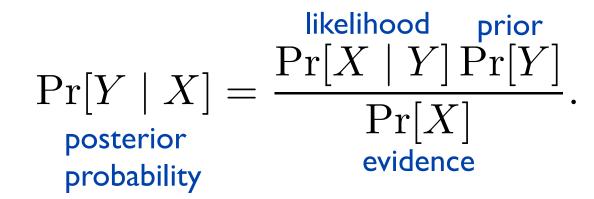
Introduction to Machine Learning Lecture 3

Mehryar Mohri Courant Institute and Google Research mohri@cims.nyu.edu

Bayesian Learning

Bayes' Formula/Rule

Terminology:



Loss Function

- Definition: function $L: \mathcal{Y} \times \mathcal{Y} \rightarrow \mathbb{R}_+$ indicating the penalty for an incorrect prediction.
 - $L(\widehat{y}, y)$: loss for prediction of \widehat{y} instead of y.
- Examples:
 - zero-one loss: standard loss function in classification; $L(y, y') = 1_{y \neq y'}$ for $y, y' \in \mathcal{Y}$.
 - non-symmetric losses: e.g., for spam classification; $L(\widehat{ham}, \operatorname{spam}) \leq L(\widehat{\operatorname{spam}}, \operatorname{ham})$.
 - squared loss: standard loss function in regression; $L(y, y') = (y' y)^2$.

Classification Problem

- Input space \mathcal{X} : e.g., set of documents.
 - feature vector $\Phi(x) \in \mathbb{R}^N$ associated to $x \in \mathcal{X}$.
 - notation: feature vector $\mathbf{x} \in \mathbb{R}^N$.
 - example: vector of word counts in document.
- Output or target space y: set of classes; e.g., sport, business, art.
- Problem: given x, predict the correct class $y \in \mathcal{Y}$ associated to x.

Bayesian Prediction

Definition: the expected conditional loss of predicting $\widehat{y} \in \mathcal{Y}$ is

$$\mathcal{L}[\widehat{y}|\mathbf{x}] = \sum_{y \in \mathcal{Y}} L(\widehat{y}, y) \Pr[y|\mathbf{x}].$$

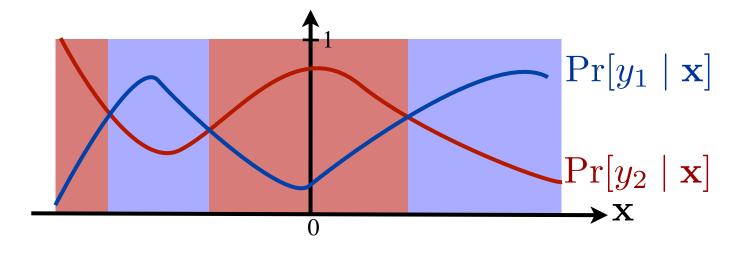
Bayesian decision: predict class minimizing expected conditional loss, that is

$$\widehat{y}^* = \operatorname*{argmin}_{\widehat{y}} \mathcal{L}[\widehat{y}|\mathbf{x}] = \operatorname*{argmin}_{\widehat{y}} \sum_{y \in \mathcal{Y}} L(\widehat{y}, y) \operatorname{Pr}[y|\mathbf{x}].$$

• zero-one loss: $\hat{y}^* = \operatorname*{argmax}_{\widehat{y}} \Pr[\widehat{y}|\mathbf{x}].$ \longrightarrow Maximum a Posteriori (MAP) principle.

Mehryar Mohri - Introduction to Machine Learning

Binary Classification - Illustration



Maximum a Posteriori (MAP)

Definition: the MAP principle consists of predicting according to the rule

$$\widehat{y} = \operatorname*{argmax}_{y \in \mathcal{Y}} \Pr[y|\mathbf{x}].$$

Equivalently, by the Bayes formula:

$$\widehat{y} = \operatorname*{argmax}_{y \in \mathcal{Y}} \frac{\Pr[\mathbf{x}|y] \Pr[y]}{\Pr[\mathbf{x}]} = \operatorname*{argmax}_{y \in \mathcal{Y}} \Pr[\mathbf{x}|y] \Pr[y]$$

 \rightarrow How do we determine $\Pr[\mathbf{x}|y]$ and $\Pr[y]$? Density estimation problem.

