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This chapter presents several fundamental algorithms for weighted automata
and transducers. While the mathematical counterparts of weighted trans-
ducers, rational power series , have been extensively studied in the past
[22, 54, 13, 36], several essential weighted transducer algorithms, e.g., com-
position, determinization, minimization, have been devised only in the last
decade [38, 43], in part motivated by novel applications in speech recogni-
tion, speech synthesis, machine translation, other areas of natural language
processing, image processing, optical character recognition, and more recently
machine learning.

These algorithms can be viewed as the generalization to the weighted
transducer case of the standard algorithms for unweighted acceptors. However,
this generalization is often not straightforward and has required a number of
specific studies either because the old schema could not be applied in the
presence of weights and a novel technique was required, as in the case of
composition [50, 46], or because of the analysis of the conditions of application
of an algorithm as in the case of determinization [38, 3].

The chapter favors a presentation of weighted automata and transducers
in terms of graphs, the natural concepts for an algorithmic description and
complexity analysis. Also, while power series lead to more concise and rigorous
proofs in most cases [36], proofs related to questions of ambiguity naturally
require the introduction of paths and reasoning on graph concepts.

1 Preliminaries

This section introduces the definitions and notation related to weighted finite-
state transducers , weighted transducers for short, and weighted automata.
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Semiring Set ⊕ ⊗ 0 1

Boolean {0, 1} ∨ ∧ 0 1

Probability R+ ∪ {+∞} + × 0 1

Log R ∪ {−∞, +∞} ⊕log + +∞ 0

Tropical R ∪ {−∞, +∞} min + +∞ 0

Table 1. Semiring examples. ⊕log is defined by: x⊕log y = − log(e−x + e−y).

1.1 Semirings

For various operations to be well-defined, the weight set associated to a
weighted transducer must have the structure of a semiring (see [20]). A system
(S,⊕,⊗, 0, 1) is a semiring if (S,⊕, 0) is a commutative monoid with identity
element 0, (S,⊗, 1) is a monoid with identity element 1, ⊗ distributes over ⊕,
and 0 is an annihilator for ⊗: for all a ∈ S, a⊗0 = 0⊗a = 0. Thus, a semiring
is a ring that may lack negation.

Table 1 lists several semirings. In addition to the Boolean semiring, and the
probability semiring used to combine probabilities, two semirings often used
in applications are the log semiring, which is isomorphic to the probability
semiring via the negative-log morphism, and the tropical semiring, which is
derived from the log semiring using the Viterbi approximation. In the following
definitions, S will be used to denote a semiring.

A semiring is said to be commutative when the multiplicative operation
⊗ is commutative. The semirings listed in Table 1 are all commutative. It is
said to be idempotent if x ⊕ x = x for all x ∈ S. The Boolean semiring and
the tropical semiring are idempotent.

1.2 Weighted Transducers and Automata

Given an alphabet Σ, we will denote by |x| the length of a string x ∈ Σ∗

and by ǫ the empty string for which |ǫ| = 0. The mirror image of a string
x = x1 · · ·xn is the string xR = xnxn−1 · · ·x1.

Finite-state transducers are finite automata in which each transition is
augmented with an output label in addition to the familiar input label [12,
22, 54, 36]. Output labels are concatenated along a path to form an output
sequence and similarly with input labels. Weighted transducers are finite-state
transducers in which each transition carries some weight in addition to the
input and output labels [54, 36, 52]. The weights are elements of a semiring
(S,⊕,⊗, 0, 1).

The ⊗-operation is used to compute the weight of a path by ⊗-multiplying
the weights of the transitions along that path. The ⊕-operation computes the
weight of a pair of input and output strings (x, y) by ⊕-summing the weights
of the paths labeled with (x, y). The following gives a formal definition of
weighted transducers.
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Fig. 1. (a) Example of a weighted transducer T over the probability semiring.
(b) Example of a weighted automaton A over the probability semiring. A can be
obtained from T by removing output labels. A bold circle indicates an initial state
with initial weight 1 and a double-circle a final state. A final state q’s weight ρ(q) is
indicated after the slash symbol representing the state number.

Definition 1. A weighted transducer T over a semiring (S,⊕,⊗, 0, 1) is an
8-tuple T = (Σ, ∆, Q, I, F, E, λ, ρ) where Σ is a finite input alphabet, ∆ a
finite output alphabet, Q is a finite set of states, I ⊆ Q the set of initial
states, F ⊆ Q the set of final states, E a finite multiset3 of transitions, which
are elements of Q× (Σ∪{ǫ})× (∆∪{ǫ})×S×Q, λ : I → S an initial weight
function, and ρ : F → S a final weight function mapping F to S.

For a state q ∈ Q, we will denote by E[q] the outgoing transitions of q and
more generally by E[Q′], the outgoing transitions of all states q in a subset
of states Q′ ⊆ Q. An ǫ-transition is a transition with both input and output
label equal to ǫ.

A path π of a transducer is an element of E∗ with consecutive transitions.
We denote by p[π] its origin or previous state and by n[π] its destination or
next state. A cycle π is a path with p[π] = n[π]. An ǫ-cycle is a cycle with
both input and output label equal to ǫ. We also denote by

• P (Q1, Q2), the set of all paths from a subset Q1 ⊆ Q to a subset Q2 ⊆ Q.
• P (Q1, x, Q2) the subset of all paths of P (Q1, Q2) with input label x.
• P (Q1, x, y, Q2) the subset of all paths of P (Q1, x, Q2) with output label y.

A path in P (I, F ) is said to be accepting or successful . The weight of a path π

obtained by ⊗-multiplying the weights of its constituent transitions is denoted
by w[π]. For any transducer T , we denote by T−1 its inverse, that is the
transducer obtained from T by swapping the input and output label of each
transition.

A transducer T is said to be regulated if the output weight associated by
T to any pair of strings (x, y) ∈ Σ∗ ×∆∗ defined as:

3 Thus, there can be two transitions from state p to state q with the same input
and output label, and even the same weight. In practice, this is avoided by keep-
ing only one such transition whose weight is the ⊕-sum of the weights of the
original redundant transitions. We will denote by ⊎ the standard join operation
of multisets as in {1, 2} ⊎ {1, 3} = {1, 1, 2, 3}.
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T (x, y) =
⊕

π∈P (I,x,y,F )

λ(p[π])⊗ w[π] ⊗ ρ(n[π]) (1)

is an element of S and its definition does not depend on the order of the terms
in the ⊕-sum. T (x, y) is defined to be 0 when P (I, x, y, F ) = ∅.4 Note that in
the absence of ǫ-cycles, the set of accepting paths P (I, x, y, F ) is finite for any
(x, y) ∈ Σ∗ ×∆∗ and thus T is regulated. Also, as we shall see later, in some
semirings, such as the four semirings of Table 1, all weighted transducers are
regulated. The weighted transducers we will be considering in this chapter
will be regulated. Figure 1(a) shows an example of a weighted transducer.

While our definition allows for multiple initial states with initial weights,
in all our examples there will be a unique initial state with initial weight 1 and
thus that weight is not indicated in figures. Since any weighted transducer can
be represented by an equivalent one with this property, this does not represent
a real limitation.

A state q ∈ Q is said to be non-accessible (non-coaccessible) when there is
no path from I to q (resp. from q to F ). Non-accessible and non-coaccessible
states are called useless states . They can be removed using a connection (or
trimming) algorithm in linear time without affecting the weight T associates
to any pair. A transducer with no useless state is said to be trim.

A transducer is said to be unambiguous if for any string x ∈ Σ∗ it admits
at most one accepting path with input label x. It is said to be deterministic or
sequential if it has at most one initial state and at any state no two outgoing
transitions share the same input label.

A weighted automaton A can be defined as a weighted transducer with
identical input and output labels, for any transition. Thus, only string pairs
of the form (x, x) can have a non-zero weight by A, which is why the weight
associated by A to (x, x) is abusively denoted by A(x) and identified with
the weight associated by A to x. Similarly, in the graph representation of
weighted automata, the output (or input) label is omitted. Figure 1(b) shows
an example of a weighted automaton. The language accepted by A is the one
accepted by the unweighted automaton obtained by ignoring its weights and
is denoted by L(A).

Note that (unweighted) finite automata [51] can be viewed as weighted
automata over the Boolean semiring and, similarly, (unweighted) finite-state
transducers [22, 54, 12, 36] as weighted transducers defined over the Boolean
semiring.

4 Our definition of regulated transducers is more general that the standard one
which assumes that transducers do not have cycles with input or output ǫ [54, 36,
52]. The usual definition leads to a simpler presentation but it rules out weighted
transducers that are crucial in applications or that can be obtained as a result of
application of various algorithms.
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2 Shortest-distance algorithms

Shortest-paths problems are familiar problems in computer science and math-
ematics. In these problems, edge weights may represent distances, costs, or
any other real-valued quantity that can be added along a path, and that one
may wish to minimize. Thus, edge weights are real numbers and the specific
operations used are addition to compute the weight of a path and minimum
to select the best path weight.

This section introduces a generalization of this problem to the case where
the operations are those of a semiring. These problems turn out to be crucial
in the design of several algorithms such as ǫ-removal or pushing and in many
other contexts. Different algorithmic solutions will be presented depending on
the semiring properties.

We will consider directed graphs G = (Q, E, w) over a semiring S, where
Q is a set of vertices, E a set of edges, and w : E → S the edge weight function
which we can extend to any path π = e1 . . . ek by w[π] =

⊗k

i=1 w[ei].

2.1 All-Pairs Shortest-Distance Problems

The general all-pairs shortest-distance algorithm described in this section is
defined for any complete semiring.5

Complete Semirings

A semiring (S,⊕,⊗, 0, 1) is said to be complete if for any index set I and any
family (ai)i∈I of elements of S,

⊕

i∈I ai is an element of S whose definition
does not depend on the order of the terms in the ⊕-sum and that has the
following properties [22, 20]:

⊕

i∈I

ai = 0 if card(I) = 0 (2)

⊕

i∈I

ai = ai if card(I) = 1 (3)

⊕

i∈I

ai =
⊕

j∈J

(⊕

i∈Ij

ai

)
for any disjoint partition I =

⋃

j∈J

Ij (4)

a⊗
(⊕

i∈I

ai

)
=

⊕

i∈I

(
a⊗ ai

)
for any a ∈ S (5)

(⊕

i∈I

ai

)
⊗ a =

⊕

i∈I

(
ai ⊗ a

)
for any a ∈ S. (6)

5 The algorithm applies in fact more generally to any closed semiring as defined
in [41], which, unlike the definition given by [17], does not require idempotence.
Note that the earlier definition of closed semirings given by Aho et al. [1] is not
axiomatically correct (see [37, 26]). Any complete semiring is a closed semiring.
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A straightforward consequence of these axioms is that in a complete semiring
the identity

(⊕

i∈I ai

)(⊕

j∈J bj

)
=

⊕

(i,j)∈I×J

(
ai ⊗ bj

)
holds for any two

families (ai)i∈I and (bj)j∈J of elements of S. Note that in a complete semiring
all weighted transducers are regulated since all infinite sums are elements of
S.

