Visual Question and Answering Lecture 7

Slides from Devi Parikh, Dhruv
Bhatra, Ethan Perez, Jacob Andreas,
Marcus Rorbach \& others

Visual Question Answering

Devi Parikh Virginia Tech

Visual Question Answering (VQA)

Task

- Given
- An image
- A natural language open-ended question
- Generate
- A natural language answer

Visual Question Answering (VQA)

- CloudcV: Large Scale Dist $\times \square$						
$\leftrightarrow \rightarrow$ c cloudcv.org/vqa/						Q © (1)
CloudCV Image Stitching	Object Detection	Decaf-Server	Classification	VIP	Train a new category	

Ask any question about this image

\square

Visual Question Answering (VQA)

What color are her eyes?
What is the mustache made of?

Is this person expecting company? What is just under the tree?

How many slices of pizza are there? Is this a vegetarian pizza?

Does it appear to be rainy?
Does this person have 20/20 vision?

Visual Question Answering (VQA)

- Details of the image
- Common sense + knowledge base
- Task-driven
- Holy-grail of semantic image understanding

Turing Test

"Can machines think"

Q: Please write me a sonnet on the subject of the Forth Bridge.
A: Count me out on this one. I never could write poetry.
Q: Add 34957 to 70764.
A: (Pause about 30 seconds and then give as answer) 105621.

Visual Turing Test

Q: How many slices of pizza are there? A: 6

Machine Z

Person X

Datasets

Models

Current Status

Ongoing Efforts

Datasets

Models

Current Status

Ongoing Efforts

Visual Turing Test [Geman 2014]

- 2591 street city images

Vocabulary

- Types of objects
- People, vehicles, building, windows, doors
- Type-dependent attributes
- Clothing and activities of people
- Types and colors of vehicles
- Type-dependent relationships
- Ordered: person entering a building
- Unordered: two people walking together
- Questions
- Existence
- Uniqueness
- Attribute
- Relationship
- Story line
- Query generator
- Human-in-the-loop
- No NLP required, vision is key

1. Q: Is there a person in the blue region?
2. Q: Is there a unique person in the blue region?
(Label this person 1)
3. Q: Is person 1 carrying something?
4. Q : Is person 1 female?
5. Q: Is person 1 walking on a sidewalk?
6. Q: Is person 1 interacting with any other object?
\vdots
7. Q : Is there a unique vehicle in the yellow region? (Label this vehicle 1)
8. Q : Is vehicle 1 light-colored?
9. Q: Is vehicle 1 moving?
10. Q: Is vehicle 1 parked and a car? \vdots
11. Q: Does vehicle 1 have exactly one visible tire?
12. Q: Is vehicle 1 interacting with any other object?
13. Q: Is there a unique person in the red region?
14. $Q:$ Is there a unique person that is female in the red region?
15. $Q:$ Is there a person that is standing still in the red region?
16. Q: Is there a unique person standing still in the red region?
(Label this person 2)
17. Q: Is person 2 interacting with any other object?
18. Q: Is person 1 taller than person 2 ?
19. Q: Is person 1 closer (to the camera) than person 2?
20. $Q:$ Is there a person in the red region?
21. Q: Is there a unique person in the red region?
(Label this person 3)
:
22. Q: Is there an interaction between person 2 and person 3 ?
23. Q: Are person 2 and person 3 talking?

A: yes

DAQUAR [Malinowski 2014]

- DAtaset for QUestion Answering on Realworld images (DAQUAR)
- 1449 images from NYU v2

DAQUAR [Malinowski 2014]

- Synthetic QA pairs
- 140 training
- 280 test

	Description	Template	Example
$\begin{aligned} & \text { 彩 } \\ & \text { 者 } \end{aligned}$	counting	How many \{object are in \{image id ?	How many cabinets are in image1?
	counting and colors	How many \{color\} \{object $\}$ are in \{image id $\}$?	How many gray cabinets are in image 1?
	room type	Which type of the room is depicted in \{image id\}?	Which type of the room is depicted in image 1?
	superlatives	What is the largest \{object \} in \{image id \}?	What is the largest object in image 1?
\pm	counting and colors	How many \{color\} \{object\}?	How many black bags?
	negations type 1	Which images do not have \{object $\}$?	Which images do not have sofa?
	negations type 2	Which images are not \{room_type\}?	Which images are not bedroom?
	negations type 3	Which images have \{object $\}$ but do not have a \{object $\}$?	Which images have desk but do not have a lamp?

