection

⟨℘(𝑉>1), ⊆, ∪⟩ −−−−→←−−−−𝛼
𝛾
⟨𝐴, ⊑, ⊔⟩.

A path problem can be solved by a fixpoint definition/computation.

Theorem 3 (Fixpoint characterization of a path problem) Let 𝐺 =
⟨𝑉, 𝐸⟩ be a graph with paths Π(𝐺) and ⟨℘(𝑉>1), ⊆, ∪⟩ −−−−→←−−−−𝛼

𝛾
⟨𝐴, ⊑, ⊔⟩.

𝛼(Π(𝐺)) = lfp⊑𝓛♯Π, 𝓛♯Π(𝑋) ≜ 𝛼(𝐸) ⊔ 𝑋⦾ 𝛼(𝐸) (Th.3.a)
= lfp⊑𝓡♯Π, 𝓡♯Π(𝑋) ≜ 𝛼(𝐸) ⊔ 𝛼(𝐸)⦾𝑋 (Th.3.b)
= lfp⊑𝓑♯Π, 𝓑♯Π(𝑋) ≜ 𝛼(𝐸) ⊔ 𝑋⦾𝑋 (Th.3.c)
= lfp⊑𝛼(𝐸)𝓟♯Π, 𝓟♯Π(𝑋) ≜ 𝑋 ⊔ 𝑋⦾𝑋 (Th.3.d)

where 𝛼(𝑋)⦾ 𝛼(𝑌) = 𝛼(𝑋⦾ 𝑌). ⊓⊔

–

–

Proof (of Th. 3) All cases are similar. Let us check the commutation for (Th.3.c).
𝛼(𝓑Π(𝑋))

= 𝛼(𝐸 ∪ 𝑋⦾𝑋) Hdef. (Th.2.c) of 𝓑Π(𝑋)I
= 𝛼(𝐸) ⊔ 𝛼(𝑋⦾𝑋)Hthe abstraction of Galois connections preserves existing joinsI
= 𝛼(𝐸) ⊔ 𝛼(𝑋)⦾ 𝛼(𝑋) Hby hyp.I
= 𝓑♯Π(𝛼(𝑋)) Hdef. (Th.3.c) of 𝓑♯ΠI
We conclude by Th. 2 and exact least fixpoint abstraction Cor. 1. The equivalent
form 𝓟♯Π follows from lfp⊑ 𝑓 = lfp⊑ 𝜆𝑥 .𝑥 ⊔ 𝑓(𝑥) and lfp⊑ 𝜆𝑥 . 𝑎 ⊔ 𝑓(𝑥) = lfp⊑𝑎 𝑓
when 𝑎 ⊑ 𝑓(𝑎). ⊓⊔

An essential remark is that the fixpoint definitions of the set of paths in
℘(𝑉>1) of a graph 𝐺 = ⟨𝑉, 𝐸⟩ in Th. 2 based on the primitives 𝐸, ∪, and ⦾
are preserved in Th. 3 by the abstraction ⟨℘(𝑉>1), ⊆, ∪⟩ −−−−→←−−−−𝛼

𝛾
⟨𝐴, ⊑, ⊔⟩ for the

primitives 𝛼(𝐸), ⊔, and ⦾ on 𝐴, which explains the origin of the observation by
[2,14,15,9,11] that path problems all have the same algebraic structure.

6 Calculational design of the paths between any two
vertices

As a direct application of Th. 3, let us consider the abstraction of all paths
Π(𝐺) into the paths between any two vertices. This is p ≜ 𝛼⧟(Π(𝐺)) with the
projection abstraction

Abstract Interpretation of Graphs 9

𝛼⧟(𝑋) ≜ 𝜆 (𝑦, 𝑧) . {𝑥1…𝑥𝑛 ∈ 𝑋 ∣ 𝑦 = 𝑥1 ∧ 𝑥𝑛 = 𝑧}
𝛾⧟(p) ≜ ⋃

⟨𝑥, 𝑦⟩∈𝑉×𝑉
p(𝑥, 𝑦)

such that
⟨℘(𝑉>1), ⊆, ∪⟩ −−−−−−→←−−−−−−𝛼⧟

𝛾⧟
⟨𝑉 × 𝑉→℘(𝑉>1), ⊆̇, ∪̇⟩ (3)

where p ⊆̇ p′ ⇔ ∀𝑥, 𝑦 ∈ 𝑉 . p(𝑥, 𝑦) ⊆ p′(𝑥, 𝑦) and (⋃̇
𝑖∈Δ

p𝑖)(𝑥, 𝑦) ≜ ⋃
𝑖∈Δ
(p𝑖(𝑥, 𝑦)) are

defined pointwise.
By (1) and the abstraction in Galois connections preserves existing joins, we

have

p(𝑦, 𝑧) ≜ ⋃
𝑛∈N∗

p𝑛(𝑦, 𝑧) (4)

p𝑛(𝑦, 𝑧) ≜ {𝑥1…𝑥𝑛 ∈ Π𝑛(𝐺) ∣ 𝑦 = 𝑥1 ∧ 𝑥𝑛 = 𝑧}
= {𝑥1…𝑥𝑛 ∈ 𝑉𝑛 ∣ 𝑦 = 𝑥1 ∧ 𝑥𝑛 = 𝑧 ∧ ∀𝑖 ∈ [1, 𝑛[. ⟨𝑥𝑖, 𝑥𝑖+1⟩ ∈ 𝐸}.

p(𝑥, 𝑥) is empty if and only if there is no cycle from 𝑥 to 𝑥 (which requires, in
particular, that the graph has no self-loops i.e. ∀𝑥 ∈ 𝑉 . ⟨𝑥, 𝑥⟩ ∉ 𝐸). We define
the concatenation of finite paths

𝑥1…𝑥𝑛 ⊙ 𝑦1𝑦2…𝑦𝑚 ≜ 𝑥1…𝑥𝑛𝑦2…𝑦𝑚 if 𝑥𝑛 = 𝑦1 (5)
≜ undefined otherwise

As a direct application of the path problem Th. 3, we have the following fixpoint
characterization of the paths of a graph between any two vertices [7, Sect. 5],
which, by Kleene-Scott fixpoint theorem, yields an iterative algorithm (converg-
ing in finitely many iterations for graphs without infinite paths).

Theorem 4 (Fixpoint characterization of the paths of a graph be-
tween any two vertices) Let 𝐺 = ⟨𝑉, 𝐸⟩ be a graph. The paths between
any two vertices of 𝐺 are p = 𝛼⧟(Π(𝐺)) such that

p = lfp ⊆̇𝓛⧟Π, 𝓛⧟Π(p) ≜ �̇� ∪̇ p ⧟̇⦾ �̇� (Th.4.a)

= lfp ⊆̇𝓡⧟Π, 𝓡⧟Π(p) ≜ �̇� ∪̇ �̇�
⧟̇⦾ p (Th.4.b)

= lfp ⊆̇𝓑⧟Π, 𝓑⧟Π(p) ≜ �̇� ∪̇ p ⧟̇⦾ p (Th.4.c)

= lfp ⊆̇̇𝐸𝓟⧟Π, 𝓟⧟Π(p) ≜ p ∪̇ p ⧟̇⦾ p (Th.4.d)

where �̇� ≜ 𝜆 𝑥, 𝑦 . (𝐸 ∩ {⟨𝑥, 𝑦⟩}) and p1
⧟̇⦾ p2 ≜ 𝜆𝑥, 𝑦 . ⋃

𝑧∈𝑉
p1(𝑥, 𝑧)⦾ p2(𝑧, 𝑦).

⊓⊔

–

–

Proof (of Th. 4) We apply Th. 3 with 𝛼⧟(𝐸) = 𝜆 𝑥, 𝑦 . (𝐸 ∩ {⟨𝑥, 𝑦⟩}) = �̇� and
𝛼⧟(𝑋⦾ 𝑌)

= 𝜆 (𝑥, 𝑦) . {𝑧1…𝑧𝑛 ∈ 𝑋⦾ 𝑌 ∣ 𝑥 = 𝑧1 ∧ 𝑧𝑛 = 𝑦} Hdef. (3) of 𝛼⧟I

10 P. Cousot

= 𝜆 (𝑥, 𝑦) . {𝑧1…𝑧𝑛 ∈ {𝑥1…𝑥𝑘𝑦2…𝑦𝑚 ∣ 𝑥1…𝑥𝑘 ∈ 𝑋 ∧ 𝑥𝑘𝑦2…𝑦𝑚 ∈ 𝑌} ∣ 𝑥 =
𝑧1 ∧ 𝑧𝑛 = 𝑦} Hdef. (2) of ⦾I

= 𝜆 (𝑥, 𝑦) . ⋃
𝑧∈𝑉
{𝑥𝑥2…𝑥𝑘−1𝑧𝑦2…,𝑦𝑚−1𝑦 ∣ 𝑥𝑥2…𝑥𝑘−1𝑧 ∈ 𝑋 ∧ 𝑧𝑦2…𝑦𝑚−1𝑦 ∈ 𝑌}

Hdef. ∈ and ∪ with 𝑥 = 𝑥1, 𝑦𝑚 = 𝑦, and 𝑧 = 𝑥𝑘I
= 𝜆 (𝑥, 𝑦) . ⋃

𝑧∈𝑉
{𝑥𝑥2…𝑥𝑘−1𝑧 ⊙ 𝑧𝑦2…𝑦𝑚−1𝑦 ∣ 𝑥𝑥2…𝑥𝑘−1𝑧 ∈ 𝑋 ∧ 𝑧𝑦2…𝑦𝑚−1𝑦 ∈ 𝑌}

Hdef. (5) of ⊙I
= 𝜆 (𝑥, 𝑦) . ⋃

𝑧∈𝑉
{𝑝 ⊙ 𝑝′ ∣ 𝑝 ∈ 𝛼⧟(𝑋)(𝑦, 𝑧) ∧ 𝑝′ ∈ 𝛼⧟(𝑌)(𝑧, 𝑦)}

Hdef. 𝛼⧟(𝑋) with 𝑝 = 𝑥𝑥2…𝑥𝑘−1𝑧 and 𝑝′ = 𝑧𝑦2…𝑦𝑚−1𝑦I
= 𝛼⧟(𝑋) ⧟̇⦾ 𝛼⧟(𝑌)

by defining 𝑋 ⧟̇⦾ 𝑌 ≜ 𝜆 (𝑥, 𝑦) . ⋃𝑧∈𝑉{𝑝 ⊙ 𝑝′ ∣ 𝑝 ∈ 𝑋(𝑦, 𝑧) ∧ 𝑝′ ∈ 𝑌(𝑧, 𝑦)} =
𝜆 (𝑥, 𝑦) . ⋃𝑧∈𝑉𝑋(𝑦, 𝑧)⦾ 𝑌(𝑧, 𝑦) by (2) and (5). ⊓⊔