A complete semiring S is a starsemiring [20], that is a semiring that
can be augmented with an internal unary closure operation ∗ defined by
a∗ =

⊕∞
n=0 an for any a ∈ S.6 Furthermore, associativity, commutativity,

and distributivity apply to these infinite sums.
The Boolean semiring ({0, 1},∨,∧, 0, 1) with a∗ = 1 for a ∈ {0, 1},

and the tropical semiring (R+ ∪ {+∞}, min, +, +∞, 0), with a∗ = 0 for
all a ∈ R+ ∪ {+∞}, implicitly used in shortest-paths problems, are fa-
miliar examples of complete semirings. The more general tropical semiring
(R ∪ {−∞, +∞}, min, +, +∞, 0) with

a∗ =

{

0 if a ∈ R+;

−∞ otherwise,
(7)

and (+∞) + (−∞) = (−∞)+ (+∞) = +∞, also defines a complete semiring.
Note that the family of complete semirings includes non-idempotent semirings
such as the probability semiring (R+ ∪ {+∞}, +,×, 0, 1) with the closure
operation defined by

a∗ =







1

1− a
if 0 ≤ a < 1;

+∞ otherwise.
(8)

The log semiring (R+ ∪ {−∞, +∞},⊕log, +, +∞, 0) which is isomorphic to
the probability semiring is also a non-idempotent complete semiring with

a∗ =

{

log(1 − a) if 0 ≤ a < 1;

−∞ otherwise.
(9)

The lattice semiring (L,∨,∧,⊥,⊤) where L is a complete and distributive
lattice with infimum ⊥ and supremum ⊤ is a complete semiring with a∗ = ⊤
for all a ∈ L, when it verifies properties (5) and (6) [20]. Thus, all weighted
transducers are regulated in the semirings just examined.

All-Pairs Shortest-Distance Algorithm

For a complete semiring, we can define the distance or shortest-distance from
vertex p to vertex q in G = (Q, E, w) by

6 Thus, with the terminology of [20], it is a complete starsemiring . All complete
starsemirings are Conway semirings [20].
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d[p, q] =
⊕

π∈P (p,q)

w[π], (10)

where the ⊕-sum runs over the set of all paths from p to q. This definition
coincides with the classical definition of shortest-distance where the weights
are summed along the path and where the shortest path is sought for the
tropical semiring (R+ ∪ {+∞}, min, +, +∞, 0). The general all-pair shortest-
distance problem is that of computing the shortest distances d[p, q] for all pairs
(p, q) with p, q ∈ Q.

This problem can be solved by computing the closure of the matrix
M = (Mpq) ∈ S|Q|×|Q| defined by Mpq = ⊕e∈E∩P (p,q)w[e] for all p, q ∈ Q.
Indeed, using the semiring operations in matrix multiplication [20], for n ∈ N,
the coefficient Mn

pq of Mn gives the ⊕-sum of the weights of all paths of
length at most n from p to q. For idempotent semirings such as the tropical
semiring for which 1 ⊕ x = 1 for all x ∈ S, only simple paths (paths with
no cycle) need to be considered in the computation of the shortest distances
and thus M∗ = M|Q|−1. Using the standard repeated squaring technique
[17], M|Q|−1 can be computed in time Θ(|Q|3(T⊕ + T⊗) log |Q|), where T⊕

denotes the computational cost of the ⊕ operation, and T⊗ that of the ⊗ op-
eration. There exists however a more efficient method for computing all-pairs
shortest-distances for all complete semirings based on a generalization of the
Floyd-Warshall algorithm.7

The Floyd-Warshall algorithm [25, 57] originally designed for the Boolean
semiring can be generalized to compute all-pair shortest-distances in all com-
plete semirings. Figure 2 gives the pseudocode of an in-place implementation
of the algorithm where d[i, j] corresponds to the tentative shortest distance
from vertex i to vertex j. Lines 1-3 initialize each distance d[i, j] to the sum of
the weights of the transitions between i and j. By convention, the ⊕-sum is 0 if
i and j are not adjacent. The loops of lines 4-11 update the tentative shortest-
distances in a way that is similar to the steps of the standard Floyd-Warshall
algorithm but using operations of an arbitrary complete semiring.

Let T∗ denote the cost of the closure operation.

Theorem 2. Let G = (Q, E, w) be a weighted directed graph over a com-
plete semiring S. Then, the algorithm Gen-All-Pairs computes the shortest-
distances d[i, j] between all pairs of vertices (i, j) of G in time Θ(|Q|3(T⊕ +
T⊗ + T∗)) and space Θ(|Q|2).

Proof. Let P k(i, j) denote the set of paths from i to j with all intermediate
vertices within {1, . . . , k}. For any i, j ∈ Q, k ∈ {0} ∪ Q, let dk

ij be the sum

of all paths from i to j with all intermediate vertices within {1, . . . , k}: dk
ij =

⊕

w∈P k(i,j) w[π]. Since the semiring is complete, dk
ij is well-defined and in S.

7 Ésik and Kuich also gave a cubic-time algorithm for computing M∗ for all Conway
semirings (see [20] for the definition), which include complete semirings [23].
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Gen-All-Pairs(G)

1 for i← 1 to |Q| do

2 for j ← 1 to |Q| do

3 d[i, j]←
M

e∈E∩P (i,j)

w[e]

4 for k← 1 to |Q| do

5 for i← 1 to |Q|, i 6= k do

6 for j ← 1 to |Q|, j 6= k do

7 d[i, j]← d[i, j]⊕ (d[i, k]⊗ d[k, k]∗ ⊗ d[k, j])
8 for i← 1 to |Q|, i 6= k do

9 d[k, i]← d[k, k]∗ ⊗ d[k, i]
10 d[i, k]← d[i, k]⊗ d[k, k]∗

11 d[k, k]← d[k, k]∗

Fig. 2. Generic all-pairs shortest-distance algorithm.

Let π be a path in P k(i, j). It is either a path from i to j with all interme-
diate vertices within {1, . . . , k− 1} or it can be decomposed into a path from
i to k with all intermediate vertices within {1, . . . , k − 1}, followed by any
number of cycles at k with all intermediate vertices in {1, . . . , k−1}, followed
by a path from k to j with all intermediate vertices within {1, . . . , k − 1}.
Thus, for all i, j, k ∈ Q,

P k(i, j) = P k−1(i, j) ∪ (P k−1(i, k)(P k−1(k, k))∗P k−1(k, j)). (11)

By definition, a path in P k−1(i, j) does not go through k, thus:

P k−1(i, j) ∩ (P k−1(i, k)(P k−1(k, k))∗P k−1(k, j)) = ∅. (12)

Thus, even if S is not idempotent, dk
ij can be decomposed, for all i, j, k ∈ Q,

as
dk

ij = dk−1
i,j ⊕ (dk−1

ik ⊗ (dk−1
kk )∗ ⊗ dk−1

kj ). (13)

This identity leads directly to an algorithm for computing all-pairs shortest
distances using a triple-indexed array. An in-place implementation of the al-
gorithm limits the space used to that of a single |Q| × |Q|-matrix (Figure 2)
and thus the space complexity of the algorithm to O(|Q|2). The cubic-time
complexity follows directly the definition of the algorithm. ⊓⊔

The efficiency of the algorithm can be improved for graphs G with relatively
small strongly connected components (SCCs) by decomposing G into its SCCs,
which can be done in linear time, then running Gen-All-Pairs on each SCC.

The Gen-All-Pairs algorithm is useful in a variety of applications. With
the Boolean semiring, it can be used to compute the transitive closure of any
vertex of a graph and then coincides with the classical Floyd-Warshall algo-
rithm [25, 57]. With the tropical semiring, the algorithm can compute the all-
pairs shortest distances in the classical case including for graphs with negative
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cycles using the general topical semiring (R∪{−∞, +∞}, min, +, +∞, 0). The
algorithm of [28] based on Dijkstra’s algorithm and that of Bellman-Ford has
a better time complexity for graphs with real-valued weights, O(|Q|2 log |Q|+
|Q||E|), but it cannot be used with graphs that have a negative cycle. Gen-

All-Pairs can also be used to compute the minimum spanning tree of a di-
rected graph using the complete semiring (R ∪ {−∞,∞}, min, max,∞,−∞)
[17]. Finally, it is also useful for computing the epsilon-removal of a weighted
automaton in the general case of complete semirings [40] where Johnson’s al-
gorithm does not apply, which is the main motivation for our presentation of
the algorithm.

Gen-All-Pairs can be used of course to compute single-source shortest
distances in graphs G weighted over a complete semiring. The complexity
of the Gen-All-Pairs algorithm in this case, (|Q|3), makes it impractical
for large graphs. The next section describes a single-source shortest-distance
algorithm which can be significantly more efficient in many cases.

2.2 Single-Source Shortest-Distance Problems

The general single-source shortest-distance algorithm described in this section
is defined for any k-closed semiring [41, 20].8

k-Closed Semirings

Let k ≥ 0 be an integer. A semiring (S,⊕,⊗, 0, 1) is said to be k-closed if

∀a ∈ S,

k+1⊕

n=0

an =

k⊕

n=0

an. (14)

A k-closed semiring is thus a starsemiring with a∗ =
⊕k

n=0 an for all a ∈
S (as defined in [20]). The Boolean semiring, the tropical semiring (R+ ∪
{+∞}, min, +, +∞, 0), or (R ∪ {−∞,∞}, min, max,∞,−∞) are examples of
k-closed semirings with k = 0.

General single-source shortest-distance Algorithm

The shortest-distance d[i, j] from any vertex i to any vertex j is well-defined in
a k-closed semiring S. Given a source vertex s ∈ Q, the general single-source
shortest-distance problem consists of computing all distances d[s, q], q ∈ Q.

Figure 3 gives the pseudocode of an algorithm computing the single-source
shortest-distances for any k-closed semiring [41]. The algorithm is based on a
generalization of the relaxation technique to the k-closed semirings.