DAQUAR [Malinowski 2014]

- Human QA pairs
- 6794 training
- 5675 test
- Valid answers
- Colors, numbers, objects, or sets

DAQUAR [Malinowski 2014]

QA: (What is behind the table?, window) Spatial relation like 'behind' are dependent on the reference frame. Here the annotator uses observer-centric view.

QA: (what is behind the table?, sofa) Spatial relations exhibit different reference frames. Some annotations use observercentric, others object-centric view

QA: (what is beneath the candle holder, decorative plate)
Some annotators use variations on spatial relations that are similar, e.g. 'beneath' is closely related to 'below'.

QA: (what is in front of the wall divider?, cabinet)
Annotators use additional properties to clarify object references (i.e. wall divider). Moreover, the perspective plays an important role in these spatial relations

The annotators are using different names to call the same things. The names of the brown object near the bed include 'night stand', 'stool', and 'cabinet'.
 QA2:(How many doors are in the image?, 5) Different interpretation of 'door' results in different counts: 1 door at the end of the hall vs. 5 doors including lockers

DAQUAR [Malinowski 2014]

- Accuracy
- Wu-Palmer similarity (WUPS)
- WUPS 0.0
- WUPS 0.9

Toronto COCO-QA [Ren 2015]

- COCO dataset
- Caption \rightarrow QA pair (automatically)
- 123287 images
- 78736 train questions
- 38948 test questions
- 4 types of questions:
- object, number, color, location
- Answers are all one-word

Toronto COCO-QA [Ren 2015]

COCOQA 5078
How many leftover donuts is the red bicycle holding?
Ground truth: three

COCOQA 1238
What is the color of the teeshirt?
Ground truth: blue

COCOQA 26088
Where is the gray cat sitting? Ground truth: window

Toronto COCO-QA [Ren 2015]

A. pot

A. ducks
Q. What next to the large umbrella attached to a table?

A. trees

Toronto COCO-QA [Ren 2015]

- Accuracy
- Wu-Palmer similarity (WUPS)
- WUPS 0.0
- WUPS 0.9

Microsoft Research

>0.25 million images

254,721 images (COCO)

50,000 scenes

>0.25 million images

>0.76 million questions

~10 million answers

Questions

Stump a smart robot! Ask a question about this image that a human can answer, but a smart robot probably can't!

We have built kitchen, beach

Ask a question IMPORTANT: T the question w

Stump a smart robot!

Ask a question that a human can answer, but a smart robot probably can't!

can recognize the scene (e.g, mart robot!
should not be able to answer ns below:

- Do not repeat questions. Do not ask the same questions or the same questions with minor variations over and over again across images. Think of a new question each time specific to each image.
- Each question should be a single question. Do not ask questions that have multiple parts or multiple sub-questions in them.
- Do not ask generic questions that can be asked of many other images. Ask questions specific to each image.

Please ask a question about this image that a human can answer *if* looking at the image (and not otherwise), but would stump this smart robot:

Q1: Write your question here to stump this smart robot.

>0.25 million images

>0.76 million questions

~10 million answers

>20 person-job-years

Taxing the Turkers

- Beware also the lasting effects of doing too many --for hours after the fact you will not be able to look at any photo without automatically generating a mundane question for it.
- If I were in possession of state secrets they could be immediately tortured out of me with the threat of being shown images of: skateboards, trains, Indian food and [long string of expletives] giraffes.
- (Please...I will tell you everything...just no more giraffes...)

Microsoft Research

Answers

- 38% of questions are binary yes/no
- 99% questions have answers <= 3 words
- Evaluation is feasible
- 23k unique 1 word answers

Answers

Evaluation Formats

- Open answer
- Input = image, question
- Multiple choice
- Input = image, question, 18 answer options
- Avoids language generation
- Evaluation (even more) feasible
- Options = \{correct, plausible, popular, random\} answers

Plausible Answers

Q. What is he playing?
(a) guitar
(b) drums
(c) baseball

Accuracy Metric

$\operatorname{Acc}($ ans $)=\min \left\{\frac{\# \text { humans that said ans }}{3}, 1\right\}$

1940. COCO_train2014_000000012015

Q: WHAT OBJECT IS THIS

(1) television	Ground Truth Answers:
(2) tv	(6) television
(3) tv	(7) television
(4) tv	(8) tv
(5) television	(9) tv

Q: How old is this TV?

