
Introduction to Machine Learning
Lecture 3

Mehryar Mohri
Courant Institute and Google Research

mohri@cims.nyu.edu

mailto:mohri@cims.nyu.edu
mailto:mohri@cims.nyu.edu


Bayesian Learning



pageMehryar Mohri - Introduction to Machine Learning

Bayes’ Formula/Rule

Terminology:
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Pr[Y | X ] =
Pr[X | Y ] Pr[Y ]

Pr[X ]
.

posterior
probability

likelihood prior

evidence
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Loss Function

Definition: function                       indicating the 
penalty for an incorrect prediction.

•         : loss for prediction of    instead of   .

Examples:

• zero-one loss: standard loss function in 
classification;                       for             .

• non-symmetric losses: e.g., for spam 
classification;                                            .

• squared loss: standard loss function in 
regression;                           .
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L : Y × Y → R+

L(�y, y) �y y

L(y, y�) = 1y �=y� y, y� ∈ Y

L( �ham, spam) ≤ L( �spam, ham)

L(y, y�) = (y� − y)2
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Classification Problem

Input space    : e.g., set of documents.

• feature vector                associated to         .

• notation: feature vector           .

• example: vector of word counts in document.

Output or target space   : set of classes; e.g., sport, 
business, art.

Problem: given   , predict the correct class   
associated to   .
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X
Φ(x) ∈ RN x ∈ X

x ∈ RN

Y

x
x

y ∈ Y
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Bayesian Prediction

Definition: the expected conditional loss of 
predicting          is

Bayesian decision: predict class minimizing 
expected conditional loss, that is

• zero-one loss: 
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�y ∈ Y

Maximum a Posteriori (MAP) principle.

L[�y|x] =
�

y∈Y
L(�y, y) Pr[y|x].

�y∗ = argmin
by

L[�y|x] = argmin
by

�

y∈Y
L(�y, y) Pr[y|x].

�y∗ = argmax
by

Pr[�y|x].



pageMehryar Mohri - Introduction to Machine Learning

Binary Classification - Illustration
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1

0 x

Pr[y1 | x]

Pr[y2 | x]



pageMehryar Mohri - Introduction to Machine Learning

Maximum a Posteriori (MAP)

Definition: the MAP principle consists of predicting 
according to the rule

Equivalently, by the Bayes formula:
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�y = argmax
y∈Y

Pr[y|x].

How do we determine           and        ?
Density estimation problem.

Pr[x|y] Pr[y]

�y = argmax
y∈Y

Pr[x|y] Pr[y]
Pr[x]

= argmax
y∈Y

Pr[x|y] Pr[y].
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Application - Maximum a Posteriori

Formulation: hypothesis set   .

Example: determine if a patient has a rare 
disease              , given laboratory test                  . 
With                                                      , if the test 
is positive, what should be the diagnosis?
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ĥ = argmax
h∈H

Pr[h|O] = argmax
h∈H

Pr[O|h]Pr[h]
Pr[O]

= argmax
h∈H

Pr[O|h]Pr[h].

H

H ={d, nd} O={pos, neg}
Pr[d]= .005, Pr[pos|d] = .98, Pr[neg|nd] = .95

Pr[pos|d] Pr[d]= .98× .005= .0049.

Pr[pos|nd] Pr[nd]=(1− .95)× .(1− .005)= .04975>.0049.
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Density Estimation

Data: sample drawn i.i.d. from set    according to 
some distribution   ,

Problem: find distribution    out of a set     that 
best estimates    .

• Note: we will study density estimation 
specifically in a future lecture.
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D

x1, . . . , xm ∈ X.

X

D

p P
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Maximum Likelihood

Likelihood: probability of observing sample under 
distribution          , which, given the independence 
assumption is

Principle: select distribution maximizing sample 
probability
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Pr[x1, . . . , xm] =
m∏

i=1

p(xi).

p ∈ P

p! = argmax
p∈P

m∏

i=1

p(xi),

p! = argmax
p∈P

m∑

i=1

log p(xi).or
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Example: Bernoulli Trials

Problem: find most likely Bernoulli distribution, 
given sequence of coin flips

Bernoulli distribution:

Likelihood:

Solution:    is differentiable and concave;l
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dl(p)
dθ

=
N(H)

θ
− N(T )

1− θ
= 0⇔ θ =

N(H)
N(H) + N(T )

.