The algorithm maintains two arrays d[q] and r[q] indexed with vertices.
d[q] denotes the tentative shortest distance from the source s to q. r[q] keeps

8 See also [24, 20] for the related definition of locally closed semirings.
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Gen-Single-Source(G, s)

1 for i← 1 to |Q| do

2 d[i]← r[i]← 0
3 d[s]← r[s]← 1
4 Q ← {s}
5 while Q 6= ∅ do

6 q ← Head(Q)
7 Dequeue(Q)
8 r′ ← r[q]
9 r[q]← 0

10 for each e ∈ E[q] do

11 if d[n[e]] 6= d[n[e]]⊕ (r′ ⊗ w[e]) then

12 d[n[e]]← d[n[e]]⊕ (r′ ⊗ w[e])
13 r[n[e]]← r[n[e]]⊕ (r′ ⊗ w[e])
14 if n[e] 6∈ Q then

15 Enqueue(Q, n[e])

Fig. 3. Generic single-source shortest-distance algorithm .

track of the sum of the weights ⊕-added to d[q] since the last queue extraction
of q. The attribute r is needed for the shortest-distance algorithm to work in
non-idempotent cases. The algorithm uses a queue Q to store the set of states
to consider for the relaxation steps of lines 11-15 [41]. Any queue discipline,
e.g., FIFO, shortest-first, topological (in the acyclic case), can be used.

Different queue disciplines yield different running times for our algorithm.
The choice of the best queue discipline to use depends on the semiring and
the graph structure.

If the graph is acyclic, then using the topological order queue discipline
gives a linear-time algorithm: O(|Q|+(T⊕+T⊗)|E|). For the tropical semiring
(R+∪{+∞}, min, +, +∞, 0) and the best-first queue discipline, the algorithm
coincides with Dijkstra’s algorithm and its complexity is O(|E| + |Q| log |Q|)
using Fibonacci heaps. In the presence of negative weights but no negative cy-
cles, using a FIFO queue discipline, the algorithm coincides with the Bellman-
Ford algorithm.

The initialization step of the algorithm (lines 1-3) takes O(|Q|) time, each
relaxation (lines 11-13) takes O(T⊕ + T⊗ + C(A)) time. There are exactly
N(q)|E[q]| relaxations at q. The total cost of the relaxations is thus: O((T⊕ +
T⊗ +C(A))|E|maxq∈Q N(q)). Since each vertex q is inserted in Q N(q) times
(line 15), it is also extracted from Q N(q) times (lines 6-7), and the general
expression of the complexity is

O(|Q|+ (T⊕ + T⊗ + C(A))|E|max
q∈Q

N(q) + (C(I) + C(E))
∑

q∈Q

N(q)), (15)
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where C(E) is the worst cost of removing a vertex q from the queue Q, C(I)
that of inserting q inQ, and C(A) that of an assignment, including the possible
necessary cost of reorganizing the queue.

Theorem 3. Let G = (Q, E, w) be a weighted directed graph over a k-
closed commutative semiring S and let s ∈ Q be a distinguished source ver-
tex. Then, the algorithm Gen-Single-Source computes the single-source
shortest-distances d[s, q] to all vertices q ∈ Q regardless of the queue disci-
pline used for Q.

The proof of theorem is given in [41].

3 Rational Operations

Regulated weighted transducers are closed under the following three standard
operations called rational operations :

• the sum (or union) of two weighted transducers T1 and T2 is defined by

∀(x, y) ∈ Σ∗ ×∆∗, (T1 ⊕ T2)(x, y) = T1(x, y)⊕ T2(x, y). (16)

• the product (or concatenation) of two weighted transducers T1 and T2 by

∀(x, y) ∈ Σ∗×∆∗, (T1 ⊗ T2)(x, y) =
⊕

x=x1x2

y=y1y2

T1(x1, y1)⊗T2(x2, y2). (17)

The sum runs over all possible ways of decomposing x into a prefix x1 ∈ Σ∗

and a suffix x2 ∈ Σ∗ and similarly y ∈ ∆∗ into a prefix y1 ∈ ∆∗ and a

suffix y2. The product of n > 0 instances of T ,

n
︷ ︸︸ ︷

T ⊗ · · · ⊗ T , is denoted by
T n, and by convention T 0 = E , where E is the transducer defined by

{

E(x, y) = 1 if (x, y) = (ǫ, ǫ);

0 otherwise.
(18)

• the closure (or Kleene-closure) of a weighted transducer T is defined by

∀(x, y) ∈ Σ∗ ×∆∗, T ∗(x, y) =

+∞⊕

n=0

T n(x, y), (19)

when
⊕+∞

n=0 T n(x, y) is an element of S for all (x, y) ∈ Σ∗ × ∆∗. Note
that in the absence of accepting ǫ-paths, that is when P (I, ǫ, ǫ, F ) = ∅,
T n(x, y) = 0 for n > |x|+ |y|, thus T ∗(x, y) is defined by a finite sum and
is always an element of S. In complete semirings, the closure operation is
defined for all weighted transducers.
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Fig. 4. (a) Weighted transducer T1 and (b) weighted transducer T2 over the prob-
ability semiring. (c) Sum of T1 and T2, T1 ⊕ T2. (d) Product of T1 and T2, T1 ⊗ T2.
(e) Closure of T1, T ∗

1 .

Rational operations can be used to create complex weighted transducers from
simpler ones as in the standard case of unweighted acceptors. They admit
simple and efficient algorithms. Figures 4(c)-(e) illustrate these algorithms for
the particular cases of the transducers T1 and T2 of Figures 4(a)-(b).

The transducer sum of two transducers T1 and T2 can be constructed
from T1 and T2 by introducing a new state, made the unique initial state,
with ǫ-transitions to the initial states of T1 and T2 carrying the weight 1.
By construction, the sum of the weights of the paths with input label x and
output label y in the resulting transducer is exactly the sum of the weights
of the paths with these labels in T1 and those with these labels in T2, which
matches precisely the definition of T1 ⊕ T2 (Figure 4(c). The time and space
complexity of the algorithm is thus linear, O(|T1| + |T2|). Furthermore, the
algorithm admits a natural on-demand or on-the-fly construction: states and
transitions of the transducer sum can be created only as required by the
algorithm using T1 ⊕ T2. This is because the outgoing transition of a state of
T1 ⊕ T2 can be constructed only by using that state and T1 and T2 without
inspecting other states of T1 ⊕ T2. This local availability of the information
needed to construct the output is what characterizes algorithms admitting
natural on-the-fly constructions.

Similarly, the product (or concatenation) of two transducers T1 and T2 can
be constructed from these transducers by making the final states of T1 non-
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final and by creating an ǫ-transition from each final state p of T1 to each initial
state q of T2 carrying the final weight of p (Figure 4(d)). It is straightforward
to verify the correctness of this construction. The time and space complexity
of the algorithm is O(|T1| + |T2| + |F1||I2|). The complexity of the product
computation is linear for transducers with a single initial state, which is the
typical situation in practice. As with the sum, the product algorithm admits
a natural on-demand implementation.

The closure of a transducer T1 can be constructed as in the standard case
of unweighted acceptors. A new initial state is created that is also final with
final weight 1. An ǫ-transition with weight 1 is created from this state to
the previously initial state of the transducer. Finally, an ǫ-transition is added
from each final state p to the previously initial state carrying the final weight
of p (Figure 4(e)). The correctness of the construction follows the definition
of the closure. The complexity of the algorithm is linear O(|T1|) and the
algorithm admits a natural on-demand implementation as in the case of the
other rational operations.

4 Elementary Unary Operations

This section briefly describes three elementary unary operations that are often
useful in application.

• the reversal of a weighted transducers T produces a transducer T R that
assigns to each pair of strings (x, y) what T assigns to their mirror images
(xR, yR):

T R(x, y) = T (xR, yR). (20)

• the inversion (or transposition) of a weighted transducer T produces a
new weighted transducer by swapping the input and output label of each
transition

T−1(x, y) = T (y, x). (21)

• the projection of a weighted transducer T on the input side (or left pro-
jection) yields an acceptor ↓T by omitting output labels:

↓T (x) =
⊕

y

T (x, y). (22)

Projection on the output side (or right projection), T ↓, is defined in a
similar way.

These operations admit straightforward linear-time algorithms that are illus-
trated by Figures 5. Inversion and projection are trivial and clearly admit
a linear-time algorithm. When the semiring S is commutative, reversal can
be obtained by reverting the direction of each transition and making initial
states final and final states initial. It can also be obtained as in Figure 5(a)
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(c)

Fig. 5. Elementary operations applies to the transducer T = T1⊕T2 of Figure 4(c).
(a) Reversed transducer T R. (b) Inverted transducer T−1. (c) Projected transducer
↓T .

by reverting the direction of all transitions, creating a new state p made the
unique initial state, with ǫ-transitions to each previously final state q carrying
the final weight of q, and making previously initial states final with the same
weights. In all cases, reversal does not admit a natural on-demand computa-
tion since the computation of the outgoing transitions of a state of the output
transducer requires creating or inspecting other output states.

5 Fundamental binary operations

In this section, the semiring S is assumed to be commutative.

5.1 Composition

Composition is a general operation for combining two or more weighted trans-
ducers [22, 54, 36, 35]. It is a powerful tool used in a variety of applications
to create a complex weighted transducer from simpler ones representing sta-
tistical models or discriminative models.

The algorithm for the composition of weighted transducers is a gener-
alization of the standard composition algorithm for unweighted finite-state
transducers. However, as we shall see later, the weighted case requires a more
subtle technique to deal with ǫ-path multiplicity issues [50, 46]. The algorithm
takes as input two weighted transducers
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Fig. 6. Weighted transducers (a) T1 and (b) T2 over the probability semiring. (c)
Illustration of composition of T1 and T2, T1 ◦ T2. Some states might be constructed
during the execution of the algorithm that are not co-accessible, e.g., (3, 2). Such
states and the related transitions can be removed by a trimming (or connection)
algorithm in linear-time.

T1 = (Σ∗, ∆∗, Q1, I1, F1, E1, λ1, ρ1) and T2 = (∆∗, Ω∗, Q2, I2, F2, E2, λ2, ρ2)

such that the input alphabet of T2, ∆, coincides with the output alphabet of
T1, outputs a weighted transducer T = (Σ∗, Ω∗, Q, I, F, E, λ, ρ) realizing the
composition of T1 and T2.