Ground Truth Answers:	
(1) 20 years	(6) old
(2) 35	(7) 80 s
(3) old	(8) 30 years
(4) more than thirty years	(9) 15 years
old	(10) very old
(5) old	

Q: Is this TV upside-down?

(1) yes	
(2) yes	(6) yes
(3) yes	(7) yes
(4) yes	(8) yes
(5) yes	(9) yes

Human Accuracy, Inter-Human Agreement

Dataset Input All Yes/No Number Other

Question
 $\begin{array}{llll}40.81 & 67.60 & 25.77 & 21.22\end{array}$

 Real
Human Accuracy, Inter-Human Agreement

Dataset Input
All Yes/No Number Other
$\begin{array}{llllll}\text { Real } & \text { Question + Caption* } & 57.47 & 78.97 & 39.68 & 44.41 \\ & \text { Question + Image } & 83.30 & 95.77 & 83.39 & 72.67\end{array}$
$\begin{array}{lllll}\text { Abstract } \text { Question + Caption* } & 54.34 & 74.70 & 41.19 & 40.18\end{array}$
$\begin{array}{lllll}\text { Question + Image } & 87.49 & 95.96 & 95.04 & 75.33\end{array}$

VQA Common Sense

Do These Questions Need Commonsense to Answer?

We will present you with a series of questions about images. For each question, please indicate whether or not you think the question requires commonsense in order to answer. A question requires commonsense to answer if answering the question requires some knowledge beyond what is directly shown in the image. Some examples are provided below.

Show Examples

Hide Examples

To answer this question, is commonsense required?

1. yes
2. no

VQA Common Sense

- Our best algorithm has* 17% common sense!
- Average common sense required $=31 \%$.

* as estimated by untrained crowd-sourced workers in uncontrolled environment

VQA Age

How Old Do You Think a Person Needs to be to Answer These Questions?

We will present you with a series of questions about images. For each question, please select the youngest age group that you think a person must be in order to be able to correctly answer the question.

To answer this question, I would expect a person to have to at least be a:

1. toddler (3-4)
2. younger child (5-8)
3. older child (9-12)
4. teenager (13-17)
5. adult (18+)

3-4 (15.3\%)

Is that a bird in the sky?

What color is the shoe?

How many zebras are there?

Is there food on the table? Is this man wearing shoes?

5-8 (39.7\%)
How many pizzas are shown?

What are the sheep eating?

What color is his hair?

What sport is being played?

Name one ingredient in the skillet.

9-12 (28.4\%)

Where was this picture taken?

What ceremony does the cake commemorate?

Are these boats too tall to fit under the bridge?

What is the name of the white shape under the batter? Is this at the stadium?

13-17 (11.2\%)

Is he likely to get mugged if he walked down a dark alleyway like this?

Is this a vegetarian meal?

What type of beverage is in the glass?

Can you name the performer in the purple costume?

Besides these humans, what other animals eat here?

18+ (5.5\%)
What type of architecture is this?

Is this a Flemish bricklaying pattern?

How many calories are in this pizza?

What government document is needed to partake in this activity?

What is the make and model of this vehicle?

Question	Average Age	
	what brand	12.5
why	11.18	
	what type	11.04
	what kind	10.55
is this	10.13	
	what does	10.06
	what time	9.81
	who	9.58
	where	9.54
	which	9.32
	does	9.29
	do	9.23
	what is	9.11
what are	9.04	
Slide credit: Devi Parikh	are	8.65
	is the	8.52
	is there	8.24
	what sport	8.06
	how many	7.67
	what animal	6.74
	what color	6.6

VQA Age

- Our best algorithm =* 4.84 years old!
- Average "age of questions" $=8.98$ years.

* age as estimated by untrained crowd-sourced workers in uncontrolled environment

Datasets

Models

Current Status

Ongoing Efforts

Challenges in VQA

- Image representation
- Language representation
- Combining the modalities
- Attention
- Question-specific reasoning
- External knowledge

Basic Approach
 yes

Figure from de Vries et al. "Modulating early visual processing by language."
arXiv 2017.