7 Shortest distances between any two vertices of a
weighted graph

We now consider weighted graphs ⟨𝑉, 𝐸, 𝛚⟩ on a totally ordered group ⟨𝔾, ⩽, 0,
+⟩ and extend weights from edges to paths. The weight of a path is

𝛚(𝑥1…𝑥𝑛) ≜
𝑛−1
∑
𝑖=1
𝛚(⟨𝑥𝑖, 𝑥𝑖+1⟩) (6)

which is 0 when 𝑛 ⩽ 1 and
𝑛−1
∑
𝑖=1
𝛚(⟨𝑥𝑖, 𝑥𝑖+1⟩) when 𝑛 > 1, in particular 𝛚(⟨𝑥1, 𝑥2⟩)

when 𝑛 = 2. The (minimal) weight of a set of paths is

𝛚(𝑃) ≜ min{𝛚(𝜋) ∣ 𝜋 ∈ 𝑃}. (7)

We have 𝛚(⋃
𝑖∈Δ
𝑃𝑖) = min

𝑖∈Δ
𝛚(𝑃𝑖) so a Galois connection

⟨℘(⋃
𝑛∈N∗
𝑉 𝑛), ⊆⟩ −−−−−→←−−−−−𝛚

𝛾𝛚 ⟨𝔾 ∪ {−∞,∞}, ⩾⟩

between path sets and the complete lattice ⟨𝔾∪ {−∞,∞}, ⩾, ∞, −∞, min, max⟩
and 𝛾𝛚(d) ≜ {𝜋 ∈ ⋃𝑛∈N∗ 𝑉

𝑛 ∣ 𝛚(𝜋) ⩾ d}.
Extending pointwise to 𝑉 × 𝑉→℘(⋃𝑛∈N∗ 𝑉

𝑛) with �̇�(p)⟨𝑥, 𝑦⟩ ≜ 𝛚(p(𝑥, 𝑦)), d ⩽̇
d′ ≜ ∀𝑥, 𝑦 . d⟨𝑥, 𝑦⟩ ⩽ d′⟨𝑥, 𝑦⟩, and ⩾̇ is the inverse of ⩽̇, we have

⟨𝑉 × 𝑉→℘(⋃
𝑛∈N∗
𝑉 𝑛), ⊆̇⟩ −−−−−→←−−−−−�̇�

̇𝛾𝛚 ⟨𝑉 × 𝑉→𝔾 ∪ {−∞,∞}, ⩾̇⟩. (8)

Abstract Interpretation of Graphs 11

The distance d(𝑥, 𝑦) between an origin 𝑥 ∈ 𝑉 and an extremity 𝑦 ∈ 𝑉 of a
weighted finite graph 𝐺 = ⟨𝑉, 𝐸, 𝛚⟩ on a totally ordered group ⟨𝔾, ⩽, 0, +⟩ is the
length 𝛚(p(𝑥, 𝑦)) of the shortest path between these vertices

d ≜ �̇�(p)

where p has a fixpoint characterization given by Th. 4.

8 Calculational design of the shortest distances between
any two vertices

The shortest distance between vertices of a weighted graph is a path problem
solved by Th. 3, the composition of the abstractions and (8) and (3), and the
path abstraction Th. 3. Th. 5 is based on (Th.3.d), (Th.3.a—c) provide three
other solutions.

Theorem 5 (Fixpoint characterization of the shortest distances
of a graph) Let 𝐺 = ⟨𝑉, 𝐸, 𝛚⟩ be a graph weighted on the totally ordered
group ⟨𝔾, ⩽, 0, +⟩. Then the distances between any two vertices are
d= �̇�(p) =gfp ⩽̇𝐸𝛚𝓟𝛿𝐺 where (Th.5)
𝐸𝛚 ≜ 𝜆 (𝑥, 𝑦) . (⟨𝑥, 𝑦⟩ ∈ 𝐸 ? 𝛚(𝑥, 𝑦) :∞)

𝓟𝛿𝐺(𝑋)≜ 𝜆 (𝑥, 𝑦) . min{𝑋(𝑥, 𝑦),min
𝑧∈𝑉
{𝑋(𝑥, 𝑧) + 𝑋(𝑧, 𝑦)}} ⊓⊔

–

–

Proof (of Th. 5) We apply Th. 3 with abstraction �̇� ∘ 𝛼⧟ so that we have
to abstract the transformers in Th. 4 using an exact fixpoint abstraction of
Cor. 1. The initialization and commutation condition yield the transformers by
calculational design.
�̇� ∘ 𝛼⧟(𝐸)(𝑥, 𝑦)

= 𝛚(𝐸 ∩ {⟨𝑥, 𝑦⟩}) Has proved for Th. 4 and def. �̇�I
= (⟨𝑥, 𝑦⟩ ∈ 𝐸 ? 𝛚(𝑥, 𝑦) : min∅) Hdef. ∩, conditional, and 𝛚I
= (⟨𝑥, 𝑦⟩ ∈ 𝐸 ? 𝛚(𝑥, 𝑦) :∞) Hdef. minI
�̇� ∘ 𝛼⧟(𝑋⦾ 𝑌)(𝑥, 𝑦)

= �̇�(𝛼⧟(𝑋) ⧟̇⦾ 𝛼⧟(𝑌))(𝑥, 𝑦) Has proved for Th. 4I
= 𝛚(𝛼⧟(𝑋) ⧟̇⦾ 𝛼⧟(𝑌))(𝑥, 𝑦)) Hpointwise def. (8) of �̇�I
= 𝛚(⋃
𝑧∈𝑉
𝛼⧟(𝑋)(𝑥, 𝑧)⦾ 𝛼⧟(𝑌)(𝑧, 𝑦))) Hdef. ⧟̇⦾ in Th. 4I

= min
𝑧∈𝑉
𝛚(𝛼⧟(𝑋)(𝑥, 𝑧)⦾ 𝛼⧟(𝑌)(𝑧, 𝑦))) HGalois connection (7)I

= min
𝑧∈𝑉
𝛚({𝑥1…𝑥𝑛𝑦2…𝑦𝑚 ∣ 𝑥1…𝑥𝑛 ∈ 𝛼⧟(𝑋)(𝑥, 𝑧) ∧ 𝑥𝑛𝑦2…𝑦𝑚 ∈ 𝛼⧟(𝑌)(𝑧, 𝑦)})Hdef. (2) of ⦾I

= min
𝑧∈𝑉
{𝛚(𝑥1…𝑥𝑛𝑦2…𝑦𝑚) ∣ 𝑥1…𝑥𝑛 ∈ 𝛼⧟(𝑋)(𝑥, 𝑧) ∧ 𝑥𝑛𝑦2…𝑦𝑚 ∈ 𝛼⧟(𝑌)(𝑧, 𝑦)})

12 P. Cousot

Hdef. (7) of 𝛚I
= min
𝑧∈𝑉
{𝛚(𝑥1…𝑥𝑛) + 𝛚(𝑥𝑛𝑦2…𝑦𝑚) ∣ 𝑥1…𝑥𝑛 ∈ 𝛼⧟(𝑋)(𝑥, 𝑧) ∧ 𝑥𝑛𝑦2…𝑦𝑚 ∈
𝛼⧟(𝑌)(𝑧, 𝑦)}) Hdef. (6) of 𝛚I

= min
𝑧∈𝑉
{𝛚(𝑥1…𝑥𝑛) + 𝛚(𝑦1𝑦2…𝑦𝑚) ∣ 𝑥1…𝑥𝑛 ∈ 𝛼⧟(𝑋)(𝑥, 𝑧) ∧ 𝑦1𝑦2…𝑦𝑚 ∈
𝛼⧟(𝑌)(𝑧, 𝑦)}) Hdef. 𝛼⧟ so that 𝑥1 = 𝑥, 𝑥𝑛 = 𝑦1 = 𝑧, and 𝑦𝑚 = 𝑦I

= min
𝑧∈𝑉

min{𝛚(𝑥1…𝑥𝑛) ∣ 𝑥1…𝑥𝑛 ∈ 𝛼⧟(𝑋)(𝑥, 𝑧)}+min{𝛚(𝑦1𝑦2…𝑦𝑚) ∣ 𝑦1𝑦2…𝑦𝑚 ∈
𝛼⧟(𝑌)(𝑧, 𝑦)} Hmin of a sumI

= min
𝑧∈𝑉

min{𝛚(𝜋1) ∣ 𝜋1 ∈ 𝛼⧟(𝑋)(𝑥, 𝑧)} +min{𝛚(𝜋2) ∣ 𝜋2 ∈ 𝛼⧟(𝑌)(𝑧, 𝑦)}Hletting 𝜋1 = 𝑥1…𝑥𝑛 and 𝜋2 = 𝑦1𝑦2…𝑦𝑚I
= min
𝑧∈𝑉
𝛚(𝛼⧟(𝑋)(𝑥, 𝑧)) + 𝛚(𝛼⧟(𝑌)(𝑧, 𝑦)) Hdef. (7) of 𝛚I

= min
𝑧∈𝑉
�̇� ∘ 𝛼⧟(𝑋)(𝑥, 𝑧) + �̇� ∘ 𝛼⧟(𝑌)(𝑧, 𝑦) Hpointwise def. (8) of �̇�I

By Th. 3 and (Th.4.d), we get the transformer 𝓟𝛿𝐺. ⊓⊔

Of course the greatest fixpoint in Th. 5 is not computable for infinite graphs.
For finite graphs, there is a problem with cycles with strictly negative weights.
As shown by the graph ⟨{𝑥}, {⟨𝑥, 𝑥⟩, 𝛚⟩ with 𝛚(⟨𝑥, 𝑥⟩) = −1, the minimal distance
between the extremities 𝑥 and 𝑥 of the paths {𝑥𝑛 ∣ 𝑛 > 1} is −∞. It is obtained
as the limit of an infinite iteration for the greatest fixpoint in Th. 5. Following
Roy-Floyd-Warshall, we will assume that the graph has no cycle with negative
weight in which case the iterative computation of the greatest fixpoint in Th. 5
does converge in finite time to the shortest distance between any two vertices.

