Printed by Michael Walfish

Feb 15, 20 11:15 handout06.txt Page 1/3 Feb 15, 20 11:15 handout06.txt Page 2/3
1 CS 202, Spring 2020 29
2 Handout 6 (Class 7) 30 2. Correct spinlock implementation
3 31
4 Implementation of spinlocks and mutexes 32 Relies on atomic hardware instruction. For example, on the x86 (32-bit),
5 33 doing
6 1. Here is a BROKEN spinlock implementation: 34 "xchg addr, %rax"
7 35 does the following:
8 struct Spinlock { 36
9 int locked; 37 (i) freeze all CPUs’ memory activity for address addr
10 } 38 (ii) temp <-- *addr
11 39 (iii) *addr <—-- %$rax
12 void acquire (Spinlock *lock) { 40 (iv) $rax <-- temp
13 while (1) { 41 (v) un-freeze memory activity
14 if (lock->locked == 0) { // A 22
15 lock->locked = 1; // B 43 /* pseudocode */
16 break; 44 int xchg_val (addr, value) {
17 } 45 $rax = value;
18 } 46 xchg (*addr), %rax
19 } 47 }
20 48
21 void release (Spinlock *lock) { 49 /* bare-bones version of acquire */
22 lock->1locked = 0; 50 void acquire (Spinlock *lock) {
23 } 51 pushcli () ; /* what does this do? */
24 52 while (1) {
25 What’s the problem? Two acquire()s on the same lock on different 53 if (xchg_val (&lock->locked, 1) == 0)
26 CPUs might both execute line A, and then both execute B. Then 54 break;
27 both will think they have acquired the lock. Both will proceed. 55 }
28 That doesn’t provide mutual exclusion. 56 }
29 57
58 void release (Spinlock *lock) {
59 xchg_val (&lock—->locked, 0);
60 popcli(); /* what does this do? */
61 }
62
63
64 /* optimization in acquire; call xchg_val() less frequently */
65 void acquire (Spinlock* lock) {
66 pushcli();
67 while (xchg_val (&lock->locked, 1) == 1) {
68 while (lock->locked) ;
69 }
70 }
71
72 The above is called a *spinlock* because acquire() spins. The
73 bare-bones version is called a "test-and-set (TAS) spinlock"; the
74 other is called a "test-and-test-and-set spinlock".
75
76 The spinlock above is great for some things, not so great for
77 others. The main problem is that it *busy waits*: it spins,
78 chewing up CPU cycles. Sometimes this is what we want (e.g., if
79 the cost of going to sleep is greater than the cost of spinning
80 for a few cycles waiting for another thread or process to
81 relinquish the spinlock). But sometimes this is not at all what we
82 want (e.g., if the lock would be held for a while: in those
83 cases, the CPU waiting for the lock would waste cycles spinning
84 instead of running some other thread or process).
85
86 NOTE: the spinlocks presented here can introduce performance issues
87 when there is a lot of contention. (This happens even if the
88 programmer is using spinlocks correctly.) The performance issues
89 result from cross-talk among CPUs (which undermines caching and
90 generates traffic on the memory bus). If we have time later, we will
o1 study a remediation of this issue (search the Web for "MCS locks").
92
93 ANOTHER NOTE: In everyday application-level programming, spinlocks
94 will not be something you use (use mutexes instead). But you should
95 know what these are for technical literacy, and to see where the
96 mutual exclusion is truly enforced on modern hardware.
o7

Tuesday February 18, 2020 handout06.txt 1/6

Printed by Michael Walfish

Page 3/3

Feb 18, 20 10:59

fair-mutex.c Page 1/1

Feb 15, 20 11:15 handout06.txt

9% 3. Mutex implementation

99

100 The intent of a mutex is to avoid busy waiting: if the lock is not
101 available, the locking thread is put to sleep, and tracked by a

102 queue in the mutex. The next page has an implementation.