Mehryar Mohri - Introduction to Machine Learning

Application - Maximum a Posteriori

Formulation: hypothesis set *H*.

$$\hat{h} = \underset{h \in H}{\operatorname{argmax}} \Pr[h|O] = \underset{h \in H}{\operatorname{argmax}} \frac{\Pr[O|h]\Pr[h]}{\Pr[O]} = \underset{h \in H}{\operatorname{argmax}} \Pr[O|h]\Pr[h].$$

 Example: determine if a patient has a rare disease H = {d, nd}, given laboratory test O = {pos, neg}.
 With Pr[d] = .005, Pr[pos|d] = .98, Pr[neg|nd] = .95, if the test is positive, what should be the diagnosis?

$$\Pr[pos|d] \Pr[d] = .98 \times .005 = .0049.$$

 $\Pr[pos|nd] \Pr[nd] = (1 - .95) \times .(1 - .005) = .04975 > .0049.$

Density Estimation

Data: sample drawn i.i.d. from set X according to some distribution D,

$$x_1,\ldots,x_m\in X.$$

- Problem: find distribution p out of a set \mathcal{P} that best estimates D.
 - Note: we will study density estimation specifically in a future lecture.

Maximum Likelihood

Likelihood: probability of observing sample under distribution $p \in \mathcal{P}$, which, given the independence assumption is

$$\Pr[x_1,\ldots,x_m] = \prod_{i=1}^m p(x_i).$$

Principle: select distribution maximizing sample probability $m = \operatorname{arrmov} \prod_{n=0}^{m} m(n)$

$$p_{\star} = \underset{p \in \mathcal{P}}{\operatorname{argmax}} \prod_{\substack{i=1 \ m}} p(x_i),$$

or $p_{\star} = \underset{p \in \mathcal{P}}{\operatorname{argmax}} \sum_{\substack{i=1 \ i=1}} \log p(x_i).$

Mehryar Mohri - Introduction to Machine Learning

page 11

Example: Bernoulli Trials

Problem: find most likely Bernoulli distribution, given sequence of coin flips

 $H, T, T, H, T, H, T, H, H, H, T, T, \ldots, H$

- **Bernoulli distribution:** $p(H) = \theta, p(T) = 1 \theta$.
- Likelihood: $l(p) = \log \theta^{N(H)} (1 \theta)^{N(T)}$ = $N(H) \log \theta + N(T) \log(1 - \theta)$.
- Solution: *l* is differentiable and concave;

$$\frac{dl(p)}{d\theta} = \frac{N(H)}{\theta} - \frac{N(T)}{1-\theta} = 0 \Leftrightarrow \theta = \frac{N(H)}{N(H) + N(T)}.$$

Mehryar Mohri - Introduction to Machine Learning

Example: Gaussian Distribution

Problem: find most likely Gaussian distribution, given sequence of real-valued observations

 $3.18, 2.35, .95, 1.175, \ldots$

- Normal distribution: $p(x) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left(-\frac{(x-\mu)^2}{2\sigma^2}\right)$.
 Likelihood: $l(p) = -\frac{1}{2}m\log(2\pi\sigma^2) \sum_{i=1}^m \frac{(x_i-\mu)^2}{2\sigma^2}$.
- Solution: *l* is differentiable and concave;

$$\frac{\partial p(x)}{\partial \mu} = 0 \Leftrightarrow \mu = \frac{1}{m} \sum_{i=1}^{m} x_i \quad \frac{\partial p(x)}{\partial \sigma^2} = 0 \Leftrightarrow \sigma^2 = \frac{1}{m} \sum_{i=1}^{m} x_i^2 - \mu^2.$$

Mehryar Mohri - Introduction to Machine Learning

ML Properties

Problems:

- the underlying distribution may not be among those searched.
- overfitting: number of examples too small wrt number of parameters.
- Pr[y] = 0 if class y does not appear in sample!
 - -> smoothing techniques.