[Lu 2015]

- Input: Image, Question
- Output: Answer
- Image:
- Convolutional Neural Network (CNN) [Fukushima 1980, LeCun et al. 1989]
- Question:
- Recurrent Neural Network
- Specifically, a Long Short-Term Memory (LSTM) [Hochreiter \& Schmidhuber, 1997]
- Output: 1 of K most common answers

Ablation \#1: Language-alone

Ablation \#2: Vision-alone

Results

Open-Answer

All $\mathrm{Yes} /$ No Number Other

| LSTM Q | 50.39 | 78.41 | 34.68 | 30.03 |
| :--- | :---: | :---: | :---: | :---: | :---: |
| LSTM Q+I | 57.75 | 80.5 | 36.77 | 43.08 |

"yes" 29.27
k-NN 40.61
Code available!

- Multiple-Choice > Open-Ended
- Question alone does quite well
- Better than humans
- Image helps

Results

Open-Ended
All Yes/No Number Other All Yes/No Number Other

prior ("yes")	29.66	70.81	00.39	01.15	29.66	70.81	00.39	01.15
per Q-type prior	37.54	71.03	35.77	09.38	39.45	71.02	35.86	13.34
nearest neighbor	42.70	71.89	24.36	21.94	48.49	71.94	26.00	33.56
BoW Q	48.09	75.66	36.70	27.14	53.68	75.71	37.05	38.64
I	28.13	64.01	00.42	03.77	30.53	69.87	00.45	03.76
BoW Q + I	52.64	75.55	33.67	37.37	58.97	75.59	34.35	50.33
LSTM Q	48.76	78.20	35.68	26.59	54.75	78.22	36.82	38.78
LSTM Q + I	53.74	78.94	35.24	36.42	57.17	78.95	35.80	43.41
deeper LSTM Q	50.39	78.41	34.68	30.03	55.88	78.45	35.91	41.13
deeper LSTM Q + norm I	$\mathbf{5 7 . 7 5}$	$\mathbf{8 0 . 5 0}$	$\mathbf{3 6 . 7 7}$	$\mathbf{4 3 . 0 8}$	$\mathbf{6 2 . 7 0}$	$\mathbf{8 0 . 5 2}$	$\mathbf{3 8 . 2 2}$	$\mathbf{5 3 . 0 1}$
Caption	26.70	65.50	02.03	03.86	28.29	69.79	02.06	03.82
BoW Q + C	54.70	75.82	40.12	42.56	59.85	75.89	41.16	52.53

Demo

C CloudcV: Large Scale Dist $\times \square$						
$\leftrightarrow \rightarrow$ cloudcv.org/vqa/						Q\} (13)
CloudCV Image Stitching	Object Detection	Decaf-Server	Classification	VIP	Train a new category	

Ask any question about this image

[Malinowski 2015]

[Gao 2015]

Challenges in VQA

- Image representation
- Language representation
- Combining the modalities
- Attention
- Question-specific reasoning

How to Combine Image Representation and Question Representation?

How to Combine Image Representation and Question Representation?

How to Combine Image Representation and Question Representation?

How to Combine Image Representation and Question Representation?

Outer Product /
Bilinear Pooling [Lin Iccv 2015]

All elements can interact
Multiplicative interaction

How to Combine Image Representation and Question Representation?

Outer Product /

FiLM: Feature-wise Linear Modulation

$$
\begin{aligned}
& F i L M\left(\boldsymbol{F}_{i, c} \mid \gamma_{i, c}, \beta_{i, c}\right)=\gamma_{i, c} \boldsymbol{F}_{i, c}+\beta_{i, c} \\
& \gamma_{i, c}=f_{c}\left(\boldsymbol{x}_{i}\right) \quad \beta_{i, c}=h_{c}\left(\boldsymbol{x}_{i}\right)
\end{aligned}
$$

γ, β change how features are used as learned functions of conditioning input x_{i}

Perez et al. "FiLM: Visual Reasoning with a General Conditioning Layer". AAAI 2018.

FiLM: Feature-wise Linear Modulation

Dumoulin, Perez, Schucher et al. "Feature-wise transformations". Distill 2018.

FiLM: Feature-wise Linear Modulation

Perez et al. "FiLM: Visual Reasoning with a General Conditioning Layer". AAAI 2018.

Histogram of FiLM Parameter Values

$$
\gamma_{i, c} \quad \beta_{i, c}
$$

Perez et al. "FiLM: Visual Reasoning with a General Conditioning Layer". AAAI 2018.

t-SNE of FiLM Parameter Values

Last FiLM Layer

Perez et al. "FiLM: Visual Reasoning with a General Conditioning Layer". AAAI 2018.

t-SNE of FiLM Parameter Values

Last FiLM Layer

Perez et al. "FiLM: Visual Reasoning with a General Conditioning Layer". AAAI 2018.