H, T, T, H, T, H, T, H, H, H, T, T, . . . , H.

p(H) = θ, p(T ) = 1− θ.

l(p) = log θ
N(H)(1− θ)N(T )

= N(H) log θ + N(T ) log(1− θ).
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Example: Gaussian Distribution

Problem: find most likely Gaussian distribution, 
given sequence of real-valued observations

Normal distribution:

Likelihood:

Solution:    is differentiable and concave;

3.18, 2.35, .95, 1.175, . . .

p(x) =
1

√

2πσ2
exp

(

−

(x − µ)2

2σ2

)

.

l

∂p(x)

∂µ
= 0 ⇔ µ =

1

m

m∑

i=1

xi

∂p(x)

∂σ2
= 0 ⇔ σ2 =

1

m

m∑

i=1

x2

i − µ2.

l(p) = −1
2
m log(2πσ2)−

m�

i=1

(xi − µ)2

2σ2
.

13
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ML Properties

Problems:

• the underlying distribution may not be among 
those searched.

• overfitting: number of examples too small wrt 
number of parameters.

•               if class   does not appear in sample!

14

Pr[y] = 0 y

smoothing techniques.
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Additive Smoothing

Definition: the additive or Laplace smoothing for 
estimating        ,         , from a sample of size     is 
defined by

•         : ML estimator (MLE).

• MLE after adding    to the count of each class.

• Bayesian justification based on Dirichlet prior.

• poor performance for some applications, such as 
n-gram language modeling.

15

mPr[y] y ∈ Y

�Pr[y] =
|y| + α

m + α|Y| .

α = 0

α



pageMehryar Mohri - Introduction to Machine Learning

Estimation Problem

Conditional probability:

• for large   , number of features, difficult to 
estimate.

• even if features are Boolean, that is                , 
there are     possible feature vectors!
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Pr[x | y] = Pr[x1, . . . , xN | y].

N

xi ∈ {0, 1}
2N

may need very large sample.
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Naive Bayes

Conditional independence assumption: for 
any         , 

• given the class, the features are assumed to be 
independent.

• strong assumption, typically does not hold.

17

Pr[x1, . . . , xN | y] = Pr[x1 | y] . . .Pr[xN | y].

y ∈ Y
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Example - Document Classification

Features: presence/absence of word    .

Estimation of             : frequency of word    among 
documents labeled with   , or smooth estimate.

Estimation of        : frequency of class   in sample.

Classification:

18

xi

Pr[xi | y] xi

y

Pr[y] y

�y = argmax
y∈Y

Pr[y]
N�

i=1

Pr[xi | y].
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Naive Bayes - Binary Classification

Classes:                    .

Decision based on sign of                ; in terms of 
log-odd ratios:
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Y = {−1, +1}

log
Pr[+1 | x]
Pr[−1 | x]

= log
Pr[+1] Pr[x | +1]
Pr[−1] Pr[x | −1]

= log
Pr[+1]

�N
i=1 Pr[xi | +1]

Pr[−1]
�N

i=1 Pr[xi | −1]

= log
Pr[+1]
Pr[−1]

+
N�

i=1

log
Pr[xi | +1]
Pr[xi | −1]

.

log Pr[+1|x]
Pr[−1|x]

contribution of feature/expert   to decisioni
� �� �
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Naive Bayes = Linear Classifier

Theorem: assume that                for all              . 
Then, the Naive Bayes classifier is defined by

Proof: observe that for any              ,
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xi ∈ {0, 1} i ∈ [1, N ]

x �→ sgn(w · x + b),

where                                                  

and

i ∈ [1, N ]

log
Pr[xi | +1]
Pr[xi | −1]

=
�

log
Pr[xi = 1 | +1]
Pr[xi = 1 | −1]

− log
Pr[xi = 0 | +1]
Pr[xi = 0 | −1]

�
xi+log

Pr[xi = 0 | +1]
Pr[xi = 0 | −1]

.

wi = log Pr[xi=1|+1]
Pr[xi=1|−1] − log Pr[xi=0|+1]

Pr[xi=0|−1]

b = log Pr[+1]
Pr[−1] +

�N
i=1 log Pr[xi=0|+1]

Pr[xi=0|−1] .
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Summary

Bayesian prediction:

• requires solving density estimation problems.

• often difficult to estimate             for           .

• but, simple and easy to apply; widely used.

Naive Bayes:

• strong assumption.

• straightforward estimation problem.

• specific linear classifier.

• sometimes surprisingly good performance.

21

Pr[x | y] x ∈ RN