Let T1 and T2 be two weighted transducers defined over S such that the
input alphabet of T2 coincides with the output alphabet of T1. Assume that
the infinite sum

⊕

z∈∆∗ T1(x, z)⊗ T2(z, y) is defined and in S for all (x, y) ∈
Σ∗ × Ω∗. This condition holds for all transducers defined over a complete
semiring such as the Boolean semiring, the tropical semiring, the probability
semiring and the log semiring, and for all acyclic transducers defined over
an arbitrary semiring. Then, the result of the composition of T1 and T2 is a
weighted transducer denoted by T1 ◦ T2 and defined for all x, y by:

(T1 ◦ T2)(x, y) =
⊕

z∈∆∗

T1(x, z)⊗ T2(z, y). (23)

The sum runs over all strings z labeling a path of T1 on the output side and
a path of T2 on input label z. The matrix notation we have used emphasizes
the connection of composition with matrix multiplication.9

There exists a general and efficient algorithm to compute the composition
of two weighted transducers. In the absence of ǫs on the input side of T1 or
the output side of T2, the states of T1 ◦ T2 can be identified with pairs of a

9 Our choice of a matrix notation as opposed to a functional notation is motivated
by its convenience in applications.
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state of T1 and a state of T2, Q ⊆ Q1 ×Q2. Initial states are those obtained
by pairing initial states of the original transducers, I = I1 × I2, and similarly
final states are defined by F = Q ∩ (F1 × F2). Transitions are obtained by
matching a transition of T1 with one of T2 from appropriate transitions of T1

and T2:

E =
⊎

(q1,a,b,w1,q2)∈E1

(q′
1
,b,c,w2,q′

2
)∈E2

{(

(q1, q
′
1), a, c, w1 ⊗ w2, (q2, q

′
2)

)}

.

The following is the pseudocode of the algorithm in the ǫ-free case.

Weighted-Composition(T1, T2)

1 Q← I1 × I2

2 Q ← I1 × I2

3 while Q 6= ∅ do

4 q = (q1, q2)← Head(Q)
5 Dequeue(Q)
6 if q ∈ I1 × I2 then

7 I ← I ∪ {q}
8 λ(q)← λ1(q1)⊗ λ2(q2)
9 if q ∈ F1 × F2 then

10 F ← F ∪ {q}
11 ρ(q)← ρ1(q1)⊗ ρ2(q2)
12 for each (e1, e2) ∈ E[q1]× E[q2] such that o[e1] = i[e2] do

13 if
`

q′ = (n[e1], n[e2]) 6∈ Q
´

then

14 Q← Q ∪ {q′}
15 Enqueue(Q, q′)
16 E ← E ⊎ {(q, i[e1], o[e2], w[e1]⊗ w[e2], q

′)}
17 return T

E, I, and F are all assumed to be initialized to the empty set. The algo-
rithm uses a queue Q containing the set of pairs of states yet to be examined.
The queue discipline of Q can be arbitrarily chosen and does not affect the
termination of the algorithm. The set of states Q is originally reduced to the
set of pairs of the initial states of the original transducers and Q is initialized
to the same (lines 1-2). At each execution of the loop of lines 3-16, a new pair
of states (q1, q2) is extracted from Q (lines 4-5). The initial weight of (q1, q2)
is computed by ⊗-multiplying the initial weights of q1 and q2 when they are
both initial states (lines 6-8). Similar steps are followed for final states (lines
9-11). Then, for each pair of matching transitions (e1, e2), a new transition
is created according to the rules specified earlier (line 16). If the destination
state (n[e1], n[e2]) has not been found earlier on, it is added to Q and inserted
in Q (lines 14-15).
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Fig. 7. Redundant ǫ-paths in composition. All transition and final weights are equal
to 1. (a) A straightforward generalization of the ǫ-free case would generate all the
paths from (1, 1) to (3, 2) when composing T1 and T2 and produce an incorrect
results in non-idempotent semirings. (b) Filter transducer F [46]. The shorthand x

is used to represent an element of Σ.

In the worst case, all transitions of T1 leaving a state q1 match all those
of T2 leaving state q′1, thus the space and time complexity of composition is
quadratic: O(|T1||T2|). However, an important feature of composition is that
it admits a natural on-demand computation which can be used to construct
only the part of the composed transducer that is needed. Figures 6(a)-(c)
illustrate the algorithm when applied to the transducers of Figures 6(a)-(b)
defined over the probability semiring.

More care is needed when T1 admits output ǫ labels or T2 input ǫ labels.
Indeed, as illustrated by Figure 7, a straightforward generalization of the ǫ-
free case would generate redundant ǫ-paths and, in the case of non-idempotent
semirings, would lead to an incorrect result. The weight of the matching paths
of the original transducers would be counted p times, where p is the number
of redundant paths in the result of composition.

To cope with this problem, all but one ǫ-path must be filtered out of
the composite transducer. Figure 7 indicates in boldface one possible choice
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for that path, which in this case is the shortest. Remarkably, that filtering
mechanism itself can be encoded as a finite-state transducer F (Figure 7(b)).

To apply that filter, we need to first augment T1 and T2 with auxiliary sym-
bols that make the semantics of ǫ explicit. Thus, let T̃1 (T̃2) be the weighted
transducer obtained from T1 (resp. T2) by replacing the output (resp. input)
ǫ labels with ǫ2 (resp. ǫ1) as illustrated by Figure 7. Thus, matching with the
symbol e1 corresponds to remaining at the same state of T1 and taking a tran-
sition of T2 with input ǫ. e2 can be described in a symmetric way. The filter
transducer F disallows a matching (ǫ2, ǫ2) immediately after (ǫ1, ǫ1) since this
can be done instead via (ǫ2, ǫ1). By symmetry, it also disallows a matching
(ǫ1, ǫ1) immediately after (ǫ2, ǫ2). In the same way, a matching (ǫ1, ǫ1) imme-
diately followed by (ǫ2, ǫ1) is not permitted by the filter F since a shorter path
via the matchings (ǫ2, ǫ1)(ǫ1, ǫ1) is possible. Similarly, (ǫ2, ǫ2)(ǫ2, ǫ1) is ruled
out. It is not hard to verify that the filter transducer F is precisely a finite
automaton over pairs accepting the complement of the language

L = σ∗((ǫ1, ǫ1)(ǫ2, ǫ2) + (ǫ2, ǫ2)(ǫ1, ǫ1) + (ǫ1, ǫ1)(ǫ2, ǫ1) + (ǫ2, ǫ2)(ǫ2, ǫ1))σ
∗,

where σ = {(ǫ1, ǫ1), (ǫ2, ǫ2), (ǫ2, ǫ1), x} [4]. Thus, the filter F guarantees that
exactly one ǫ-path is allowed in the composition of each ǫ sequences. To obtain
the correct result of composition, it suffices then to use the ǫ-free composition
algorithm already described and compute

T̃1 ◦ F ◦ T2. (24)

Indeed, the two compositions in T̃1 ◦ F ◦ T̃2 no more involve ǫs. Since the size
of the filter transducer F is constant, the complexity of general composition
is the same as that of ǫ-free composition, that is O(|T1||T2|). In practice, the
augmented transducers T̃1 and T̃2 are not explicitly constructed, instead the
presence of the auxiliary symbols is simulated. Further filter optimizations
help limit the number of non-coaccessible states created, for example by ex-
amining more carefully the case of states with only outgoing non-ǫ-transitions
or only outgoing ǫ-transitions [46].

Composition of weighted transducers can be further generalized to the
N -way composition of weighted transducers [4]. Furthermore, N -way compo-
sition of three or more transducers can be substantially faster than the use of
the standard composition [5].

5.2 Intersection

The intersection (or Hadamard product) of two weighted automata A1 and
A2 is defined by [22, 54, 36]:

(A1 ∩A2)(x) = A1(x)⊗A2(x). (25)

It coincides with the special case of composition of weighted transducers where
the input label of each transition matches its output label. Thus, the same
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Fig. 8. Weighted Automata (a) A1 and (b) A2 over the probability semiring. (c)
Illustration of intersection of A1 and A2, A1∩A2. Some states might be constructed
during the execution of the algorithm that are not co-accessible, e.g., (3, 2). Such
states and the related transitions can be removed by a trimming (or connection)
algorithm in linear-time.

algorithm can be used to compute intersection with the same complexity.
Figure 8 illustrates the application of the algorithm to two weighted automata
extracted from the weighted transducers of Figure 6.

5.3 Difference

Negation is not defined for all semirings, but a difference operation can be de-
fined for a weighted automata A1 and an unweighted deterministic automaton
A2 as follows:10

∀x ∈ Σ∗, (A1 − A2)(x) =

{

A1(x) if x 6∈ L(A2)

0 otherwise.
(26)

Thus, (A1 − A2) is the weighted automaton A1 from which all accepting
paths labeled with a string accepted by A2 are removed, which leads to the
following equivalent formulation:

∀x ∈ Σ∗, (A1 −A2)(x) = (A1 ∩A2)(x), (27)

where A2 is a weighted automaton over the semiring S accepting exactly the
complement of L(A2) and assigning weight 1 to each string accepted. Since
A2 is deterministic, its complement A2 can be computed from A2 in linear
time, with the following two steps:

10 Of course, when negation is defined, A1⊕(⊖A2) defined by ∀x ∈ Σ∗, A1⊕(⊖A2) =
A1(x)⊖A2(x) can be computed by applying the sum algorithm to A1 and ⊖A2.
The semantics of the difference operation considered here is different.
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Fig. 9. (a) Unweighted automaton A2. (b) Complete automaton equivalent to A2.
(c) Complement of A2, A2, all weights are equal to 1 and thus not indicated. (d)
Weighted automaton A1 defined over the probability semiring. (e) Difference of A1

and A2, A1 − A2, obtained by intersection of A1 and A2.

• completion: first making A2 complete, that is creating an equivalent au-
tomaton to A2 such that all alphabet symbols can be read from any state.
This can be done by augmenting A2 with a new state p with self-loops
labeled with all alphabet symbols, and by adding a transition labeled with
a ∈ Σ from state q to p when no transition labeled with a is available at
q in A2.

• complementation: then making all final states of the modified automaton
A2 non-final and vice-versa. Finally, all weights of the automaton are set
to 1 to make it an automaton over S.

Both of these steps can be executed in linear time O(|A2| + |Σ|) and admit
a natural on-demand implementation. Note that the complementation of ar-
bitrary finite automata is PSPACE-complete [1], this is the reason why A2

was assumed to be deterministic here. The difference can then be obtained
by computing the intersection of A1 and A2. Since intersection or composi-
tion also admit a natural on-the-demand computation, the same is true of
the difference algorithm. Note that using that property, the alphabet symbol
actually used in complementation can be limited to the symbols appearing in
A1 and A2. Thus, the overall complexity of difference is O(|A1|(|A2|+ |Σ′|).