Live Demo

- Example Questions:
- "What is the shape of the gray matte object to the right of the large ball that is right of the yellow cylinder?"
- "What number of things are matte objects that are behind the large cube or big purple shiny balls?"
- "How many..."
- "What material is..."
- "Is there..."
- "Are there more..."

Logical Inconsistency

Zero-Shot Generalization with FiLM

Perez et al. "FiLM: Visual Reasoning with a General Conditioning Layer". AAAI 2018.

Activation Visualizations

Q: What shape is the... ...purple thing? A: cube

Activation Visualizations

Q: What shape is the... ...blue thing? A: sphere

Activation Visualizations

blue thing? A: sphere

Activation Visualizations

Q: What shape is the... ...red thing left of the blue thing? A: cube

Challenges in VQA

- Image representation
- Language representation
- Combining the modalities
- Attention
- Question-specific reasoning

Standard Approach

Figure from de Vries et al. "Modulating early visual processing by language."
arXiv 2017.

[Yang 2016] Stacked Attention Network (SAN)

Original Image First Attention Layer Second Attention Layer
What are sitting in the basket of a bicycle?

Stacked Attention Networks

SANs perform multi-step reasoning

1. Question model
2. Image model
3. Multi-level attention model
4. Answer predictor

1. The image model in the SAN

Spatial feature vectors of different regions of the image

$v_{i} 196$ vectors (14 x14)

2. The question model in the SAN

Code the question into a vector using an LSTM

2. The question model in the SAN (alternative)

Code the question into a vector using a CNN

3. SAN: Computing the $1^{\text {st }}$ level attention

3. SAN: Compute the $2^{\text {nd }}$ level attention

4. Answer prediction

Results

Methods	test-dev				test-std
	All	Yes/No	Number	Other ${ }^{4}$	All
VQA: [1]					
Question	48.1	75.7	36.7	27.1	-
Image	28.1	64.0	0.4	3.8	-
Q+I	52.6	75.6	33.7	37.4	-
LSTM Q	48.8	78.2	35.7	26.6	-
LSTM Q+I	53.7	78.9	35.2	36.4	54.1
SAN (2, CNN)	58.7	79.3	36.6	46.1	58.9

Table 5: VQA results on the official server, in percentage
Big improvement on the VQA benchmark (and COCO-QA, DAQUAR) Improvement is mainly in the Other category.

Results

Methods	All	Yes/No 36%	Number 10%	Other 54%
SAN(1, LSTM)	56.6	78.1	41.6	44.8
SAN(1, CNN)	56.9	78.8	42.0	45.0
SAN(2, LSTM)	57.3	78.3	$\mathbf{4 2 . 2}$	45.9
SAN(2, CNN)	$\mathbf{5 7 . 6}$	78.6	41.8	$\mathbf{4 6 . 4}$

Table 6: VQA results on our partition, in percentage

Using multi-level attentions improve the performance significantly (also mainly in the Other category)

[Xiong 2016]

Text Question-Answering

MCB: Attention Visualizations

What is the woman feeding the giraffe? Carrot

MCB: Attention Visualizations

What is her hairstyle for the picture?

Ponytail

MCB: Attention Visualizations

What color is the chain on the red dress?

Pink

- Correct Attention, Incorrect Fine-grained Recognition

MCB: Attention Visualizations

Is the man going to fall down?

No

MCB: Attention Visualizations

What is the surface of the court made of?
Clay

MCB: Attention Visualizations

What sport is being played?

Tennis

MCB: Attention Visualizations

What does the shop sell? Clocks

- Incorrect Attention

MCB: Attention Visualizations

What credit card company is on the banner in the background? Budweiser

- Correct Attention, Incorrect Concept Association

Challenges in VQA

- Image representation
- Language representation
- Combining the modalities
- Attention
- Question-specific reasoning

Neural Module Network (NMN) [Andreas 2016]

Grounded question answering

What color is the necktie?

Grounded question answering

What rivers are in South Carolina?

name	type	coastal
Columbia	city	no
Cooper	river	yes
Charleston	city	yes

Cooper

Grounded question answering

Is there a red shape above a circle?

Neural nets learn lexical groundings

Is there a red shape above a circle?