For a finite graph of 𝑛 vertices, the computation of gfp ⩽̇𝐸𝛚𝓟𝛿𝐺 in (Th.5) has to
consider all pairs of vertices in 𝑛2, for each such pair ⟨𝑥, 𝑦⟩ the 𝑛 vertices 𝑧 ∈ 𝑉,
and 𝑛 iterations may be necessary to converge along an elementary path (with
no cycles) going through all vertices, so considering elementary paths only, the
computation would be in O(𝑛4).

However, the iteration in Roy-Floyd-Warshall algorithm is much more effi-
cient in O(𝑛3), since it does not consider all elementary paths in the graph but
only simple paths that over-approximate elementary paths, which simplifies the
iterated function (from linear to constant time for each pair of vertices). Let us
design the Roy-Floyd-Warshall algorithm by calculus.

9 Elementary paths and cycles

A cycle is elementary if and only if it contains no internal subcycle (i.e. subpath
which is a cycle). A path is elementary if and only if it contains no subpath
which is an internal cycle (so an elementary cycle is an elementary path). The
only vertices that can occur twice in an elementary path are its extremities in
which case it is an elementary cycle.

Abstract Interpretation of Graphs 13

Lemma 1 (elementary path) A path 𝑥1…𝑥𝑛 ∈ Π𝑛(𝐺) is elementary if
and only if

elem?(𝑥1…𝑥𝑛) ≜ (∀𝑖, 𝑗 ∈ [1, 𝑛] . (𝑖 ≠ 𝑗) ⇒ (𝑥𝑖 ≠ 𝑥𝑗)) ∨ (Lem.1)
(𝑥1 = 𝑥𝑛 ∧ ∀𝑖, 𝑗 ∈ [1, 𝑛[. (𝑖 ≠ 𝑗) ⇒ (𝑥𝑖 ≠ 𝑥𝑗)) (case of a cycle)

is true.

–

–

Proof (of Lem. 1)
The necessary condition (i.e. 𝑥1…𝑥𝑛 ∈ Π𝑛(𝐺) is elementary implies that

elem?(𝑥1…𝑥𝑛)) is proved contrapositively.
¬(elem?(𝑥1…𝑥𝑛))

= ¬((∀𝑖, 𝑗 ∈ [1, 𝑛] . (𝑖 ≠ 𝑗) ⇒ (𝑥𝑖 ≠ 𝑥𝑗)) ∨ (𝑥1 = 𝑥𝑛 ∧ elem?(𝑥1…𝑥𝑛))) Hdef. elem?I
= (∃𝑖, 𝑗 ∈ [1, 𝑛] . 𝑖 ≠ 𝑗 ∧ 𝑥𝑖 = 𝑥𝑗) ∧ ((𝑥1 = 𝑥𝑛) ⇒ (∃𝑖, 𝑗 ∈ [1, 𝑛[. 𝑖 ≠ 𝑗 ∧ 𝑥𝑖 ≠ 𝑥𝑗))HDe Morgan lawsI
By ∃𝑖, 𝑗 ∈ [1, 𝑛] . 𝑖 ≠ 𝑗 ∧ 𝑥𝑖 = 𝑥𝑗 the path 𝑥1…𝑥𝑛 must have a cycle, but this is
not forbidden if 𝑥1 = 𝑥𝑛. In that case, the second condition (𝑥1 = 𝑥𝑛) ⇒ (∃𝑖, 𝑗 ∈
[1, 𝑛[. 𝑖 ≠ 𝑗 ∧ 𝑥𝑖 ≠ 𝑥𝑗) implies that there is a subcycle within 𝑥1…𝑥𝑛−1, so the
cycle 𝑥1…𝑥𝑛−1𝑥1 is not elementary.

Conversely, the sufficient condition (elem?(𝑥1…𝑥𝑛) ⇒ 𝑥1…𝑥𝑛 ∈ Π𝑛(𝐺) is
elementary) is proved by reductio ad absurdum. Assume elem?(𝑥1…𝑥𝑛) and
𝑥1…𝑥𝑛 ∈ Π𝑛(𝐺) is not elementary so has an internal subcycle.

– If 𝑥1 = 𝑥𝑛, the internal subcycle is 𝑥1…𝑥𝑛−1 = 𝜋1𝑎𝜋2𝑎𝜋3 so ∃𝑖, 𝑗 ∈ [1, 𝑛[. 𝑖 ≠
𝑗 ∧ 𝑥𝑖 ≠ 𝑥𝑗 in contradiction with elem?(𝑥1…𝑥𝑛).

– Otherwise 𝑥1 ≠ 𝑥𝑛 and the internal subcycle has the form 𝑥1…𝑥𝑛 = 𝜋1𝑎𝜋2𝑎𝜋3
where, possibly 𝜋1𝑎 = 𝑥1 or 𝑎𝜋3 = 𝑥𝑛, but not both, so ∃𝑖, 𝑗 ∈ [1, 𝑛] . 𝑖 ≠ 𝑗 ∧𝑥𝑖 ≠
𝑥𝑗 in contradiction with elem?(𝑥1…𝑥𝑛).

⊓⊔

10 Calculational design of the elementary paths between
any two vertices

Restricting paths to elementary ones is the abstraction

𝛼

e

(𝑃) ≜ {𝜋 ∈ 𝑃 ∣ elem?(𝜋)}
𝛾

e

(𝑃) ≜ 𝑃 ∪ {𝜋 ∈ ℘(𝑉>1) ∣ ¬elem?(𝜋)}

Notice that, by (Lem.1), cycles (such as 𝑥, 𝑥 for a self-loop ⟨𝑥, 𝑥⟩ ∈ 𝐸) are not
excluded, provided it is through the path extremities. This exclusion abstraction
is a Galois connection.

⟨℘(𝑉>1), ⊆⟩ −−−−−→←−−−−−
𝛼

e

𝛾

e

⟨℘(𝑉>1), ⊆⟩

which extends pointwise between any two vertices

14 P. Cousot

⟨𝑉 × 𝑉→℘(𝑉>1), ⊆̇⟩ −−−−−→←−−−−−
�̇�

e

̇𝛾

e

⟨𝑉 × 𝑉→℘(𝑉>1), ⊆̇⟩

The following Lem. 2 provides a necessary and sufficient condition for the con-
catenation of two elementary paths to be elementary.

Lemma 2 (concatenation of elementary paths) If 𝑥𝜋1𝑧 and 𝑧𝜋2𝑦 are
elementary paths then their concatenation 𝑥𝜋1𝑧⊙𝑧𝜋2𝑦 = 𝑥𝜋1𝑧𝜋2𝑦 is elemen-
tary if and only if
elem-conc?(𝑥𝜋1𝑧, 𝑧𝜋2𝑦) ≜ (𝑥 ≠ 𝑧 ∧ 𝑦 ≠ 𝑧 ∧V(𝑥𝜋1𝑧) ∩V(𝜋2𝑦) = ∅) (Lem.2)

∨ (𝑥 = 𝑦 ≠ 𝑧 ∧V(𝜋1𝑧) ∩V(𝜋2) = ∅)
is true.

–

–

Proof (of Lem. 2) Assuming 𝑥𝜋1𝑧 and 𝑧𝜋2𝑦 to be elementary, we must prove
that elem-conc?(𝑥𝜋1𝑧, 𝑧𝜋2𝑦) is true ⇔ 𝑥𝜋1𝑧 ⊙ 𝑧𝜋2𝑦 = 𝑥𝜋1𝑧𝜋2𝑦 is elementary.

We prove the necessary condition (𝜋1⊙𝜋2 is elementary⇒ elem-conc?(𝜋1, 𝜋2))
by contraposition (¬elem-conc?(𝜋1, 𝜋2) ⇒ 𝜋1 ⊙𝜋2 has an internal cycle). We have
¬((𝑥 ≠ 𝑧 ∧ 𝑦 ≠ 𝑧 ∧V(𝑥𝜋1𝑧) ∩V(𝜋2𝑦) = ∅) ∨ (𝑥 = 𝑦 ∧ 𝑥 ≠ 𝑧 ∧ 𝑦 ≠ 𝑧 ∧V(𝜋1𝑧) ∩
V(𝜋2) = ∅))

= (𝑥 = 𝑧∨𝑦 = 𝑧∨(V(𝑥𝜋1𝑧)∩V(𝜋2𝑦) ≠ ∅)∧(𝑥 ≠ 𝑦∨𝑥 = 𝑧∨𝑦 = 𝑧∨V(𝜋1𝑧)∩V(𝜋2) ≠
∅)) Hde Morgan lawsI

– If 𝑥 = 𝑧 then 𝑥𝜋1𝑥𝜋2𝑦 has a cycle and is not elementary;
– else, if 𝑦 = 𝑧 then 𝑥𝜋1𝑦𝜋2𝑦 has a cycle and is not elementary;
– else 𝑥 ≠ 𝑧 ∧ 𝑦 ≠ 𝑧, and then
• either 𝑥 ≠ 𝑧 ∧ 𝑦 ≠ 𝑧 ∧ 𝑥 = 𝑦 so V(𝜋1𝑧) ∩V(𝜋2) ≠ ∅. There are two cases

∗ either V(𝜋1) ∩ V(𝜋2) ≠ ∅ so 𝜋1 = 𝜋′1𝑎𝜋″1 and 𝜋2 = 𝜋′2𝑎𝜋″2 and therefore
𝜋1 ⊙ 𝜋2 = 𝑥𝜋1𝑧𝜋2𝑦 = 𝑥𝜋′1𝑎𝜋″1𝑧𝜋′2𝑎𝜋″2𝑥 has an internal cycle 𝑎𝜋″1𝑧𝜋′2𝑎,

∗ or 𝑧 ∈ V(𝜋2) so 𝜋2 = 𝜋′2𝑧𝜋″2 and therefore 𝜋1⊙𝜋2 = 𝑥𝜋1𝑧𝜋2𝑦 = 𝑥𝜋1𝑧𝜋′2𝑧𝜋″2𝑥
has an internal cycle 𝑧𝜋′2𝑧;