Figure 9 illustrates the difference algorithm.
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6 Optimization algorithms

6.1 Epsilon-Removal

The use of various automata or transducer operations such as rational opera-
tions generate ǫ-transitions. These transitions cause some delay in the use of
the resulting transducers since the search for an alphabet symbol to match
in composition or other similar operations requires reading some sequences of
ǫs first. To make these weighted transducers more efficient to use, it may be
preferable to remove all ǫ-transitions, that is to create an equivalent weighted
transducer with no ǫ-transition. This section describes a general ǫ-removal
algorithm that precisely achieves this task.

Simply removing ǫ-transitions from the input transducer clearly does not
result in an equivalent one. Instead, for a given state p, the non-ǫ-transitions
of all states q reachable from p via ǫ-transitions should be added to those of
p. In the weighted case, this does not result in an equivalent transducer since
the weights of the ǫ-transitions from p to q would be ignored. Thus, before
adding an outgoing transition of state q to p, the weight it carries must be
pre-⊗-multiplied by the sum of the weights of the ǫ-paths from p to q. To
ensure that this weight is an element of the semiring, we will assume that S

is complete.11

This leads to a two-step algorithm [40]. Given a transducer T , let Tǫ denote
the transducer derived from T by keeping only ǫ-transitions and let dǫ[p, q] =
⊕π∈P (p,ǫ,q)w[π] denote the distance from state p to state q in Tǫ. Then, the
following are the two main steps of the algorithms:

• ǫ-closure computation: at each state p, the weighted ǫ-closure defined by

C(p) = {(q, w) : P (p, ǫ, q) 6= ∅, w = dǫ[p, q]} (28)

is computed.
• actual removal of ǫs: all ǫ-transitions are removed and for each p and each

(q, w) ∈ C(p), the transition set of p is augmented with the following
transitions

{(p, a, b, dǫ[p, q]⊗ w, r) : (q, a, b, w, r) ∈ E, (a, b) 6= (ǫ, ǫ)}. (29)

If there exists (q, w) ∈ C(p) with q ∈ F , then dǫ[p, q] ⊗ ρ(q) must be
⊕-added to the final weight of p.

The following is the pseudocode of the algorithm which follows the main steps
just discussed.

Theorem 4 ([40]). Let T be a weighted transducer over a complete semir-
ing S. Assume that the closures C(p) can be computed for any state p of T .
Then, the weighted transducer T ′ returned by the epsilon-removal algorithm
just described is equivalent to T .

11 The results presented also hold in the case of closed semirings.
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Epsilon-Removal(T )

1 for each p ∈ Q do

2 Compute-Closure(C(p))

3 E′ ← Eǫ ← {(p, a, b, w, q) ∈ E : (a, b) 6= (ǫ, ǫ)}
4 F ′ ← F

5 ρ′ ← ρ

6 for each p ∈ Q do

7 for each (q, w′) ∈ C[p] do

8 E′[p]← E′[p] ⊎ {(p, a, b, w′ ⊗ w, r) : (q, a, b, w, r) ∈ Eǫ}
9 if q ∈ F then

10 if p 6∈ F then

11 F ′ ← F ∪ {p}
12 ρ′[p]← 0
13 ρ′[p]← ρ′[p]⊕ (w′ ⊗ ρ(q))
14 return T ′ = (Σ, ∆, Q, I, F ′, E′, λ, ρ′)

The proof is simple and is given in [40].
The ǫ-closures C(p) can be computed using an all-pair shortest-distance

algorithm over Tǫ when the semiring S is complete, or by applying the single-
shortest distance algorithm from each source p when the semiring is k-closed,
as described in Section 2. The complexity of the second stage of the algorithm
(lines 6-13) is in O(|Q|2 + |Q||E|) since in the worst case each C(p) contains
all states of the transducer. Thus, the overall complexity of the algorithm is

O(|Compute-Closure|+ |Q|2 + |Q||E|(T⊕ + T⊗)), (30)

where O(|Compute-Closure|) denotes the total cost of the closure compu-
tation. We are now examining several special cases of practical interest:

• Tǫ is acyclic, that is T admits no ǫ-cycle, a rather frequent case in practice.
In that case, the single-source shortest distance algorithm can be used for
any semiring S and has linear time complexity. The total complexity of
applying the algorithm at each state is O(|Q|2 + |Q||E|(T⊕ + T⊗)) and
matches that of the second stage. Thus, the overall complexity of epsilon-
removal is then

O(|Q|2 + |Q||E|(T⊕ + T⊗)). (31)

The algorithm can in fact be improved in that special case. The complexity
of the computation of the all-pairs shortest distances can be substantially
improved if the states of Tǫ are visited in reverse topological order and if
the single-source shortest-distance algorithm is interleaved with the actual
removal of ǫs as follows: for each state p of Tǫ visited in reverse topological
order,

– run a single-source shortest-distance algorithm with source p to com-
pute the distance from p to each state q in Tǫ;
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Fig. 10. (a) Weighted transducer T defined over the probability semiring. (b)
Weighted graph showing non-0 all-pair distance dǫ[p, q]. From each state p, the
outgoing weighted edges give the closure C(p). (c) Weighted transducer T ′ resulting
from T by epsilon-removal. (d) Weighted transducer T ′′ resulting from T by reverse
epsilon-removal.

– then remove ǫ-transitions leaving q and update the final weight as al-
ready described.

The reverse topological order guarantees that the ǫ-paths leaving p are re-
duced to the ǫ-transitions leaving p. Thus, the cost of the shortest-distance
algorithm run from p only depends on the number of ǫ-transitions leaving
p and the total cost of the computation of the shortest-distances is linear:
O(|Q|+ (T⊕ + T⊗)|E|).

• S is the tropical semiring. In that case, the complexity of the first stage
of the algorithm is that of a standard shortest-path algorithm from each
state of Tǫ. Using Fibonacci heaps, the complexity of the first stage of the
algorithm is thus O(|Q||E|+ |Q|2 log |Q|). Thus, the overall complexity of
epsilon-removal is again

O(|Q|2 + |Q||E|(T⊕ + T⊗)). (32)

• S is a complete semiring. In that case, when the all-pairs shortest-distance
algorithm of Section 2 is the only algorithm available, the complexity of
the first stage of the algorithm is Θ(|Q|3(T⊕ + T⊗ + T∗)) and the overall
complexity of epsilon-removal is also

O(|Q|3(T⊕ + T⊗ + T∗) + |Q||E|(T⊕ + T⊗)). (33)

Epsilon-removal does not create any new state. However, not all states of
the original transducer may be necessary. States with only incoming (or out-
going) ǫ-transitions become non-accessible (resp. non-coaccessible) after re-
moval of these transitions, which causes other states not to be accessible or
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co-accessible. All of these states and corresponding transitions can be removed
in linear time using a standard trimming or connection algorithm.

During the epsilon-removal construction, it may happen quite often in
practice that several transitions from the same state p to the same state q,
with the same input and output label, need to be constructed in the resulting
transducer T ′. To avoid this redundancy, the weights of these transitions are
⊕-summed to maintain at any time a single transition instead.

Note that epsilon-removal admits a natural on-demand computation since
the outgoing transitions of state q of the output automaton can be computed
directly using the ǫ-closure of q. However, the reverse topological order de-
scribed in the case of an acyclic Tǫ requires examining all states of Tǫ and
thus that version of the algorithm cannot be viewed as a natural on-demand
construction. In practice, both versions of the algorithm can be useful.

When epsilon-removal is to be followed immediately by the application of
determinization, the integration of these two operations often results in much
more efficient overall computation. This is because the ǫ-closure of a subset
of states created by determinization can be computed by a single shortest-
distance algorithm with all states of the subset serving as sources, rather than
a distinct one for each state of the subset. Since some states can be reached
by several elements of the subset, the first method provides more sharing.

This integration of determinization and epsilon-removal can be extended
to the weighted case where the weighted determinization [38] presented in the
next section is used.12

Epsilon-removal can be straightforwardly modified to remove transitions
with input label a and output label b, with (a, b) 6= (ǫ, ǫ). This can be done for
example by relabeling ǫ-transitions with a new label and replacing (a, b) by
(ǫ, ǫ), applying epsilon-removal, and then restoring original ǫs. The resulting
transducer is equivalent to the original if (a, b) is assigned the semantics of
(ǫ, ǫ).

Figure 10 illustrates the epsilon-removal algorithm. Figure 10(c) shows the
transducer T ′ resulting from the transducer T of Figure 10(a) by application
of epsilon-removal. Note that only three of the original states remain in T ′.
As already discussed, since state 2 and 3 admit only incoming ǫ-transitions
(and only outgoing ǫ-transitions in the case of state 3), after removal of ǫ-
transitions they become inaccessible and can thus be removed. Figure 10(b)
indicates all non-0 shortest-distances between states in Tǫ, which summarizes
the closure information. These distances are used to determine the weight of
the new transitions added.

Instead of removing an ǫ-transition from p to q by adding to state p all
non-ǫ-transitions leaving q, one can equivalently proceed by adding to q all
non-ǫ-transitions entering p. This is equivalent to applying epsilon-removal in

12 It is however limited to the cases where the result of epsilon-removal is deter-
minizable, that is cases where the determinization algorithm terminates, which,
as we shall see later, does not always hold in the weighted case.
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the same way as before but to the reverse of T . We will thus refer to reverse
epsilon-removal as the algorithm that consists of the following sequence of op-
erations: reversal, epsilon-removal, reversal. Figure 10(d) shows T ′′ the result
of the application of reverse epsilon-removal to T . T ′′ is equivalent to T and
T ′′ and has the same number of states as T , but in this case has more tran-
sitions than T ′. Which algorithm epsilon-removal or reverse epsilon-removal,
produces the smallest transducer depends on the number of outgoing transi-
tions of the states q reached by an ǫ-path in the epsilon-removal case, or the
number of incoming transitions of the states p with incoming ǫs in the reverse
epsilon-removal case. The decision of the direction of epsilon-removal can be
made in fact for each pair of states (p, q) based upon these quantities.

6.2 Determinization

This section describes a general determinization algorithm for weighted au-
tomata and transducers [38] which generalizes the standard powerset con-
struction for unweighted finite automata. The presentation will focus on the
case of weighted automata, the weighted transducer case can be treated in a
similar way or as a special case of the general algorithm we present [38].

A weighted automaton is said to be deterministic or subsequential if it
has a unique initial state and if no two transitions leaving any state share the
same input label. There exists a natural extension of the classical subset con-
struction to the case of weighted automata called determinization. Weighted
determinization requires some technical conditions on the semiring or the
weighted automaton which we will first introduce. These conditions hold in
most cases in practice.