103

17 };

53}

73}

#include <sys/queue.h>

typedef struct thread {

// ... Entries elided.

STAILQ_ENTRY (thread_t) glink; // Tail queue entry.

} thread_t;

struct Mutex {

// Current owner, or 0 when mutex is not held.

thread_t *owner;

// List of threads waiting on mutex
STAILQ (thread_t) waiters;

// A lock protecting the internals of the mutex.
Spinlock splock; // as in item 2 (prev page)

19 void mutex_acquire (struct Mutex *m) {

acquire (&m->splock) ;

// Check if the mutex is held,
if (m—>owner == 0)

if not current thread gets mutex and returns

m->owner = id_of_this_thread;
release (&m—>splock) ;
} else {

// Add thread to waiters.
STAILQ_ INSERT_TAIL (&m->waiters, id_of_this_thread, glink);
// Tell the scheduler to add current thread to the list
// of blocked threads. The scheduler needs to be careful
// when a corresponding sched_wakeup call is executed to
// make sure that it treats running threads correctly.
sched_mark_blocked(&id_of_this_thread);

// Unlock spinlock.
release (&m—>splock) ;

// Stop executing until woken.
sched_swtch () ;

// When we get to this line, we are guaranteed to hold the mutex. This
// is because we can get here only if context-switched-TO, which itself
// can happen only if this thread is removed from the waiting queue,

// marked "unblocked", and set to be the owner (in mutex_release ()

// below). However, we might actually have held the mutex at line 39 or
// 40 (if we were context-switched out after the spinlock release(),

// followed by being run as a result of another thread’s release of the
// mutex). But 1if that happens, it just means that we are

// context-switched out an "extra" time before proceeding.

55 void mutex_release (struct Mutex *m) {

// Acquire the spinlock in order to make changes.
acquire (&m->splock) ;

// Assert that the current thread actually owns the mutex
assert (m—->owner == id_of_this_thread);

// Check if anyone is waiting.
m->owner = STAILQ_ GET_HEAD (&m->waiters);

// If so, wake them up.
if (m—>owner) {
sched_wakeone (&m—->owner) ;
STAILQ_REMOVE_HEAD (&m—->waiters, glink);
}

// Release the internal spinlock
release (&m—>splock) ;

Tuesday February 18, 2020

handout06.txt, fair-mutex.c

2/6

Printed by Michael Walfish

Feb 15, 20 11:20 handout06-2.txt Page 1/7 Feb 15, 20 11:20 handout06-2.txt Page 2/7
1 4. Simple deadlock example 21 5. More subtle deadlock example

2 22

3 T1: 23 Let M be a monitor (shared object with methods protected by mutex)

4 acquire (mutexa) ; 24 Let N be another monitor

5 acquire (mutexB) ; 25

6 26 class M {

7 // do some stuff 27 private:

8 28 Mutex mutex_m;

9 release (mutexB) ; 29

10 release (mutexA3) ; 30 // instance of monitor N

11 31 N another_monitor;

12 T2: 32

13 acquire (mutexB) ; 33 // Assumption: no other objects in the system hold a pointer
14 acquire (mutexAa) ; 34 // to our "another_monitor"

15 35

16 // do some stuff 36 public:

17 37 M();

18 release (mutexd) ; 38 ~M();

19 release (mutexB) ; 39 void methodA();

40
41
42
3
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82

void methodB() ;
}i

class N {
private:
Mutex mutex_n;
Cond cond_n;
int navailable;

public:
N();
~N();
void* alloc (int nwanted);
void free(void*);
}
int
N::alloc (int nwanted) {
acquire (&mutex_n) ;
while (navailable < nwanted) {
wait (&cond_n, &mutex_n);
}
// peel off the memory
navailable -= nwanted;
release (&mutex_n);

}

void
N::free(void* returning_mem) {

acquire (&mutex_n) ;

// put the memory back
navailable += returning_mem;
broadcast (¢cond_n, &mutex_n);

release (&mutex_n) ;