• otherwise 𝑥 ≠ 𝑧∧𝑦 ≠ 𝑧∧𝑥 ≠ 𝑦 and we have V(𝑥𝜋1𝑧)∩V(𝜋2𝑦) ≠ ∅. By cases.
∗ If 𝑥 appears in 𝜋2𝑦 that is in 𝜋2 since 𝑥 ≠ 𝑦 we have 𝜋2 = 𝜋′2𝑥𝜋″2 and then
𝑥𝜋1𝑧 ⊙ 𝑧𝜋2𝑦 = 𝑥𝜋1𝑧𝜋2𝑦 = 𝑥𝜋1𝑧𝜋′2𝑥𝜋″2𝑦 has an internal cycle 𝑥𝜋1𝑧𝜋′2𝑥;

∗ Else, if V(𝜋1) ∩V(𝜋2𝑦) ≠ ∅ then
· Either V(𝜋1) ∩V(𝜋2) ≠ ∅ so 𝜋1 = 𝜋′1𝑎𝜋″1 and 𝜋2 = 𝜋′2𝑎𝜋″2 and therefore
𝑥𝜋1𝑧⊙𝑧𝜋2𝑦 = 𝑥𝜋1𝑧𝜋2𝑦 = 𝑥𝜋′1𝑎𝜋″1𝑧𝜋′2𝑎𝜋″2𝑥 has an internal cycle 𝑎𝜋″1𝑧𝜋′2𝑎,

· Or 𝑦 ∈ V(𝜋1) so 𝜋1 = 𝜋′1𝑦𝜋″1 and then 𝑥𝜋1𝑧 ⊙ 𝑧𝜋2𝑦 = 𝑥𝜋1𝑧𝜋2𝑦 =
𝑥𝜋′1𝑦𝜋″1𝑧𝜋2𝑦 has an internal cycle 𝑦𝜋″1𝑧𝜋2𝑦;

∗ Otherwise, 𝑧 ∈ V(𝜋2𝑦) ≠ ∅ and then
· Either 𝑧 ∈ V(𝜋2) so 𝜋2 = 𝜋′2𝑧𝜋″2 and 𝑥𝜋1𝑧⊙𝑧𝜋2𝑦 = 𝑥𝜋1𝑧𝜋2𝑦 = 𝑥𝜋1𝑧𝜋′2𝑧𝜋″2𝑦

has an internal cycle 𝑧𝜋′2𝑧,
· Or 𝑧 = 𝑦 and 𝑥𝜋1𝑧 ⊙ 𝑧𝜋2𝑦 = 𝑥𝜋1𝑧𝜋2𝑦 = 𝑥𝜋1𝑧𝜋2𝑧 has an internal cycle
𝑧𝜋2𝑧.

Abstract Interpretation of Graphs 15

We prove that the condition is sufficient (elem-conc?(𝜋1, 𝜋2) ⇒ 𝜋1 ⊙ 𝜋2 is
elementary) by reductio ad absurdum. Assume 𝑥𝜋1𝑧, and 𝑧𝜋2𝑦 are elementary,
elem-conc?(𝑥𝜋1𝑧, 𝑧𝜋2𝑦) holds, but that 𝑥𝜋1𝑧⊙ 𝑧𝜋2𝑦 = 𝑥𝜋1𝑧𝜋2𝑦 is not elementary.

– if the internal cycle is in 𝑥𝜋1𝑧 then, by hypothesis, 𝑥 = 𝑧 so elem-conc?(𝑥𝜋1𝑧,
𝑧𝜋2𝑦) does not hold, a contradiction;

– else, if the internal cycle is in 𝑧𝜋2𝑦 then, by hypothesis, 𝑧 = 𝑦 so elem-conc?(𝑥𝜋1𝑧,
𝑧𝜋2𝑦) does not hold, a contradiction;

– otherwise, the internal cycle is neither in 𝑥𝜋1𝑧 nor in 𝑧𝜋2𝑦 so V(𝑥𝜋1𝑧) ∩
V(𝜋2𝑦) ≠ ∅. Since elem-conc?(𝜋1, 𝜋2) holds, it follows that 𝑥 = 𝑦 ≠ 𝑧 ∧
V(𝜋1𝑧) ∩V(𝜋2) = ∅ in contradiction with the existence of an internal cycle
𝑎𝜋″𝜋′2𝑎 requiring 𝜋1𝑧 = 𝜋′𝑎𝜋″ and 𝜋2 = 𝜋′2𝑎𝜋″2 so 𝑎 ∈ V(𝜋′𝑎𝜋″) ∩V(𝜋′2𝑎𝜋″2) =
V(𝜋1𝑧) ∩V(𝜋2) ≠ ∅.

⊓⊔

We have the following fixpoint characterization of the elementary paths of a
graph (converging in finitely many iterations for graphs without infinite paths).

Theorem 6 (Fixpoint characterization of the elementary paths of
a graph) Let 𝐺 = ⟨𝑉, 𝐸⟩ be a graph. The elementary paths between any two
vertices of 𝐺 are p

e

≜ 𝛼⧟ ∘ 𝛼

e

(Π(𝐺)) such that
p

e

= lfp ⊆̇𝓛 e

Π, 𝓛 e

Π(p) ≜ �̇� ∪̇ p ⦾̇

e

�̇� (Th.6.a)
= lfp ⊆̇𝓡 e

Π, 𝓡 e

Π(p) ≜ �̇� ∪̇ �̇� ⦾̇
e

p (Th.6.b)
= lfp ⊆̇𝓑 e

Π, 𝓑 e

Π(p) ≜ �̇� ∪̇ p ⦾̇

e

p (Th.6.c)
= lfp ⊆̇̇𝐸𝓟

e

Π, 𝓟 e

Π(p) ≜ p ∪̇ p ⦾̇

e

p (Th.6.d)

where �̇� ≜ 𝜆 𝑥, 𝑦 . (𝐸 ∩ {⟨𝑥, 𝑦⟩}) in Th. 4 and p1 ⦾̇

e

p2 ≜ 𝜆𝑥, 𝑦 . ⋃
𝑧∈𝑉
{𝜋1 ⊙ 𝜋2 |

𝜋1 ∈ p1(𝑥, 𝑧) ∧ 𝜋2 ∈ p2(𝑧, 𝑦) ∧ elem-conc?(𝜋1, 𝜋2)}. ⊓⊔

–

–

The definition of p

e

in Th. 6 is left-recursive in case (a), right recursive in case
(b), bidirectional in case (c), and on paths only in case (d).

Proof (of Th. 6) We apply Th. 3 with abstraction �̇�

e

∘ 𝛼⧟ so that we have to
abstract the transformers in Th. 4 using an exact fixpoint abstraction of Cor. 1.
The commutation condition yields the transformers by calculational design.
�̇�

e

(p1
⧟̇⦾ p2)

= �̇�

e

(𝜆 𝑥, 𝑦 . ⋃
𝑧∈𝑉

p1(𝑥, 𝑧)⦾ p2(𝑧, 𝑦)) Hdef. ⧟̇⦾ in Th. 4I
= 𝜆𝑥, 𝑦 .𝛼 e

(⋃
𝑧∈𝑉

p1(𝑥, 𝑧)⦾ p2(𝑧, 𝑦)) Hpointwise def. �̇�

eI
= 𝜆𝑥, 𝑦 .⋃

𝑧∈𝑉
𝛼

e

(p1(𝑥, 𝑧)⦾ p2(𝑧, 𝑦))

Hjoin preservation of the abstraction in a Galois connectionI

16 P. Cousot

= 𝜆𝑥, 𝑦 . ⋃
𝑧∈𝑉
𝛼

e

({𝜋1 ⊙ 𝜋2 ∣ 𝜋1 ∈ p1(𝑥, 𝑧) ∧ 𝜋2 ∈ p2(𝑧, 𝑦)}) Hdef. (2) of ⦾ and (5) of

⊙I
= 𝜆𝑥, 𝑦 . ⋃

𝑧∈𝑉
𝛼

e

({𝜋1 ⊙ 𝜋2 ∣ 𝜋1 ∈ 𝛼

e

(p1(𝑥, 𝑧)) ∧ 𝜋2 ∈ 𝛼

e

(p2(𝑧, 𝑦))})

Hsince if 𝜋1 or 𝜋2 are not elementary so is their concatenation 𝜋1 ⊙ 𝜋2I
= 𝜆𝑥, 𝑦 . ⋃

𝑧∈𝑉
{𝜋1 ⊙ 𝜋2 ∣ 𝜋1 ∈ 𝛼

e

(p1(𝑥, 𝑧)) ∧ 𝜋2 ∈ 𝛼

e

(p2(𝑧, 𝑦)) ∧ elem-conc?(𝜋1, 𝜋2)}

Hsince, by Lem. 2, 𝜋1 and 𝜋2 being elementary, their concatenation 𝜋1⊙𝜋2
is elementary if and only if elem-conc?(𝜋1, 𝜋2) is trueI

= 𝜆𝑥, 𝑦 . ⋃
𝑧∈𝑉
{𝜋1 ⊙ 𝜋2 ∣ 𝜋1 ∈ �̇�

e

(p1)(𝑥, 𝑧) ∧ 𝜋2 ∈ �̇�

e

(p2)(𝑧, 𝑦) ∧ elem-conc?(𝜋1, 𝜋2)}Hpointwise def. �̇�

eI
= �̇�

e

(p1) ⦾̇

e

�̇�

e

(p2) Hdef. ⦾̇

e

in Th. 6I ⊓⊔
11 Calculational design of the elementary paths between

vertices of finite graphs

In finite graphs 𝐺 = ⟨𝑉, 𝐸⟩ with |𝑉| = 𝑛 > 0 vertices, elementary paths in 𝐺 are of
length at most 𝑛+1 (for a cycle that would go through all vertices of the graph).
This ensures that the fixpoint iterates in Th. 6 starting from ∅̇ do converge in
at most 𝑛 + 2 iterates.