Weighted determinization is a generic algorithm: it works with any weakly
divisible semiring. A semiring is said to be divisible if all non-0 elements
admit an inverse, that is if S−{0} is a group. (S,⊕,⊗, 0, 1) is said to be
weakly divisible if for any x and y in S such that x ⊕ y 6= 0, there exists at
least one z such that x = (x ⊕ y) ⊗ z. The ⊗-operation is cancellative if z is
unique and we can write: z = (x ⊕ y)−1x. When z is not unique, we can still
assume that we have an algorithm to find one of the possible z and call it
(x⊕ y)−1x. Furthermore, we will assume that z can be found in a consistent
way, that is: ((u ⊗ x) ⊕ (u ⊗ y))−1(u ⊗ x) = (x ⊕ y)−1x for any x, y, u ∈ S

such that u 6= 0. A semiring is zero-sum-free if for any x and y in S, x⊕ y = 0
implies x = y = 0.

Additionally, we assume that for any string x ∈ Σ∗, the sum of the
weights of the paths labeled with x and starting at an initial state is non-
0: w[P (I, x, Q)] 6= 0. This condition is always satisfied with trim weighted
automata over the tropical semiring or any zero-sum-free semiring.

The pseudocode of the algorithm is given below with Q′, I ′, F ′, and E′

all initialized to the empty set.
A weighted subset p′ of Q is a set of pairs (q, x) ∈ Q× S. We will denote

by Q[p′] the set of states q of the weighted subset p′. E[Q[p′]] represents the
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Weighted-Determinization(A)

1 i′ ← {(i, λ(i)) : i ∈ I}
2 λ′(i′)← 1
3 Q ← {i′}
4 while Q 6= ∅ do

5 p′ ← Head(Q)
6 Dequeue(Q)
7 for each x ∈ i[E[Q[p′]]] do

8 w′ ←
L

{v ⊗w : (p, v) ∈ p′, (p, x, w, q) ∈ E}
9 q′ ← {(q,

L

{w′−1 ⊗ (v ⊗w) : (p, v) ∈ p′, (p, x, w, q) ∈ E}) :
q = n[e], i[e] = x, e ∈ E[Q[p′]]}

10 E′ ← E′ ∪ {(p′, x, w′, q′)}
11 if q′ 6∈ Q′ then

12 Q′ ← Q′ ∪ {q′}
13 if Q[q′] ∩ F 6= ∅ then

14 F ′ ← F ′ ∪ {q′}
15 ρ′(q′)←

L

{v ⊗ ρ(q) : (q, v) ∈ q′, q ∈ F}
16 Enqueue(Q, q′)
17 return T ′

set of transitions leaving these states, and i[E[Q[p′]]] the set of input labels
of these transitions.

The states of the output automaton can be identified with (weighted) sub-
sets of the states of the original automaton. A state r of the output automaton
that can be reached from the start state by a path π is identified with the set of
pairs (q, x) ∈ Q×S such that q can be reached from an initial state of the origi-
nal machine by a path σ with i[σ] = i[π] and λ(p[σ])⊗w[σ] = λ(p[π])⊗w[π]⊗x.
Thus, x can be viewed as the residual weight at state q.

Determinization does not terminate for all weighted automata. As we
shall see, not all weighted automata are determinizable by the algorithm
just described. When it terminates, the algorithm returns a subsequential
weighted automaton A′ = (Σ, Q′, I ′, F ′, E′, λ′, ρ′), equivalent to the input
A = (Σ, Q, I, F, E, λ, ρ).

The algorithm uses a queue Q containing the set of states of the resulting
automaton A′, yet to be examined. The queue discipline ofQ can be arbitrarily
chosen and does not affect the termination of the algorithm. A′ admits a
unique initial state, i′, defined as the set of initial states of A augmented with
their respective initial weights. Its input weight is 1 (lines 1-2). Q originally
contains only the subset i′ (line 3). At each execution of the loop of lines 4-16,
a new subset p′ is extracted from Q (lines 5-6). For each x labeling at least one
of the transitions leaving a state p of the subset p′, a new transition with input
label x is constructed. The weight w′ associated to that transition is the sum
of the weights of all transitions in E[Q[p′]] labeled with x pre-⊗-multiplied
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Fig. 11. Determinization of weighted automata. (a) Weighted automaton over the
tropical semiring A. (b) Equivalent weighted automaton B obtained by determiniza-
tion of A. (c) Non-determinizable weighted automaton over the tropical semiring,
states 1 and 2 are non-twin siblings.

by the residual weight v at each state p (line 8). The destination state of the
transition is the subset containing all the states q reached by transitions in
E[Q[p′]] labeled with x. The weight of each state q of the subset is obtained by
taking the ⊕-sum of the residual weights of the states p ⊗-times the weight
of the transition from p leading to q and by dividing that by w′. The new
subset q′ is inserted in the queue Q when it is a new state (line 15). If any
of the states in the subset q′ is final, q′ is made a final state and its final
weight is obtained by summing the final weights of all the final states in q′,
pre-⊗-multiplied by their residual weight v (line 14).

Figure 11 illustrates the determinization of a weighted automaton over the
tropical semiring. The worst case complexity of determinization is exponential
even in the unweighted case. However, in many practical cases such as for
weighted automata used in large-vocabulary speech recognition, this blow-
up does not occur. It is also important to notice that just like composition,
determinization admits a natural lazy implementation which can be useful for
saving space.

Unlike the unweighted case, determinization does not halt on all input
weighted automata. In fact, some weighted automata, non subsequentiable
automata, do not even admit equivalent subsequential machines. But even
for some subsequentiable automata, the algorithm does not halt. We say that
a weighted automaton A is determinizable if the determinization algorithm
halts for the input A. With a determinizable input, the algorithm outputs an
equivalent subsequential weighted automaton.

There exists a general twins property for weighted automata that provides
a characterization of determinizable weighted automata under some general
conditions. Let A be a weighted automaton over a weakly divisible semiring
S. Two states q and q′ of A are said to be siblings if there exist two strings x

and y in A∗ such that both q and q′ can be reached from I by paths labeled
with x and there is a cycle at q and a cycle at q′ both labeled with y. When
S is a commutative and cancellative semiring, two sibling states are said to
be twins iff for any string y:

w[P (q, y, q)] = w[P (q′, y, q′)] (34)
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A has the twins property if any two sibling states of A are twins.13 Figure 11(c)
shows an unambiguous weighted automaton over the tropical semiring that
does not have the twins property: states 1 and 2 can be reached by paths
labeled with a from the initial state and admit cycles with the same label b,
but the weights of these cycles (3 and 4) are different.

The following theorem is proven in [38].

Theorem 5 ([38]). Let A be a weighted automaton over the tropical semiring.
If A has the twins property, then A is determinizable.

With trim unambiguous weighted automata, the condition is also necessary
[38, 3].

Theorem 6 ([38, 3]). Let A be a trim unambiguous weighted automaton over
the tropical semiring. Then the three following properties are equivalent:

1. A is determinizable.
2. A has the twins property.
3. A is subsequentiable.

There exists an efficient algorithm for testing the twins property for trim un-
ambiguous and even cycle-unambiguousweighted automata!cycle-unambiguous
weighted automata in time O(|Q|2+|E|2) [3].14 Note that any acyclic weighted
automaton over a zero-sum-free semiring has the twins property and is deter-
minizable.

The existence of an equivalent sequential weighted automaton for a finitely
ambiguous weighted automaton over the tropical semiring was shown to be
decidable [32]. The twins property has also been shown more recently to be
a necessary and sufficient condition for the determinizability of finitely am-
biguous trim weighted automata, that is trim automata for which at most
a fixed finite number of accepting paths are labeled by any string, that are
defined over the tropical semiring of integers (Z∪ {+∞}, min, +, +∞, 0) [31].
A more general notion of clones property was introduced by the same author
and shown to be a decidable necessary and sufficient condition characteriz-
ing determinizability for polynomially ambiguous automata over the tropical
semiring, that is weighted automata over the tropical semiring for which the
number of accepting paths of any string x is bounded by a fixed polynomial
defined over the length of x.

13 The notion of twins property was originally introduced for unweighted finite-
state transducers by [15, 16] and was shown to be decidable. Polynomial-time
algorithms were later given to test this property for functional transducers in time
O(|Q|4(|Q|2 + |E|2)|∆|) by [58], O(|Q|4(|Q|2 + |E|2)) by [11], and O(|Q|2(|Q|2 +
|E|2)) by [3], where Q is the set of states of the input transducer, E the set of its
transitions and ∆ the output alphabet.

14 An automaton is cycle-unambiguous if for any state q and any string x there
exists at most one cycle at q labeled with x.
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6.3 Weight pushing

The choice of the distribution of the total weight along each successful path of
a weighted automaton does not affect the definition of the function realized by
that automaton, but it may have a critical impact on efficiency in many appli-
cations, e.g., information extraction or natural language processing, where a
heuristic pruning can often be used to visit only a subpart of the automaton.
There exists an algorithm, weight pushing, for normalizing the distribution
of the weights along the paths of a weighted automaton or more generally a
weighted directed graph [38, 43].

Let A be a weighted automaton over a semiring S. Assume that S is zero-
sum-free and weakly divisible. For any state q ∈ Q, assume that the following
sum is defined and in S:

d[q] =
⊕

π∈P (q,F )

(w[π] ⊗ ρ(n[π])). (35)

d[q] is the shortest-distance from q to F including the final weight. d[q] is
well-defined for all q ∈ Q when S is a k-closed semiring. The weight pushing
algorithm consists of computing each shortest-distance d[q] and of reweighting
the transition weights, initial weights and final weights in the following way:

∀e ∈ E s.t. d[p[e]] 6= 0, w[e] ← d[p[e]]−1 ⊗ w[e]⊗ d[n[e]] (36)

∀q ∈ I, λ(q) ← λ(q)⊗ d[q] (37)

∀q ∈ F s.t. d[q] 6= 0, ρ(q) ← d[q]−1 ⊗ ρ(q). (38)

Roughly speaking, the algorithm pushes the weights of each path as much
as possible towards the initial states. Figures 12(a)-(c) illustrate the applica-
tion of the algorithm in a special case both for the tropical and probability
semirings.

Each of the operations described can be assumed to be done in constant
time, thus reweighting can be done in linear time O(T⊗|A|) where T⊗ de-
notes the worst cost of an ⊗-operation. The complexity of the computation
of the shortest-distances depends on the semiring and the algorithm used
(see Section 2). In the case of k-closed semirings such as the tropical semir-
ing, d[q] can be computed using a single-source shortest-path algorithm. The
complexity of the algorithm is linear in the case of an acyclic automaton:
O(|Q| + (T⊕ + T⊗)|E|), where T⊕ denotes the worst cost of an ⊕-operation.
In the case of a general weighted automaton over the tropical semiring, the
complexity of the algorithm is O(|E|+ |Q| log |Q|).