Tuesday February 18, 2020

handout06-2.txt

3/6

Printed by Michael Walfish

Feb 15, 20 11:20

handout06-2.txt Page 3/7

Feb 15, 20 11:20

handout06-2.txt Page 4/7

83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99

100

101

102

103

void
M: :methodA () {

acquire (&mutex_m) ;
void* new_mem = another_monitor.alloc (int nbytes);

// do a bunch of stuff using this nice
// chunk of memory n allocated for us

release (&mutex_m) ;

}

void
M::methodB () {

acquire (&mutex_m) ;
// do a bunch of stuff
another_monitor.free (some_pointer) ;

release (&mutex_m) ;

QUESTION: What’s the problem?

110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130

6. Locking brings a performance vs. complexity trade-off

/*
* linux/mm/filemap.c
*

* Copyright (C) 1994-1999 Linus Torvalds
*/

/*
* This file handles the generic file mmap semantics used by
* most "normal" filesystems (but you don’t /have/ to use this:
* the NFS filesystem used to do this differently, for example)
*
/
#include <linux/export.h>
#include <linux/compiler.h>
#include <linux/dax.h>
#include <linux/fs.h>
#include <linux/sched/signal.h>
#include <linux/uaccess.h>
#include <linux/capability.h>
#include <linux/kernel_stat.h>
#include <linux/gfp.h>
#include <linux/mm.h>
#include <linux/swap.h>
#include <linux/mman.h>
#include <linux/pagemap.h>
#include <linux/file.h>
#include <linux/uio.h>
#include <linux/hash.h>
#include <linux/writeback.h>
#include <linux/backing-dev.h>
#include <linux/pagevec.h>
#include <linux/blkdev.h>
#include <linux/security.h>
#include <linux/cpuset.h>
#include <linux/hugetlb.h>
#include <linux/memcontrol.h>
#include <linux/cleancache.h>
#include <linux/shmem_fs.h>
#include <linux/rmap.h>
#include "internal.h"

#define CREATE_TRACE_POINTS
#include <trace/events/filemap.h>

/*

* FIXME: remove all knowledge of the buffer layer from the core VM
*/
#include <linux/buffer_head.h> /* for try_to_free_buffers */
#include <asm/mman.h>

/
Shared mappings implemented 30.11.1994. It’s not fully working yet,
though.

Shared mappings now work. 15.8.1995 Bruno.

finished ’"unifying’ the page and buffer cache and SMP-threaded the
page—-cache, 21.05.1999, Ingo Molnar <mingo@redhat.com>

SMP-threaded pagemap-LRU 1999, Andrea Arcangeli <andrea@suse.de>

¥ ok kb ok ok bk ok ok ¥

Lock ordering:

—->i_mmap_rwsem
->private_lock
—->swap_lock
->i_pages lock

(truncate_pagecache)
(__free_pte->__ _set_page_dirty_buffers)
(exclusive_swap_page, others)

* ook K ok ok b Kk ok

->i_mutex

Tuesday February 18, 2020

handout06-2.txt 4/6

Printed by Michael Walfish

Feb 15, 20 11:20 handout06-2.txt Page 5/7 Feb 15, 20 11:20 handout06-2.txt Page 6/7
183 —->i_mmap_rwsem (truncate->unmap_mapping_range) 233 7. Cautionary tale

184 234

185 —>mmap_sem 235 Consider the code below:

186 —->i_mmap_rwsem 236

187 —>page_table_lock or pte_lock (various, mainly in memory.c) 237 struct foo {

188 ->i_pages lock (arch—-dependent flush_dcache_mmap_lock) 238 int abc;

189 239 int def;

190 —>mmap_sem 240 Y

191 —>lock_page (access_process_vm) 241 static int ready = 0;

192 242 static mutex_t mutex;

193 —>1i_mutex (generic_perform_write) 243 static struct foo* ptr = 0;