Moreover, if 𝑉 = {𝑧1…𝑧𝑛} is finite, then the elementary paths of the 𝑘 + 2nd

iterate can be restricted to {𝑧1,… , 𝑧𝑘}. This yields an iterative algorithm by
application of the exact iterates multi-abstraction Th. 1 with1

𝛼

e

0 (p) ≜ p (9)
𝛼

e

𝑘(p) ≜ 𝜆 𝑥, 𝑦 . {𝜋 ∈ p(𝑥, 𝑦) ∣ V(𝜋) ⊆ {𝑧1,… , 𝑧𝑘} ∪ {𝑥, 𝑦}}, 𝑘 ∈ [1, 𝑛]
𝛼

e

𝑘(p) ≜ p, 𝑘 > 𝑛

By the exclusion abstraction and pointwise extension, these are Galois connec-
tions

⟨𝑉 × 𝑉→℘(𝑉>1), ⊆̇⟩ −−−−−→←−−−−−
𝛼

e

𝑘

𝛾

e

𝑘 ⟨𝑉 × 𝑉→
𝑛+1
⋃
𝑗=2
𝑉𝑗, ⊆̇⟩. (10)

with 𝛾

e

𝑘(p) ≜ p for 𝑘 = 0 or 𝑘 > 𝑛 and 𝛾

e

𝑘(p) ≜ p ∪̇ 𝜆 𝑥, 𝑦 . {𝑥𝜋𝑦 ∣ V(𝑥𝜋𝑦) ⊈
{𝑧1,… , 𝑧𝑘} ∪ {𝑥, 𝑦}} when 𝑘 ∈ [1, 𝑛].

Applying Th. 1, we get the following iterative characterization of the ele-
mentary paths of a finite graph. Notice that ⦾̇𝑧 in (Th.7.a) and (Th.7.b) does
not require to test that the concatenation of two elementary paths is elemen-
tary while ⦾̇

e

𝑧 in (Th.7.c) and (Th.7.d) definitely does (since the concatenated
elementary paths may have vertices in common). Notice also that the iteration
⟨𝓛 e

𝜋
𝑘, 𝑘 ∈ [0, 𝑛 + 2]⟩ in (Th.7.a) is not the same as the iterates ⟨𝓛 e

Π
𝑘(∅̇), 𝑘 ∈ N⟩

1 This is for case (Th.7.d). For cases (a–c), we also have 𝛼

e

1 (p) ≜ p while the second
definition is for 𝑘 ∈ [2, 𝑛 + 2].

Abstract Interpretation of Graphs 17

of 𝓛 e

Π from ∅̇, since using ⦾̇𝑧 or ⦾̇

e

𝑧 instead of ⦾̇

e

is the key to efficiency. This
is also the case for (Th.7.b—d).

Theorem 7 (Iterative characterization of the elementary paths
of a finite graph) Let 𝐺 = ⟨𝑉, 𝐸⟩ be a finite graph with 𝑉 = {𝑧1,… , 𝑧𝑛},
𝑛 > 0. Then

p

e

= lfp ⊆̇𝓛 e

Π =𝓛

e

𝜋
𝑛+2 where (Th.7.a)

𝓛 e

Π(p) ≜ �̇� ∪̇ p ⦾̇

e

�̇� in (Th.6.a) and 𝓛 e

𝜋
0 ≜∅̇, 𝓛 e

𝜋
1 ≜ �̇�,

𝓛 e

𝜋
𝑘+2 ≜ �̇� ∪̇𝓛 e

𝜋
𝑘+1 ⦾̇𝑧𝑘+1 �̇�, 𝑘 ∈ [0, 𝑛], 𝓛 e

𝜋
𝑘+1 =𝓛 e

𝜋
𝑘, 𝑘 ⩾ 𝑛 + 2

= lfp ⊆̇𝓡 e

Π =𝓡

e

𝜋
𝑛+2 where (Th.7.b)

𝓡 e

Π(p) ≜ �̇� ∪̇ �̇� ⦾̇

e

p in (Th.6.b) and 𝓡 e

𝜋
0 ≜∅̇, 𝓡 e

𝜋
0 ≜ �̇�,

𝓡 e

𝜋
𝑘+2 ≜ �̇� ∪̇ �̇� ⦾̇𝑧𝑘+1 𝓡

e

𝜋
𝑘+1, 𝑘 ∈ [0, 𝑛], 𝓡 e

𝜋
𝑘+1 =𝓡 e

𝜋
𝑘, 𝑘 ⩾ 𝑛 + 2

= lfp ⊆̇𝓑 e

Π =𝓑

e

𝜋
𝑛+2 where (Th.7.c)

𝓑 e

Π(p) ≜ �̇� ∪̇ p ⦾̇

e

p in (Th.6.c) and 𝓑 e

𝜋
0 ≜∅̇, 𝓑 e

𝜋
1 ≜ �̇�,

𝓑 e

𝜋
𝑘+2 ≜ �̇� ∪̇𝓑 e

𝜋
𝑘+1 ⦾̇

e

𝑧𝑘+1𝓑

e

𝜋
𝑘+1, 𝑘 ∈ [0, 𝑛], 𝓑 e

𝜋
𝑘+1 =𝓑 e

𝜋
𝑘, 𝑘 ⩾ 𝑛 + 2

= lfp ⊆̇̇𝐸𝓟

e

Π =𝓟

e

𝜋
𝑛+1 where (Th.7.d)

𝓟 e

Π(p) ≜ p ∪̇ p ⦾̇

e

p in (Th.6.d), 𝓟 e

𝜋
0 ≜ �̇�,

𝓟 e
𝜋
𝑘+1 ≜𝓟 e

𝜋
𝑘 ∪̇𝓟 e

𝜋
𝑘 ⦾̇

e
𝑧𝑘+1 𝓟

e
𝜋
𝑘, 𝑘 ∈ [0, 𝑛], 𝓟 e

𝜋
𝑘+1 =𝓟 e

𝜋
𝑘, 𝑘 ⩾ 𝑛 + 2

p1 ⦾̇𝑧 p2 ≜ 𝜆𝑥, 𝑦 . {𝜋1 ⊙ 𝜋2 | 𝜋1 ∈ p1(𝑥, 𝑧) ∧ 𝜋2 ∈ p2(𝑧, 𝑦) ∧ 𝑧 ∉ {𝑥, 𝑦}}, and
p1 ⦾̇

e

𝑧 p2 ≜ 𝜆𝑥, 𝑦 . {𝜋1 ⊙ 𝜋2 | 𝜋1 ∈ p1(𝑥, 𝑧) ∧ 𝜋2 ∈ p2(𝑧, 𝑦) ∧ elem-conc?(𝜋1, 𝜋2)}.
⊓⊔

–

–

Proof (of Th. 7) The proofs in cases (Th.7.c) and (Th.7.d) are similar.
Let us consider (Th.7.d). Assume 𝑉 = {𝑧1…𝑧𝑛} and let 𝓟 e

Π
𝑘+1 = 𝓟 e

Π(𝓟

e

Π
𝑘)

be the iterates of 𝓟 e

Π from 𝓟 e

Π
0 = �̇� in (Th.6.d). To apply Th. 1, we consider

the concrete cpo ⟨C, ⊆̇⟩ and the abstract cpo ⟨A, ⊆̇⟩ to be ⟨C, ⊆̇, �̇�, ⋃̇⟩ with
C ≜ 𝑥 ∈ 𝑉 × 𝑦 ∈ 𝑉→{𝑥𝜋𝑦 ∣ 𝑥𝜋𝑦 ∈ 𝐸 ∪ ⋃𝑛+1𝑘=3 𝑉𝑘 ∧ 𝑥𝜋𝑦 is elementary}, and the
functions 𝓟 e

𝜋𝑘(𝑋) ≜ 𝑋 ∪̇ 𝑋 ⦾̇

e

𝑧𝑘+1 𝑋, 𝑘 ∈ [1, 𝑛], and 𝓟 e

𝜋𝑘(𝑋) ≜ 𝑋, 𝑘 = 0 or
𝑘 > 𝑛 which iterates from the infimum �̇� are precisely ⟨𝓟 e

Π
𝑘, 𝑖 ∈ Z ∪ {𝜔}⟩ where

𝓟 e

𝜋
𝜔 = ⋃̇
𝑖∈Z

𝓟 e

𝜋
𝑖 =𝓟 e

𝜋
𝑛+1 =𝓟 e

Π
𝑘, 𝑘 > 𝑛.

For the infimum 𝓟 e

𝜋0 = �̇� the paths 𝑥𝜋𝑦 ∈ �̇�(𝑥, 𝑦) of 𝐺 which are elementary
and have all intermediate states of 𝜋 in ∅ = {𝑧1,… , 𝑧0} since 𝜋 is empty.

For the commutation, the case 𝑘 > 𝑛 is trivial. Otherwise let 𝑋 ∈ A so
𝑥𝜋𝑦 ∈ 𝑋(𝑥, 𝑦) is elementary and has all states of 𝜋 in {𝑧1,… , 𝑧𝑘}
𝛼

e

𝑘+1(𝓟

e

Π(𝑋))
= 𝛼

e

𝑘+1(𝑋 ∪̇ 𝑋 ⦾̇

e

𝑋) Hdef. (Th.6.d) of 𝓟 e

ΠI

18 P. Cousot

= 𝛼

e

𝑘+1(𝑋) ∪̇ 𝛼

e

𝑘+1(𝑋 ⦾̇

e

𝑋) H𝛼 e

𝑘+1 preserves joins in (10)I
= 𝛼

e

𝑘(𝑋) ∪̇ 𝛼

e

𝑘+1(𝑋 ⦾̇

e

𝑋)Hdef. (9) of 𝛼

e

𝑘+1 and hypothesis that all paths in 𝑋 have all intermediate
states in {𝑧1,… , 𝑧𝑘}I

= 𝛼

e

𝑘(𝑋) ∪̇ 𝜆 𝑥, 𝑦 . {𝜋 ∈ 𝑋 ⦾̇

e

𝑋(𝑥, 𝑦) ∣ V(𝜋) ⊆ {𝑧1,… , 𝑧𝑘+1} ∪ {𝑥, 𝑦}} Hdef. 𝛼

e

𝑘+1 in
(9)I
= 𝛼

e

𝑘(𝑋)∪̇𝜆 𝑥, 𝑦 . {𝜋 ∈ ⋃
𝑧∈𝑉
{𝜋1⊙𝜋2 | 𝜋1 ∈ 𝑋(𝑥, 𝑧)∧𝜋2 ∈ 𝑋(𝑧, 𝑦)∧elem-conc?(𝜋1, 𝜋2)} ∣