In the case of complete semirings such as (R+, +,×, 0, 1), a generalization
of the Floyd-Warshall algorithm for computing all-pairs shortest-distances can
be used. The complexity of the algorithm is Θ(|Q|3(T⊕ + T⊗ + T∗)) where
T∗ denotes the worst cost of the closure operation. The space complexity
of these algorithms is Θ(|Q|2). These complexities make it impractical to
use the Floyd-Warshall algorithm for computing d[q], q ∈ Q, for relatively
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Fig. 12. Weight pushing algorithm. (a) Weighted automaton A. (b) Equivalent
weighted automaton B obtained by weight pushing in the tropical semiring. (c)
Weighted automaton C obtained from A by weight pushing in the probability semir-
ing. (d) Minimal weighted automaton over the tropical semiring equivalent to A.

large graphs or automata of several hundred million states or transitions.
An approximate version of a generic shortest-distance algorithm can be used
instead to compute d[q] efficiently.

Note that if d[q] = 0, then, since S is zero-sum-free, the weight of all
paths from q to F is 0. Let A be a weighted automaton over the semiring
S. Assume that S is complete or k-closed and that the shortest-distances
d[q] are all well-defined and in S − {0}. Note that in both cases we can use
the distributivity over the infinite sums defining shortest distances. Let e′

(π′) denote the transition e (path π) after application of the weight pushing
algorithm. e′ (π′) differs from e (resp. π) only by its weight. Let λ′ denote the
new initial weight function, and ρ′ the new final weight function.

The following proposition is proven in [38, 43].

Proposition 7 ([38, 43]). Let B = (A, Q, I, F, E′, λ′, ρ′) be the result of the
weight pushing algorithm applied to the weighted automaton A, then

1. the weight of a successful path π is unchanged after application of weight
pushing:

λ′[p[π′]]⊗ w[π′]⊗ ρ′[n[π′]] = λ(p[π]) ⊗ w[π]⊗ ρ(n[π]). (39)

2. the weighted automaton B is stochastic, i.e.

∀q ∈ Q,
⊕

e′∈E′[q]

w[e′] = 1. (40)

These two properties of weight pushing are illustrated by Figures 12(a)-(c):
the total weight of a successful path is unchanged after pushing; at each
state of the weighted automaton of Figure 12(b), the minimum weight of the
outgoing transitions is 0, and at at each state of the weighted automaton of
Figure 12(c), the weights of outgoing transitions sum to 1.

Weight pushing can also be used to test the equivalence of two subsequen-
tial weighted automata [38, 43]. Let A and B be two subsequential weighted
automata to which weight pushing can be applied and let A′ and B′ be the



Algorithms 31

resulting automata after weight pushing. Then, the equivalence of A and B

can be tested by applying the standard equivalence algorithm for unweighted
automata [1] to A′ and B′ after considering each pair of (transition label,
transition weight) as a single label. The equivalence of two arbitrary weighted
automata over the probability semiring can be tested in cubic time using an
algorithm [19] based on the standardization technique of Schützenberger [55].
The equivalence of arbitrary weighted automata over the tropical semiring is
known to be undecidable [34].

6.4 Minimization

A deterministic weighted automaton is said to be minimal if there exists no
other deterministic weighted automaton with a smaller number of states and
realizing the same function. Two states of a deterministic weighted automaton
are said to be equivalent if exactly the same set of strings with the same
weights label paths from these states to a final state, the final weights being
included. Thus, two equivalent states of a deterministic weighted automaton
can be merged without affecting the function realized by that automaton. A
weighted automaton is minimal when it admits no two distinct equivalent
states after any redistribution of the weights along its paths.

There exists a general algorithm for computing a minimal deterministic
automaton equivalent to a given weighted automaton [38]. It is thus a gen-
eralization of the minimization algorithms for unweighted finite automata. In
fact, minimization of both unweighted [39] and weighted finite-state transduc-
ers can be viewed as special instances of this algorithm.

The algorithm consists of first applying weight pushing to normalize the
distribution of the weights along the paths of the input automaton, and then
applying the classical unweighted automata minimization while treating each
pair (label, weight) as a single label.

Theorem 8 ([38]). Let A be a deterministic weighted automaton over a
semiring S. Assume that the conditions of application of the weight pushing
algorithm hold, then the execution of the following steps:

1. weight pushing,
2. (unweighted) automata minimization, treating each pair (label, weight) as

a single label,

yield a minimal weighted automaton equivalent to A.

The complexity of automata minimization is linear in the case of acyclic au-
tomata O(|Q| + |E|) [53] and in O(|E| log |Q|) in the general case [1]. Thus,
in view of the complexity results given in the previous section, in the case
of the tropical semiring, the total complexity of the weighted minimization
algorithm is linear in the acyclic case O(|Q|+ |E|) and in O(|E| log |Q|) in the
general case.
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Fig. 13. Minimization of weighted automata. (a) Weighted automaton A′ over
the probability semiring. (b) Minimal weighted automaton B′ equivalent to A′. (c)
Minimal weighted automaton C′ equivalent to A′.

Figures 12(a), 12(b), and 12(d) illustrate the application of the algorithm
in the tropical semiring. The automaton of Figure 12(a) cannot be further
minimized using the classical unweighted automata minimization since no two
states are equivalent in that machine. After weight pushing, the automaton
(Figure 12(b)) has two states (1 and 2) that can be merged by the classical
unweighted automata minimization.

Figures 13(a)-(c) illustrate the minimization of an automaton defined over
the probability semiring. Unlike the unweighted case, a minimal weighted
automaton is not unique, but all minimal weighted automata have the same
graph topology, they only differ by the way the weights are distributed along
each path. The weighted automata B′ and C′ are both minimal and equivalent
to A′. B′ is obtained from A′ using the algorithm described above in the
probability semiring and it is thus a stochastic weighted automaton in the
probability semiring.

For a deterministic weighted automaton, the first operation of the semiring
can be arbitrarily chosen without affecting the definition of the function it
realizes. This is because, by definition, a deterministic weighted automaton
admits at most one path labeled with any given string. Thus, in the algorithm
described in Theorem 8, the weight pushing step can be executed in any
semiring S′ whose multiplicative operation matches that of S. The minimal
weighted automaton obtained by pushing the weights in S′ is also minimal in
S since it can be interpreted as a (deterministic) weighted automaton over S.

In particular, A′ can be interpreted as a weighted automaton over the
semiring (R+, max,×, 0, 1). The application of the weighted minimization al-
gorithm to A′ in this semiring leads to the minimal weighted automaton C′

of Figure 13(c). C′ is also a stochastic weighted automaton in the sense that,
at any state, the maximum weight of all outgoing transitions is one.

This fact leads to several interesting observations. One is related to the
complexity of the algorithms. Indeed, we can choose a semiring S′ in which
the complexity of weight pushing is better than in S. The resulting automaton
is still minimal in S and has the additional property of being stochastic in S′.
It only differs from the weighted automaton obtained by pushing weights in
S in the way weights are distributed along the paths. They can be obtained
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from each other by application of weight pushing in the appropriate semiring.
In the particular case of a weighted automaton over the probability semiring,
it may be preferable to use weight pushing in the (max,×)-semiring since the
complexity of the algorithm is then equivalent to that of classical single-source
shortest-paths algorithms. The corresponding algorithm is a special instance
of the generic shortest-distance algorithm for k-closed semirings presented
earlier in the chapter.

Another important point is that the weight pushing algorithm may not be
defined in S because the machine is not zero-sum-free or for other reasons.
But an alternative semiring S′ can sometimes be used to minimize the input
weighted automaton.

The results just presented were all related to the minimization of the num-
ber of states of a deterministic weighted automaton. The following simple
proposition shows that minimizing the number of states coincides with mini-
mizing the number of transitions.

Proposition 9. Let A be a minimal deterministic weighted automaton, then
A has the minimal number of transitions.

Proof. Let A be a deterministic weighted automaton with the minimal num-
ber of transitions. If two distinct states of A were equivalent, they could be
merged, thereby strictly reducing the number of its transitions. Thus, A must
be a minimal deterministic automaton. Since, minimal deterministic automata
have the same topology, in particular the same number of states and transi-
tions, this proves the proposition. ⊓⊔

6.5 Synchronization

The weight pushing algorithm normalizes the way the weights are distributed
along the paths. The algorithm presented in this section, synchronization of
weighted transducers, normalizes instead the way the input and output labels
are shifted with respect to each other along the paths. Roughly speaking, the
objective of the algorithm is to synchronize the consumption of non-ǫ symbols
by the input and output tapes of a transducer, to the extent that is possible.

The following concept helps analyze and describe the domain of application
of the algorithm.

Definition 10. The delay of a path π is defined as the difference of length
between its output and input labels:

d[π] = |o[π]| − |i[π]|. (41)

The delay of a path is thus simply the sum of the delays of its constituent
transitions. A trim transducer T is said to have bounded delays if the delay
along all paths of T is bounded. We then denote by d[T ] ≥ 0 the maximum
delay in absolute value of a path in T . The following lemma gives a straight-
forward characterization of transducers with bounded delays.
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Lemma 11. A transducer T has bounded delays iff the delay of any cycle in
T is zero.

Proof. If T admits a cycle π with non-zero delay, then d[T ] ≥ |d[πn]| = n|d[π]|
is not bounded. Conversely, if all cycles have zero delay, then the maximum
delay in T is that of the simple paths which are of finite number. ⊓⊔

We define the string delay of a path π as the string σ[π] defined by:

σ[π] =

{

suffix of o[π] of length |d[π]| if d[π] ≥ 0,

suffix of i[π] of length |d[π]| otherwise.
(42)

For any state q ∈ Q, the string delay at state q, s[q], is defined by the set of
string delays of the paths from an initial state to q:

s[q] = {σ[π] : π ∈ P (I, q)}. (43)

Lemma 12. If T has bounded delays then the set s[q] is finite for any q ∈ Q.

Proof. The lemma follows immediately the fact that the elements of s[q] are
all of length less than d[T ]. ⊓⊔

A weighted transducer T is said to be synchronized if along any successful
path of T the delay is zero or varies strictly monotonically. An algorithm that
takes as input a transducer T and computes an equivalent synchronized trans-
ducer T ′ is called a synchronization algorithm.The synchronization algorithm
described here [42] applies to all weighted transducers with bounded delays.
The following is the pseudocode of the algorithm.