194 —->mmap_sem (fault_in_pages_readable->do_page_fault) 244

195 245 void

196 bdi->wb.list_lock 246 doublecheck_alloc()

197 sb_lock (fs/fs-writeback.c) 247 {

198 ->i_pages lock (__sync_single_inode) 248 if (!ready) { /* <-- accesses shared variable w/out holding mutex */

225

—->i_mmap_rwsem
—>anon_vma.lock (vma_adjust)
—>anon_vma.lock
—>page_table_lock or pte_lock (anon_vma_prepare and various)
—>page_table_lock or pte_lock
—->swap_lock
->private_lock
->i_pages lock
—->zone_lru_lock (zone)

(try_to_unmap_one)
(try_to_unmap_one)
(try_to_unmap_one)
(follow_page—>mark_page_accessed)
—->zone_lru_lock (zone) (check_pte_range->isolate_lru_page)
—>private_lock (page_remove_rmap—->set_page_dirty)
->i_pages lock (page_remove_rmap->set_page_dirty)
bdi.wb->1list_lock (page_remove_rmap->set_page_dirty)
—>inode->i_lock (page_remove_rmap—->set_page_dirty)
->memcg->move_lock (page_remove_rmap->lock_page_memcg)
bdi.wb->1list_lock (zap_pte_range->set_page_dirty)
->inode—->i_lock (zap_pte_range->set_page_dirty)
—>private_lock (zap_pte_range->__set_page_dirty buffers)

—>i_mmap_rwsem

—>tasklist_lock (memory_failure, collect_procs_ao)

N S

/

static int page_cache_tree_insert (struct address_space *mapping,
struct page *page, void **shadowp)
{
struct radix_tree_node *node;

[the point is: fine-grained locking leads to complexity.]

249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297

mutex_acquire (&mutex) ;

if (!'ready) {
ptr = alloc_foo(); /* <-- sets ptr to be non-zero */
ready = 1;

}

mutex_release (&mutex) ;

}
return;

}

This is an example of the so-called "double-checked locking pattern."
The programmer’s intent is to avoid a mutex acquistion in the common
case that ’ptr’ is already initialized. So the programmer checks a flag
called ’ready’ before deciding whether to acquire the mutex and
initialize ’'ptr’. The intended use of doublecheck_alloc() is something
like this:

void f() |
doublecheck_alloc();
ptr->abc = 5;

}

void g () {
doublecheck_alloc();
ptr->def = 6;

}

We assume here that mutex_acquire() and mutex_release() are implemented
correctly (each contains memory barriers internally, etc.). Furthermore,
we assume that the compiler does not reorder instructions.

NEVERTHELESS, on multi-CPU machines that do not offer sequential
consistency, doublecheck_alloc() is broken. What is the bug?

Unfortunately, double-checked initialization (or double-checked locking
as it’s sometimes known) is a common coding pattern. Even some
references on threads suggest it! Still, it’s broken.

While you can fix it (in C) by adding another barrier (exercise:
where?), this is not recommended, as the code is tricky to reason about.
One of the points of this example is to show you why it’s so important
to protect global data with a mutex, even if "all" one is doing is
reading memory, and even if the shortcut looks harmless.

Tuesday February 18, 2020

handout06-2.txt 5/6

Printed by Michael Walfish

Feb 15, 20 11:20 handout06-2.txt Page 7/7
208 Finally, here are some references on this topic:

299

300 —-http://www.aristeia.com/Papers/DDJ_Jul_Aug_2004_revised.pdf

301 explores issues with this pattern in C++

302

303 —-The "Double-Checked Locking is Broken" Declaration:

304 http://www.cs.umd.edu/~pugh/java/memoryModel/DoubleCheckedLocking.html
305

306 —--C++11 provides a way to implement the pattern correctly and

307 portably (again, using memory barriers):

308 https://preshing.com/20130930/double-checked-locking-is-fixed-in-cppll/

Tuesday February 18, 2020 handout06-2.txt 6/6