V(𝜋) ⊆ {𝑧1,… , 𝑧𝑘+1} ∪ {𝑥, 𝑦}} Hdef. ⦾̇

e

in Th. 6I
= 𝛼

e

𝑘(𝑋) ∪̇ 𝜆 𝑥, 𝑦 . ⋃
𝑧∈𝑉
{𝜋1 ⊙ 𝜋2 | 𝜋1 ∈ 𝑋(𝑥, 𝑧) ∧ 𝜋2 ∈ 𝑋(𝑧, 𝑦) ∧ elem-conc?(𝜋1, 𝜋2) ∧

V(𝜋1 ⊙ 𝜋2) ⊆ {𝑧1,… , 𝑧𝑘+1} ∪ {𝑥, 𝑦}} Hdef. ∈I
= 𝛼

e

𝑘(𝑋) ∪̇ 𝜆 𝑥, 𝑦 . ⋃
𝑧∈𝑉
{𝑥𝜋1𝑧𝜋2𝑦 | 𝑥𝜋1𝑧 ∈ 𝑋(𝑥, 𝑧) ∧ 𝑧𝜋2𝑦 ∈ 𝑋(𝑧, 𝑦) ∧

elem-conc?(𝑥𝜋1𝑧, 𝑧𝜋2𝑦) ∧V(𝜋1) ∪V(𝜋2) ∪ {𝑧} ⊆ {𝑧1,… , 𝑧𝑘+1} ∪ {𝑥, 𝑦}} Hdef. ⊙,
V, and ind. hyp.I
= 𝛼

e

𝑘(𝑋) ∪̇ 𝜆 𝑥, 𝑦 . {𝑥𝜋1𝑧𝑘+1𝜋2𝑦 | 𝑥𝜋1𝑧𝑘+1 ∈ 𝛼

e

𝑘(𝑋)(𝑥, 𝑧𝑘+1) ∧ 𝑧𝑘+1𝜋2𝑦 ∈
𝛼

e

𝑘(𝑋)(𝑧𝑘+1, 𝑦) ∧ elem-conc?(𝑥𝜋1𝑧𝑘+1, 𝑧𝑘+1𝜋2𝑦)}H(⊇) follows from taking 𝑧 = 𝑧𝑘+1;
(⊆) For 𝑧 ∈ {𝑧1,… , 𝑧𝑘}, the paths in 𝛼

e

𝑘(𝑋) are elementary through
{𝑧1,… , 𝑧𝑘}, so if there exist paths 𝑥𝜋1𝑧 ∈ 𝑋(𝑥, 𝑧) and 𝑧𝜋2𝑦 ∈ 𝑋(𝑧, 𝑦)
then either 𝑥𝜋1𝑧𝜋2𝑥 is also elementary through {𝑧1,… , 𝑧𝑘} and already
therefore belongs to 𝛼

e
𝑘(𝑋) or it is not elementary and then does not pass

the test elem-conc?(𝑥𝜋1𝑧𝑘+1, 𝑧𝑘+1𝜋2𝑦);
Otherwise, if 𝑧 ∈ {𝑧𝑘+2,… , 𝑧𝑛}, then the path 𝑥𝜋1𝑧𝑘+1𝜋2𝑦 is eliminated
by V(𝜋1) ∪V(𝜋2) ∪ {𝑧} ⊆ {𝑧1,… , 𝑧𝑘+1} ∪ {𝑥, 𝑦};
Finally, the only possibility is 𝑧 = 𝑧𝑘+1, in which case all paths have
the form 𝑥𝜋1𝑧𝑘+1𝜋2𝑦, are elementary, and with V(𝜋) ⊆ {𝑧1,… , 𝑧𝑘+1}, as
required by the def. ofA. It also holds for 𝛼

e

𝑘(𝑋) which is equal to 𝛼

e

𝑘+1(𝑋).I

(11)

= 𝛼

e

𝑘(𝑋) ∪̇ 𝜆 𝑥, 𝑦 . {𝑥𝜋1𝑧𝑘+1 ⊙ 𝑧𝑘+1𝜋2𝑦 | 𝑥𝜋1𝑧𝑘+1 ∈ 𝛼

e

𝑘(𝑋)(𝑥, 𝑧𝑘+1) ∧ 𝑧𝑘+1𝜋2𝑦 ∈
𝛼

e

𝑘(𝑋)(𝑧𝑘+1, 𝑦) ∧ elem-conc?(𝑥𝜋1𝑧𝑘+1, 𝑧𝑘+1𝜋2𝑦)} Hdef. ⊙I
= 𝛼

e

𝑘(𝑋) ∪̇ 𝜆 𝑥, 𝑦 . {𝜋1 ⊙ 𝜋2 | 𝜋1 ∈ 𝛼

e

𝑘(𝑋)(𝑥, 𝑧𝑘+1) ∧ 𝜋2 ∈ 𝛼

e

𝑘(𝑋)(𝑧𝑘+1, 𝑦) ∧
elem-conc?(𝜋1, 𝜋2)} Hby ind. hyp. all paths in 𝑋(𝑥, 𝑦) have the form 𝑥𝜋𝑦I
= 𝛼

e

𝑘(𝑋) ∪̇ 𝛼

e

𝑘(𝑋) ⦾̇

e

𝑧𝑘+1 𝛼

e

𝑘(𝑋) Hdef. ⦾̇

e

𝑧𝑘+1 in (Th.7.d)I
= 𝓟 e

𝜋𝑘(𝛼

e

𝑘(𝑋)) H(Th.7.d)I
We conclude by Th. 1.

In cases (Th.7.a) and (Th.7.b), ⦾̇

e

𝑧𝑘+1 can be replaced by ⦾̇𝑧𝑘+1 since in
these cases the paths are elementary by construction. To see this, observe that
for (Th.7.a), the iterates ⟨𝓛 e

𝜋
𝑘(∅̇), 𝑘 ∈ N ∪ {𝜔}⟩ are those of the functions

Abstract Interpretation of Graphs 19

𝓛 e

𝜋0(𝑋) ≜ ∅̇, 𝓛 e

𝜋1(𝑋) ≜ �̇�, and 𝓛 e

𝜋𝑘(𝑋) ≜ �̇� ∪̇ 𝑋 ⦾̇

e

𝑧𝑘−1 �̇�, 𝑘 ∈ [2, 𝑛 + 2], and
𝓛 e

𝜋𝑘(𝑋) ≜ 𝑋, 𝑘 > 𝑛, so that we can consider the iterates from 1 to apply Th. 1.
By (Th.6.a), the initialization is 𝓛 e

Π(∅̇) ≜ �̇� ∪̇ ∅̇ ⦾̇

e

�̇� = �̇� such that all paths
𝑥𝜋𝑦 in �̇�(𝑥, 𝑦) are elementary with 𝜋 empty so V(𝜋) ⊆ ∅ = {𝑧1,… , 𝑧0}.

For the commutation, let 𝑋 ∈ A such that all 𝑥𝜋𝑦 ∈ 𝑋(𝑥, 𝑦) are elementary
and have all states of 𝜋 in {𝑧1,… , 𝑧𝑘}. Then
𝛼

e

𝑘+2(𝓛

e

Π(𝑋)) Hdef. iteratesI
= 𝛼

e

𝑘+2(�̇� ∪̇ 𝑋 ⦾̇

e

�̇�) Hdef. (Th.6.a) of 𝓛 e

ΠI
= 𝛼

e

𝑘+2(�̇�) ∪̇ 𝛼

e

𝑘+2(𝑋 ⦾̇

e

�̇�) H𝛼 e

𝑘+2 preserves joins in (10)I
= �̇� ∪̇ 𝜆 𝑥, 𝑦 . {𝜋 ∈ 𝑋 ⦾̇ e

�̇� ∣ V(𝜋) ⊆ {𝑧1,… , 𝑧𝑘+2} ∪ {𝑥, 𝑦}} Hdef. 𝛼

e

𝑘+2 in (9)I
= �̇� ∪̇ 𝜆 𝑥, 𝑦 . {𝜋 ∈ ⋃

𝑧∈𝑉
{𝜋1 ⊙ 𝜋2 | 𝜋1 ∈ 𝑋(𝑥, 𝑧) ∧ 𝜋2 ∈ �̇�(𝑧, 𝑦) ∧ elem-conc?(𝜋1, 𝜋2)} ∣

V(𝜋) ⊆ {𝑧1,… , 𝑧𝑘+2} ∪ {𝑥, 𝑦}} Hdef. ⦾̇

e

in Th. 6I
= �̇� ∪̇ 𝜆 𝑥, 𝑦 . ⋃

𝑧∈𝑉
{𝜋1 ⊙𝜋2 | 𝜋1 ∈ 𝑋(𝑥, 𝑧) ∧ 𝜋2 ∈ �̇�(𝑧, 𝑦) ∧ elem-conc?(𝜋1, 𝜋2) ∧V(𝜋1 ⊙

𝜋2) ⊆ {𝑧1,… , 𝑧𝑘+2} ∪ {𝑥, 𝑦}} Hdef. ∈I
= �̇� ∪̇ 𝜆 𝑥, 𝑦 . ⋃

𝑧∈𝑉
{𝑥𝜋1𝑧𝑦 | 𝑥𝜋1𝑧 ∈ 𝑋(𝑥, 𝑧) ∧ 𝑧𝑦 ∈ �̇�(𝑧, 𝑦) ∧ elem-conc?(𝑥𝜋1𝑧, 𝑧𝑦) ∧

V(𝜋1) ∪ {𝑧} ⊆ {𝑧1,… , 𝑧𝑘+2} ∪ {𝑥, 𝑦}} Hdef. ⊙, V, �̇� in Th. 4, and ind. hyp.I
= �̇�∪̇𝜆 𝑥, 𝑦 . {𝑥𝜋1𝑧𝑘+2⊙𝑧𝑘+2𝜋2𝑦 | 𝑥𝜋1𝑧𝑘+2 ∈ 𝛼

e
𝑘+1(𝑋)(𝑥, 𝑧𝑘+2)∧𝑧𝑘+2𝜋2𝑦 ∈ �̇�(𝑧𝑘+2, 𝑦)∧

elem-conc?(𝑥𝜋1𝑧𝑘+2, 𝑧𝑘+2𝜋2𝑦)} Hby an argument similar to (11)I
= �̇� ∪̇ 𝜆 𝑥, 𝑦 . {𝑥𝜋1𝑧𝑘+2 ⊙ 𝑧𝑘+2𝑦 | 𝑥𝜋1𝑧𝑘+2 ∈ 𝛼

e

𝑘+1(𝑋)(𝑥, 𝑧𝑘+2) ∧ ⟨𝑧𝑘+2, 𝑦⟩ ∈ 𝐸 ∧
elem-conc?(𝑥𝜋1𝑧𝑘+2, 𝑧𝑘+2𝑦)} Hdef. (9) of 𝛼

e

𝑘+1 and �̇� in Th. 4I
= �̇� ∪̇ 𝜆 𝑥, 𝑦 . {𝑥𝜋1𝑧𝑘+2 ⊙ 𝑧𝑘+2𝑦 | 𝑥𝜋1𝑧𝑘+2 ∈ 𝛼

e

𝑘+1(𝑋)(𝑥, 𝑧𝑘+2) ∧ ⟨𝑧𝑘+2, 𝑦⟩ ∈ 𝐸}Hsince 𝑧𝑘+2 ∉ V(𝜋1) by induction hypothesis path so that the path
𝑥𝜋1𝑧𝑘+2𝑦 is elementaryI