Additive Smoothing

Definition: the additive or Laplace smoothing for estimating Pr[y], $y \in \mathcal{Y}$, from a sample of size m is defined by

$$\widehat{\Pr}[y] = \frac{|y| + \alpha}{m + \alpha |\mathcal{Y}|}$$

- $\alpha = 0$: ML estimator (MLE).
- MLE after adding α to the count of each class.
- Bayesian justification based on Dirichlet prior.
- poor performance for some applications, such as n-gram language modeling.

Estimation Problem

- Conditional probability: $\Pr[\mathbf{x} \mid y] = \Pr[x_1, \dots, x_N \mid y].$
 - for large *N*, number of features, difficult to estimate.
 - even if features are Boolean, that is $x_i \in \{0, 1\}$, there are 2^N possible feature vectors!

--> may need very large sample.

Naive Bayes

Conditional independence assumption: for any $y \in \mathcal{Y}$,

$$\Pr[x_1,\ldots,x_N \mid y] = \Pr[x_1 \mid y] \ldots \Pr[x_N \mid y].$$

- given the class, the features are assumed to be independent.
- strong assumption, typically does not hold.

Example - Document Classification

- Features: presence/absence of word x_i .
- Estimation of $Pr[x_i | y]$: frequency of word x_i among documents labeled with y, or smooth estimate.
- Estimation of Pr[y]: frequency of class y in sample.
- Classification:

$$\widehat{y} = \underset{y \in \mathcal{Y}}{\operatorname{argmax}} \Pr[y] \prod_{i=1}^{N} \Pr[x_i \mid y].$$

Naive Bayes - Binary Classification

Classes:
$$\mathcal{Y} = \{-1, +1\}.$$

Decision based on sign of log Pr[+1|x] Pr[-1|x]; in terms of log-odd ratios:

$$\log \frac{\Pr[+1 \mid \mathbf{x}]}{\Pr[-1 \mid \mathbf{x}]} = \log \frac{\Pr[+1] \Pr[\mathbf{x} \mid +1]}{\Pr[-1] \Pr[\mathbf{x} \mid -1]}$$
$$= \log \frac{\Pr[+1] \prod_{i=1}^{N} \Pr[x_i \mid +1]}{\Pr[-1] \prod_{i=1}^{N} \Pr[x_i \mid -1]}$$
$$= \log \frac{\Pr[+1]}{\Pr[-1]} + \sum_{i=1}^{N} \log \frac{\Pr[x_i \mid +1]}{\Pr[x_i \mid -1]}.$$
contribution of feature/expert *i* to decision

Naive Bayes = Linear Classifier

Theorem: assume that $x_i \in \{0, 1\}$ for all $i \in [1, N]$. Then, the Naive Bayes classifier is defined by

 $\mathbf{x} \mapsto \operatorname{sgn}(\mathbf{w} \cdot \mathbf{x} + b),$

where
$$w_i = \log \frac{\Pr[x_i=1|+1]}{\Pr[x_i=1|-1]} - \log \frac{\Pr[x_i=0|+1]}{\Pr[x_i=0|-1]}$$

and $b = \log \frac{\Pr[+1]}{\Pr[-1]} + \sum_{i=1}^N \log \frac{\Pr[x_i=0|+1]}{\Pr[x_i=0|-1]}$

Proof: observe that for any $i \in [1, N]$,

$$\log \frac{\Pr[x_i \mid +1]}{\Pr[x_i \mid -1]} = \left(\log \frac{\Pr[x_i = 1 \mid +1]}{\Pr[x_i = 1 \mid -1]} - \log \frac{\Pr[x_i = 0 \mid +1]}{\Pr[x_i = 0 \mid -1]}\right) x_i + \log \frac{\Pr[x_i = 0 \mid +1]}{\Pr[x_i = 0 \mid -1]}$$

Summary

- Bayesian prediction:
 - requires solving density estimation problems.
 - often difficult to estimate $Pr[\mathbf{x} \mid y]$ for $\mathbf{x} \in \mathbb{R}^N$.
 - but, simple and easy to apply; widely used.
- Naive Bayes:
 - strong assumption.
 - straightforward estimation problem.
 - specific linear classifier.
 - sometimes surprisingly good performance.