[lyyer et al. 2014, Bordes et al. 2014, Yang et al. 2015, Malinowski et al., 2015]

Semantic parsers learn composition

Is there a red shape above a circle?

yes
[Wong \& Mooney 2007, Kwiatkowski et al. 2010, Liang et al. 2011, A et al. 2013]

Neural module networks learn both!

Is there a red shape above a circle?

Neural module networks

Is there a red shape above a circle?

Neural module networks

Neural module networks

Representing meaning

Is there a red shape above a circle?

Representing meaning

Is there a red shape above a circle?

Sets encode meaning

Is there a red shape above a circle?

Sets encode meaning

Is there a red shape above a circle?

Set transformations encode meaning

Is there a red shape above a circle?

Set transformations encode meaning

Is there a red shape above a circle?

Sentence meanings are computations

Is there a red shape above a circle?

Composing vector functions

Composing vector functions

Composing vector functions

Compositions of vector functions are neural nets

Compositions of vector functions are neural nets

What modules do we need?

Is there a red shape above a circle?

What color is the triangle?

How many goats are there?

What cities are south of San Diego?

Module inventory

Is there a red shape above a circle?

What color is the triangle?

Who is running in the grass?

What cities are south of San Diego?

Learning

Is there a red shape above a circle?

What color is the shape right of a circle?

Learning

Is there a red shape above a circle?

What color is the shape right of a circle?

Parameter tying

Is there a red shape above a circle?
blue

What color is the shape right of a circle?

Parameter tying

Is there a red shape above a circle?

What color is the shape right of a circle?

Extreme parameter tying

Where do layouts come from?

Is there a red shape above a circle?

Where do layouts come from?

Is there a red shape above a circle?

Choosing among layouts

Is there a red shape above a circle?

Learning to choose layouts

Is there a red shape above a circle?

Learning with unknown layouts uses RL

Is there a red shape above a circle?

Experiments

name	type	coastal
Columbia	city	no
Cooper	river	yes
Charleston	city	yes

Experiments: VQA dataset

What color is the necktie?

yellow

Experiments: VQA dataset

Experiments: SHAPES dataset

100.00

Experiments: VQA dataset

What color is she wearing?

Experiments: VQA Dataset

What color is she wearing?

Experiments: VQA Dataset

What is in the sheep's ear?

Experiments: VQA Dataset

Experiments: VQA Dataset

Neural module networks

Linguistic structure dynamically generates model structure

Combines advantages of:

- Representation learning (like a neural net)
- Compositionality (like a semantic parser)

Datasets

Models

Current Status

Ongoing Efforts

VA Visual QuestionAnswering Challenge 2020

Ayush Shrivastava
(Georgia Tech)

Yash Goyal (Georgia Tech \rightarrow SAIL Montreal)

Dhruv Batra
(Georgia Tech/
FAIR

Devi Parikh (Georgia Tech/ FAIR)

Aishwarya Agrawal (DeepMind)

Challenge Results

Challenge Results

Challenge Results

Statistical Significance

- Performed Wilcoxon signed-rank test
- @ 95\% confidence

Statistical Significance

Easy and Difficult Questions

61% question answered by all top-10 \longrightarrow Easy questions
teams
12.8% question not answered by any \longrightarrow Difficult questions of top-10 teams

Difficult Questions in 2019 (not in 2020)

Are models sensitive to subtle changes in images?

Are models sensitive to subtle changes in images?

- Are predictions accurate for complementary images?
- Accuracy computed for each complementary pair:
- 1 point: Predict correct answers for both images
- 0 point, otherwise

Are predictions accurate for complementary images?

Are predictions accurate for complementary images?

Are models driven by priors?

Non-1-Prior:

- Questions whose answers are not top-1 most common for the given question n-gram in training.
- Consists of 73% of all test-challenge questions.

Agrawal et al., CVPR 2018

Are models driven by priors?

Are models driven by priors?

75

Are models compositional?

Only consider those questions which are compositionally novel:

- QA pair is not seen in training
- Constituting concepts seen in training

Are models compositional?

Are models compositional?

Are models compositional?