= �̇� ∪̇ 𝛼

e

𝑘+1(𝑋) ⦾̇𝑧𝑘+2 �̇� Hdef. ⦾̇

e

𝑧𝑘+2 in Th. 7I
= 𝓛 e

𝜋𝑘+2(𝛼

e

𝑘+1(𝑋)) H(Th.7.a)I ⊓⊔
12 Calculational design of an over-approximation of the

elementary paths between vertices of finite graphs

Since shortest paths are necessarily elementary, one could expect that Roy-Floyd-
Warshall algorithm simply abstracts the elementary paths by their length. This
is not the case, because the iterations in (Th.7.c) and (Th.7.d) for elementary
paths are too expensive. They require to check elem-conc? in ⦾̇

e

to make sure
that the concatenation of elementary paths does yield an elementary path. But
we can over-approximate by replacing ⦾̇

e

by ⦾̇ since

20 P. Cousot

Lemma 3 The length of the shortest paths in a graph is the same as the length
of the shortest paths in any subset of the graph paths provided this subset contains
all elementary paths.

Proof (of Lem. 3) If 𝜋1𝑥𝜋2𝑥𝜋3 is a non-elementary path with an internal cycle
𝑥𝜋2𝑥 of the weighted graph ⟨𝑉, 𝐸, 𝛚⟩ then 𝜋1𝑥𝜋3 is also a path in the graph
with a shorter weight, that is, by (6), 𝛚(𝜋1𝑥𝜋3) < 𝛚(𝜋1𝑥𝜋2𝑥𝜋3). Since elementary
paths have no internal cycles, it follows by definition of min and (7) that, for
any subset 𝑃 of the graph paths, we have 𝛚(𝑃) = 𝛚(𝑃′) whenever 𝛼

e

(𝑃) = {𝜋 ∈ 𝑃 ∣
elem?(𝜋)} ⊆ 𝑃′ ⊆ 𝑃. ⊓⊔

Corollary 2 (Iterative characterization of an over-approximation
of the elementary paths of a finite graph) Let 𝐺 = ⟨𝑉, 𝐸⟩ be a finite
graph with 𝑉 = {𝑧1,… , 𝑧𝑛}, 𝑛 > 0. Then

p

e

= lfp ⊆̇𝓑 e

Π ⊆̇𝓑𝑛+2𝜋 (Cor.2.c)
where 𝓑0𝜋 ≜∅̇, 𝓑1𝜋 ≜ �̇�, 𝓑𝑘+2𝜋 ≜ �̇� ∪̇𝓑𝑘+1𝜋 ⦾̇𝑧𝑘+1𝓑

𝑘+1
𝜋

= lfp ⊆̇̇𝐸𝓟

e

Π ⊆̇𝓟𝑛+1𝜋 (Cor.2.d)
where 𝓟0𝜋 ≜ �̇�, 𝓟𝑘+1𝜋 ≜𝓟𝑘𝜋 ∪̇𝓟𝑘𝜋 ⦾̇𝑧𝑘 𝓟

𝑘
𝜋 ⊓⊔

–

–

Proof (of Cor. 2) Obviously ⦾̇

e

𝑧 ⊆̇ ⦾̇𝑧 so the iterates ⟨𝓑𝑘𝜋, 𝑘 ∈ [0, 𝑛 + 2]⟩ of
(Cor.2.c) over-approximate those ⟨𝓑 e

𝜋
𝑘, 𝑘 ∈ [0, 𝑛 + 2]⟩ of (Th.7.c). Same for

(Th.7.d). ⊓⊔

13 The Roy-Floyd-Warshall algorithm over-ap-
proximating the elementary paths of a finite
graph

The Roy-Floyd-Warshall algorithm does not compute elementary paths in (Th.7.d)
but the over-approximation of the set of elementary paths in (Cor.2.d), thus
avoiding the potentially costly test in Th. 7 that the concatenation of elemen-
tary paths in ⦾̇

e

𝑧 is elementary.

Abstract Interpretation of Graphs 21

Algorithm 12 (Roy-Floyd-Warshall algorithm over-approximating
the elementary paths of a finite graph) Let 𝐺 = ⟨𝑉, 𝐸⟩ be a graph with
|𝑉| = 𝑛 > 0 vertices. The Roy-Floyd-Warshall algorithm

for 𝑥, 𝑦 ∈ 𝑉 do
p(𝑥, 𝑦) := 𝐸 ∩ {⟨𝑥, 𝑦⟩}

done;
for 𝑧 ∈ 𝑉 do

for 𝑥, 𝑦 ∈ 𝑉 ⧵ {𝑧} do
p(𝑥, 𝑦) := p(𝑥, 𝑦) ∪ p(𝑥, 𝑧) ⊙ p(𝑧, 𝑦)

done
done

computes an over-approximation of all elementary paths p of 𝐺.

–

–

Proof (of Algorithm 12) The first for iteration computes 𝓟0𝜋 ≜ �̇� in (Cor.2.d).
Then, the second for iteration should compute 𝓟𝑘+1𝜋 ≜ 𝓟𝑘𝜋 ∪̇𝓟𝑘𝜋 ⦾̇𝑧𝑘 𝓟

𝑘
𝜋 in

(Cor.2.d) since p1 ⦾̇𝑧 p2 = ∅̇ in (Th.7.d) when 𝑧 ∈ {𝑥, 𝑦}, in which case, 𝓟𝑘+1𝜋 =
𝓟𝑘𝜋, which is similar to the Jacobi iterative method. However, similar to the

Gauss-Seidel iteration method, we reuse the last computed p(𝑥, 𝑧) and p(𝑧, 𝑦),
not necessarily those of the previous iterate. For the convergence of the first 𝑛
iterates of the second for iteration of the algorithm, the justification is similar
to the convergence for chaotic iterations [4]. ⊓⊔

14 Calculational design of the Roy-Floyd-Warshall
shortest path algorithm

The shortest path algorithm of Bernard Roy [16,16,17], Bob Floyd [10], and
Steve Warshall [21] for finite graphs is based on the assumption that the graph
has no cycles with strictly negative weights i.e. ∀𝑥 ∈ 𝑉 . ∀𝜋 ∈ p(𝑥, 𝑥) . 𝛚(𝜋) ⩾ 0.
In that case the shortest paths are all elementary since adding a cycle of weight
0 leaves the distance unchanged while a cycle of positive weight would strictly
increase the distance on the path. Otherwise, if the graph has cycles with strictly
negative weights, the convergence between two vertices containing a cycle with
strictly negative weights is infinite to the limit −∞.

The essential consequence is that we don’t have to consider all paths as in
Th. 4 but instead we can consider any subset provided that it contains all ele-
mentary paths. Therefore we can base the design of the shortest path algorithm
on Cor. 2. Observe that, although p may contain paths that are not elementary,
d is precisely the minimal path lengths and not some strict over-approximation
since

– p contains all elementary paths (so non-elementary paths are longer than
the elementary path between their extremities), and

22 P. Cousot

– no arc has a strictly negative weight (so path lengths are always positive and
therefore the elementary paths are the shortest ones).

We derive the Roy-Floyd-Warshall algorithm by a calculation design applying
Th. 1 for finite iterates to (Cor.2.d) with the abstraction �̇� (or a variant when
considering (Cor.2.c)).

for the infimum �̇� in (Cor.2.d), we have
�̇�(�̇�)⟨𝑥, 𝑦⟩

= 𝛚(�̇�(𝑥, 𝑦)) Hpointwise def. �̇�I
= 𝛚((⟨𝑥, 𝑦⟩ ∈ 𝐸 ? {⟨𝑥, 𝑦⟩} : ∅)) Hdef. �̇� in Th. 4I
= (⟨𝑥, 𝑦⟩ ∈ 𝐸 ? 𝛚({⟨𝑥, 𝑦⟩}) : 𝛚(∅)) Hdef. conditionalI
= (⟨𝑥, 𝑦⟩ ∈ 𝐸 ? min{𝛚(𝜋) ∣ 𝜋 ∈ {⟨𝑥, 𝑦⟩}} :∞) H(7)I
= (⟨𝑥, 𝑦⟩ ∈ 𝐸 ? 𝛚(𝑥, 𝑦) :∞) H(6)I

for the commutation with 𝓟 𝜋𝑘+1(𝑋) ≜ 𝑋 ∪̇ 𝑋 ⦾̇𝑧𝑘 𝑋, we have
�̇�(𝓟 𝜋𝑘+1(𝑋))⟨𝑥, 𝑦⟩

= �̇�(𝑋 ∪̇ 𝑋 ⦾̇𝑧𝑘 𝑋)⟨𝑥, 𝑦⟩ H(Cor.2.d)I
= min(�̇�(𝑋)⟨𝑥, 𝑦⟩, �̇�(𝑋 ⦾̇𝑧𝑘 𝑋)⟨𝑥, 𝑦⟩)Hthe abstraction �̇� of Galois connection (8) preserves existing joinsI