To simplify the presentation of the algorithm, we augment Q and F with
a new state f and set: ρ(f) = 1 and E[f ] = ∅. We denote by car(x) the first
symbol of a string x if x is not empty, ǫ otherwise, and denote by cdr(x) the
suffix of x such that x = car(x) cdr(x).

Each state of the resulting transducer T ′ corresponds to a triplet (q, x, y)
where q ∈ Q is a state of the original machine T and where x ∈ Σ∗ and
y ∈ ∆∗ are strings over the input and output alphabet of T .

The algorithm maintains a queue Q that contains at any time the set of
states of T ′ to examine. At each execution of the loop of lines 3-19, a new
state p′ = (q, x, y) is extracted from Q (line 4) and its outgoing transitions
are computed and added to E′. The state p′ is final iff q is final and x = y = ǫ

and in that case the final weight at p′ is simply the final weight at the original
state q (lines 5-6). If q is final but the string x and y are not both empty,
then the algorithm constructs a sequence of transitions from p′ to (f, ǫ, ǫ) to
consume the remaining input and output strings x and y (lines 7-11).

For each transition e of q, an outgoing transition e′ is created for p′ with
weight w[e]. The input and output labels of e′ are both ǫ if x i[e] or y o[e] is
the empty string, the first symbol of these strings otherwise. The remaining



Algorithms 35

Synchronization(T )

1 F ′ ← Q′ ← E′ ← ∅
2 Q ← i′ ← {(i, ǫ, ǫ) : i ∈ I}
3 while Q 6= ∅ do

4 p′ = (q, x, y)← Head(Q)
5 Dequeue(Q)
6 if (q ∈ F and |x|+ |y| = 0) then

7 F ′ ← F ′ ∪ {p′}; ρ′(p′)← ρ(q)
8 elseif (q ∈ F and |x|+ |y| > 0) then

9 q′ ← (f, cdr(x), cdr(y))
10 E′ ← E′ ⊎ (p′, car(x), car(y), ρ(q), q′)
11 if (q′ 6∈ Q′) then

12 Q′ ← Q′ ∪ {q′};Enqueue(Q, q′)
13 for each e ∈ E[q] do

14 if (|x i[e]| > 0 and |y o[e]| > 0) then

15 q′ ← (n[e], cdr(x i[e]), cdr(y o[e]))
16 E′ ← E′ ⊎ {(p′, car(x i[e]), car(y o[e]), w[e], q′)}
17 else q′ ← (n[e], x i[e], y o[e])
18 E′ ← E′ ⊎ {(p′, ǫ, ǫ, w[e], q′)}
19 if (q′ 6∈ Q′) then

20 Q′ ← Q′ ∪ {q′};Enqueue(Q, q′)
21 return T ′

suffixes of these strings are stored in the destination state q′ (lines 12-19).
Note that in all cases, the transitions created by the steps of the algorithm
described in lines 14-17 have zero delay. The state q′ is inserted in Q if it has
never been found before (line 18-19). Figures 14(a)-(b) illustrate the synchro-
nization algorithm just presented.

Theorem 13 ([42]). Let T be a weighted transducer with bounded delays.
Then, if we run the synchronization algorithm just described with input T ,
the algorithm terminates and returns a synchronized transducer T ′ equivalent
to T .

The algorithm creates a distinct state (q, x, ǫ) or (q, ǫ, y) for each string delay
x, y ∈ s[q] at state q 6= f . The paths from a state (q, x, ǫ) or (q, ǫ, y), q ∈ F ,
to (f, ǫ, ǫ) are of length |x| or |y|. The length of a string delay is bounded
by d[T ]. Thus, there are at most |Σ|≤d[T ] + |∆|≤d[T ] = O(|Σ|d[T ] + |∆|d[T ])
distinct string delays at each state. Thus, in the worst case, the size of the
resulting transducer T ′ is:

O((|Q| + |E|)(|Σ|d[T ] + |∆|d[T ])). (44)

The string delays can be represented in a compact and efficient way using a
suffix tree. Indeed, let U be a tree representing all the input and output labels
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Fig. 14. (a) Weighted transducer T1 over the tropical semiring. (b) Equivalent
synchronized transducer T2. (c) Synchronized weighted transducer T3 equivalent to
T1 and T2 obtained by ǫ-removal from T2.

of the paths in T found in a depth-first search of T . The size of U is linear
in that of T and a suffix tree V of U can be built in time proportional to the
number of nodes of U times the size of the alphabet [27], that is in O((|Σ|+
|∆|)(|Q| + |E|)). Since each string delay x is a suffix of a string represented
by U , it can be represented by two nodes n1 and n2 of V and a position in
the string labeling the edge from n1 to n2. The operations performed by the
algorithm to construct a new transition require either computing xa or a−1x

where a is a symbol of the input or output alphabet. Clearly, these operations
can be performed in constant time: xa is obtained by going down one position
in the suffix tree, and a−1x by using the suffix link at node n1. Thus, using
this representation, the operations performed for the construction of each new
transition can be done in constant time. This includes the cost of comparison
of a newly created state (q′, x′, ǫ) with an existing state (q, x, ǫ), since the
comparison of the string delays x and x′ can be done in constant time. Thus,
the worst case space and time complexity of the algorithm is:

O((|Q| + |E|)(|Σ|d[T ] + |∆|d[T ])). (45)

This is not a tight evaluation of the complexity since it is not clear if the
worst case previously described can ever occur, but the algorithm can indeed
produce an exponentially larger transducer in some cases.

Note that the algorithm does not depend on the queue discipline used for
Q and that the construction of the transitions leaving a state p′ = (q, x, y) of
T ′ only depends on p′ and not on the states and transitions previously con-
structed. Thus, the transitions of T ′ can be naturally computed on-demand.
Note also that the additive and multiplicative operations of the semiring are
not used in the definition of the algorithm. Only 1, the identity element of ⊗,
was used for the definition of the final weight of f . Thus, to a large extent,
the algorithm is independent of the semiring S. In particular, the behavior of
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Table 2. Properties of several transducer algorithms. The second column indicates
the time or space complexity of each algorithm, the third whether or not it admits
a natural on-demand computation.

Algorithm Complexity On-Demand

Sum O(|T1|+ |T2|) +

Product O(|T1|+ |T2|+ |F1||I2|) +

Closure O(|T |) +

Reversal O(|T |) -

Inversion O(|T |) +

Projection O(|T |) +

Composition O(|T1||T2|) +

Intersection O(|A1||A2|) +

Completion O(|A|+ |Σ|) +

Complementationa O(|A|) +

Difference O(|A1||A2|) +

Epsilon-removalb O(|Q|2 + |Q||E|) +

Determinization exponential +

Minimizationb O(|E| log |Q|) -

Synchronizationc O((|Q|+ |E|)(|Σ|d[T ] + |∆|d[T ])) +

a For A deterministic.
b For the tropical semiring.
c d(T ) denotes the maximum delay in an accepting path of T .

the algorithm is identical for two semirings having the same identity elements,
such as for example the tropical and log semirings.

The result of the synchronization algorithm may contain ǫ-transitions even
if the input contains none. An equivalent weighted transducer with no ǫ-
transitions can be computed from T ′ using the general epsilon-removal algo-
rithm described in a previous section [40]. Figure 14(c) illustrates the result of
that algorithm when applied to the synchronized transducer of Figure 14(b).
Since epsilon-removal does not shift input and output labels with respect to
each other, the result of its application to T ′ is also a synchronized transducer.

Note that the synchronization algorithm does not produce any ǫ-cycle if the
original machine T does not contain any. Thus, in that case, the computation
of the ǫ-closures in T can be done in linear time [40] and the total time
complexity of epsilon-removal is O(|Q′|2+(T⊕+T⊗)|Q′||E′|). Also, on-demand
synchronization can be combined with on-demand epsilon-removal to directly
create synchronized transducers with no ǫ-transition on-the-fly.

A transducer T is said to be double-tape unambiguous, if, when the input
and output labels of a transition are treated as single pair label (input label,
output label), no two accepting paths have the same label. A by-product of
synchronization followed by epsilon-removal is that the resulting transducer
is double-tape unambiguous. Note that the definition does not entail any
requirement on the weights.
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Proposition 14 ([42]). Let T be a synchronized transducer and assume that
T has no ǫ-transition. Then, T is double-tape unambiguous.

7 Conclusion

Table 2 summarizes some of the essential properties of the algorithms de-
scribed in this chapter. There are of course many other algorithms related
to weighted automata and transducers. But, those presented here constitute
some of the core algorithms. Many other algorithms related to weighted au-
tomata can be derived either directly from these algorithms or as a combina-
tion.

These algorithms are useful in a variety of applications including statisti-
cal language modeling [7], parsing [45, 44, 8], phonological rule compilation
[29, 30, 49], speech recognition [38, 43, 48], speech synthesis [56, 6], image
processing [2], bioinformatics [21, 9], sequence modeling and prediction [18],
optical character recognition [14], and more generally any problem related
to sequences and probabilistic models defined over sequences [33, 43]. An ef-
ficient implementation of these algorithms and several others, including an
on-demand implementation when possible, is available from the FSM library
(executables only) [47] and the OpenFst library (source and executables) [10].
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probability, 2, 6
tropical, 2, 6
weakly divisible, 25

shortest-distance, 6
algorithm, 5

all-pairs, 6, 8
single-source, 9, 10

problem
all-pairs, 5, 7
single-source, 9

starsemiring, 6
complete, 6

state
final, 3
initial, 3
non-accessible, 4
non-coaccessible, 4
sibling, 27
twin, 27
useless, 4

stochastic, 30, 32
string

delay, 34
length of, 2
mirror image of, 2

strongly connected component, 8
decomposition into, 8

sum, 11
Synchronization, 35
synchronization, 33

transducer, see weighted transducer
transposition, 13
trimming, 4, 15, 19
twins property, 27, 28

union, 11
unweighted automaton, see finite au-

tomaton
unweighted transducer, see finite-

state transducer

Viterbi approximation, 2

weight
final, 3
initial, 3, 4

weighted automaton
determinizable, 26, 27
subsequentiable, 27

weighted subset, 25
Weighted-Composition, 16
Weighted-Determinization, 26
weighted automaton, 1, 2, 4

deterministic, 25
polynomially ambiguous, 28
subsequential, 25

weighted finite-state transducer, see
weighted transducer

weighted transducer, 1–3
complete, 20
deterministic, 4
determinizable, 24
double-tape unambiguous, 37
inverse, 3
regulated, 3
sequential, 4
synchronized, 34
trim, 4
unambiguous, 4

weight function, see weight
weight pushing, 29
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