Let us evaluate
�̇�(𝑋 ⦾̇𝑧𝑘 𝑋)⟨𝑥, 𝑦⟩

= 𝛚((𝑋 ⦾̇𝑧𝑘 𝑋)(𝑥, 𝑦)) Hpointwise def. �̇�I
= 𝛚({𝜋1 ⊙ 𝜋2 | 𝜋1 ∈ 𝑋(𝑥, 𝑧𝑘) ∧ 𝜋2 ∈ 𝑋(𝑧𝑘, 𝑦) ∧ 𝑧𝑘 ∉ {𝑥, 𝑦}}) Hdef. ⦾̇𝑧𝑘 in Th. 7I
= min{𝛚(𝜋1 ⊙ 𝜋2) | 𝜋1 ∈ 𝑋(𝑥, 𝑧𝑘) ∧ 𝜋2 ∈ 𝑋(𝑧𝑘, 𝑦) ∧ 𝑧𝑘 ∉ {𝑥, 𝑦}} H(7)I
= min{𝛚(𝜋1) + 𝛚(𝜋2) | 𝜋1 ∈ 𝑋(𝑥, 𝑧𝑘) ∧ 𝜋2 ∈ 𝑋(𝑧𝑘, 𝑦) ∧ 𝑧𝑘 ∉ {𝑥, 𝑦}} Hdef. (6) of 𝛚I
= (𝑧𝑘 ∈ {𝑥, 𝑦} ? ∞ : min{𝛚(𝜋1) | 𝜋1 ∈ 𝑋(𝑥, 𝑧𝑘)} +min{𝛚(𝜋2) | 𝜋1 ∈ 𝑋(𝑥, 𝑧𝑘) ∧ 𝜋2 ∈
𝑋(𝑧𝑘, 𝑦)}) Hdef. minI

= (𝑧𝑘 ∈ {𝑥, 𝑦} ?∞ : min(�̇�(𝑋)(𝑥, 𝑧𝑘)) +min(�̇�(𝑋)(𝑧𝑘, 𝑦))) H(7) and pointwise def.
�̇�I

so that �̇�(𝓟 𝜋𝑘+1(𝑋)) = 𝓟 𝛿𝑘(�̇�(𝑋)) with 𝓟 𝛿𝑘(𝑋)(𝑥, 𝑦) ≜ (𝑧𝑘 ∈ {𝑥, 𝑦} ? 𝑋(𝑥, 𝑦) :
min(𝑋(𝑥, 𝑦), 𝑋(𝑥, 𝑧𝑘) + 𝑋(𝑧𝑘, 𝑦))).

We have proved

Abstract Interpretation of Graphs 23

Theorem 8 (Iterative characterization of the shortest path length
of a graph) Let 𝐺 = ⟨𝑉, 𝐸, 𝛚⟩ be a finite graph with 𝑉 = {𝑧1,… , 𝑧𝑛}, 𝑛 > 0
weighted on the totally ordered group ⟨𝔾, ⩽, 0, +⟩ with no strictly negative
weight. Then the distances between any two vertices are
d= �̇�(p) =𝓟𝑛+1𝛿 where (Th.8)

𝓟0𝛿(𝑥, 𝑦)≜ (⟨𝑥, 𝑦⟩ ∈ 𝐸 ? 𝛚(𝑥, 𝑦) :∞),
𝓟𝑘+1𝛿 (𝑥, 𝑦)≜ (𝑧𝑘 ∈ {𝑥, 𝑦} ? 𝓟𝑘𝛿(𝑥, 𝑦)

: min(𝓟𝑘𝛿(𝑥, 𝑦),𝓟𝑘𝛿(𝑥, 𝑧𝑘) +𝓟𝑘𝛿(𝑧𝑘, 𝑦))) ⊓⊔

–

–

and directly get the Roy-Floyd-Warshall distances algorithm.

Algorithm 13 (Roy-Floyd-Warshall shortest distances of a graph)
𝐺 = ⟨𝑉, 𝐸, 𝛚⟩ be a finite graph with |𝑉| = 𝑛 > 0 vertices weighted on the
totally ordered group ⟨𝔾, ⩽, 0, +⟩. Let d ∈ 𝑉 × 𝑉→𝔾 ∪ {−∞,∞} be computed
by the Roy-Floyd-Warshall algorithm

for 𝑥, 𝑦 ∈ 𝑉 do
d(𝑥, 𝑦) := if ⟨𝑥, 𝑦⟩ ∈ 𝐸 then 𝛚(𝑥, 𝑦) else ∞

done;
for 𝑧 ∈ 𝑉 do

for 𝑥, 𝑦 ∈ 𝑉 do
d(𝑥, 𝑦) := min(d(𝑥, 𝑦), d(𝑥, 𝑧) + d(𝑧, 𝑦))

done
done.

The graph has no cycle with strictly negative weight if and only if ∀𝑥 ∈ 𝑉 .
d(𝑥, 𝑥) ⩾ 0, in which case d(𝑥, 𝑦) is the length of the shortest path from 𝑥

to 𝑦.

–

–

Proof (of Algorithm 13) Instead of calculating the next iterate 𝓟𝑘+1𝛿 as a function
of the previous one 𝓟𝑘𝛿 (à la Jacobi), we reuse the latest assigned values (à la
Gauss-Seidel), as authorized by chaotic iterations [4]. ⊓⊔

15 Conclusion

We have presented a use of abstract interpretation which, instead of focusing
on program semantics, focuses on algorithmics. It has been observed that graph
algorithms have the same algebraic structure [3,9,11,14]. Abstract interpretation
explains why.

Graph path algorithms are based on the same algebraic structure (e.g. [9,
Ch. 2], [3, Table 3.1]) because they are abstractions of path finding algorithms
which primitive structure ⟨℘(𝑉>1), 𝐸, ∪, ⦾⟩ is preserved by the abstraction.

24 P. Cousot

Some algorithms (e.g. based on (Th.6.a–b)) exactly abstract elementary paths
and cycles and can therefore be designed systematically by exact fixpoint ab-
straction [6, theorem 7.1.0.4(3)] of the path finding fixpoint definitions. Other
algorithms (such as the Roy-Floyd-Warshall or Dantzig [8] shortest path algo-
rithms) consider fixpoint definitions of sets of paths over approximating the set
of all elementary paths and cycles. We have seen for the Roy-Floyd-Warshall
algorithm that the derivation of the algorithm is more complex and requires a
different abstraction at each iterations (Th. 1 generalizing [6, theorem 7.1.0.4(3)])
based on a particular choice of different edges or vertices at each iteration plus
chaotic iterations [4]. So from the observation of similarities, their algebraic for-
mulation, we move to an explanation of its origin and its exploitation for the
machine-checkable calculational design of algorithms.

Acknowledgement. I thank Antoine Miné and Jan Midtgaard for debugging a
first version of this paper. I thank the anonymous referee to whom I borrowed
the content section 1.2.

This work was supported in part by NSF Grant CCF-1617717. Any opinions,
findings, and conclusions or recommendations expressed in this material are
those of the author and do not necessarily reflect the views of the National
Science Foundation.

References
1. Bang-Jensen, J., Gutin, G.: Digraphs: Theory, Algorithms and Applications.

Springer (2000)
2. Berge, C.: Théorie des graphes et ses applications. Dunod (1958)
3. Carré, B.: Graphs and Networks. Clarendon Press, Oxford (1979)
4. Cousot, P.: Asynchronous iterative methods for solving a fixed point system of

monotone equations in a complete lattice. R.R. 88, Laboratoire IMAG, Université
scientifique et médicale de Grenoble, Grenoble, France (Sep 1977), 15 p.

5. Cousot, P.: On fixpoint/iteration/variant induction principles for proving total
correctness of programs with denotational semantics. In: LOPSTR 2019. Lecture
Notes in Computer Science, vol. 12042, pp. 3–18. Springer (2019)

6. Cousot, P., Cousot, R.: Systematic design of program analysis frameworks. In:
POPL. pp. 269–282. ACM Press (1979)

7. Cousot, P., Cousot, R.: Basic concepts of abstract interpretation. In: Jacquard, R.
(ed.) Building the Information Society, pp. 359–366. Springer (2004)

8. Dantzig, G.B.: On the shortest route through a network. Manage. Sci. 6(2), pp.
187–190 (Jan 1960)

9. Derniame, J.C., Pair, C.: Problèmes de cheminement dans les graphes. Dunod
(1971)

10. Floyd, R.W.: Algorithm 97: Shortest path. Commun. ACM 5(6), 345 (1962)
11. Gondran, M.: Algèbre linéaire et cheminement dans un graphe. Revue française

d’automatique, informatique, recherche opérationnelle (R.A.I.R.O.) Recherche
opérationnelle, tome 9 (V1), pp. 77–99 (1975)

12. Hansen, P., de Werra, D.: Connectivity, transitivity and chromaticity: The pio-
neering work of Bernard Roy in graph theory. In: Aiding Decisions with Multiple
Criteria: Essays in Honor of Bernard Roy. pp. 23–44. Springer (2002)

Abstract Interpretation of Graphs 25

13. Naur, P.: Proof versus formalization. BIT Numerical Mathematics 34(1), pp. 148–
164 (1994)

14. Pair, C.: Sur des algorithmes pour les problèmes de cheminement dans les graphes
finis, pp. 271–300. Dunod Paris, Gordon and Breach, New York (Jul 1966)

15. Pair, C.: Mille et un algorithmes pour les problèmes de cheminement dans les
graphes. Revue Française d’Informatique et de Recherche opérationnelle (R.I.R.O.)
B-3, pp. 125–143 (1970)

16. Roy, B.: Transitivité et connexité. C. R. Acad. Sci. Paris 249, pp. 216–218 (1959)
17. Roy, B.: Cheminement et connexité dans les graphes, application aux problèmes

d’ordonnancement. Metra, Paris, 2 edn. (1965)
18. Schrijver, A.: Combinatorial Optimization, Polyhedra and Efficiency, Algorithms

and Combinatorics, vol. 24. Springer (2003)
19. Sergey, I., Midtgaard, J., Clarke, D.: Calculating graph algorithms for dominance

and shortest path. In: MPC. Lecture Notes in Computer Science, vol. 7342, pp.
132–156. Springer (2012)

20. Venet, A.J.: Automatic analysis of pointer aliasing for untyped programs. Sci.
Comput. Program. 35(2), pp. 223–248 (1999)

21. Warshall, S.: A theorem on boolean matrices. J. ACM 9(1), pp. 11–12 (1962)