Progress in VQA

Future Directions

- Very large language models as common-sense priors
- Recent GPT-3 model from OpenAI
- https://arxiv.org/pdf/2005.14165.pdf
- Huge Transformer model
- 175B parameters, ~0.5T words
- Auto-regressive language model
- i.e. predict next character

GPT-3 Generation

Abstract

Title: United Methodists Agree to Historic Split Subtitle: Those who oppose gay marriage will form their own denomination Article: After two days of intense debate, the United Methodist Church has agreed to a historic split - one that is expected to end in the creation of a new denomination, one that will be "theologically and socially conservative," according to The Washington Post. The majority of delegates attending the church's annual General Conference in May voted to strengthen a ban on the ordination of LGBTQ clergy and to write new rules that will "discipline" clergy who officiate at same-sex weddings. But those who opposed these measures have a new plan: They say they will form a separate denomination by 2020, calling their church the Christian Methodist denomination. The Post notes that the denomination, which claims 12.5 million members, was in the early 20th century the "largest Protestant denomination in the U.S.," but that it has been shrinking in recent decades. The new split will be the second in the church's history. The first occurred in 1968, when roughly 10 percent of the denomination left to form the Evangelical United Brethren Church. The Post notes that the proposed split "comes at a critical time for the church, which has been losing members for years," which has been "pushed toward the brink of a schism over the role of LGBTQ people in the church." Gay marriage is not the only issue that has divided the church. In 2016, the denomination was split over ordination of transgender clergy, with the North Pacific regional conference voting to ban them from serving as clergy, and the South Pacific regional conference voting to allow them.

Water Cooler Trivia Dataset

- https://www.watercoolertrivia.com/blog/gpt-3-vs-water-cooler-trivia-participants-a-human-vs-robot-showdown
- 7,000 human sourced pub trivia-type questions, with 3M responses:
- Pop Culture, Social Studies, Fine Arts, Science \& Technology, Sports \& Game, Current Events, Word Play, Miscellaneous
- 156 curated to evaluate GPT-3

GPT-3 performance by trivia category

$$
\text { (} n=156 \text { trivia questions) }
$$

GPT-3 Quiz Answering

GPT-3 excelled at the easier questions, did half as well on the harder questions

Question

GPT-3 Response

Two'fer Goofer: What two rhyming words summarize the following phrase? A zippered piece of warm outerwear for a Serena Williams tool.

Two'fer Goofer: What two-word rhyming phrase could mean the following? Trefoil found surrounding the Capitol in Delaware.

Sweater and coat

Two'fer Goofer: What two-word rhyming phrase could mean the following? Trefoil found surrounding the Capitol in Delaware.

Two'fer Goofer: What two rhyming words summarize the following phrase? A gatherer and organizer of large, dangerous jungle felines.

For Word Play questions that were more like vocabulary quizzes, GPT-3 performed admirably:

Question

Very V: What synonym for vagabond has the same first three letters?

Bought Brands: What slang term with Germanic roots meaning "fool" is half the name of a Best Buy subsidiary acquired in 2002? The term is used to describe eccentric or non-mainstream people and is typically considered a pejorative term although it can be used self-referentially as a source of pride.
Millennial Meaning: What photographic term was first used (or at least, the first recorded use in print) when Nathan Hope posted an image of his injured face

GPT-3 Response

Question	GPT-3 Response
Very V: What synonym for vagabond has the same first three letters?	Vagrant
Bought Brands: What slang term with Germanic roots meaning "fool" is half the name of a Best Buy subsidiary acquired in 2002? The term is used to describe eccentric or non-mainstream people and is typically considered a pejorative term although it can be used self-referentially as a source of pride.	
Millennial Meaning: What photographic term was first used (or at least, the first recorded use in print) when Nathan Hope posted an image of his injured face online in 2002?	The term "selfie" was first used in

The hardest questions GPT-3 nailed

Question	GPT-3 Response	WCT Participants
TV Shows: Creator Larry David had a famous policy for Seinfeld in which he wanted to scrupulously avoid sentimentality and moral lessons. What four-word phrase is the quote often attributed to David as the summary of this policy?	No hugging, no learning.	6\% of participants knew this answer $(\mathrm{n}=944) .$
Precocious Players: In what year was American soccer player Freddy Adu born? Adu rose to international fame when he signed a professional sports contract in the U.S. at the age of 14.	Freddy Adu was born in 1989.	7\% of participants knew this answer $(\mathrm{n}=530) .$
Religious Roles: Fittingly, what is the name of the hero of John Bunyan's "Pilgrim's Progress" who flees from the City of Destiny to the Celestial City?	Christian	9\% of participants knew this answer $(n=918) .$

The easiest questions GPT-3 miffed

Question	CPT-3 Response	WCT Participants		
Coding Skycraft: Before the 1930 s, airport codes were only two letters. As a result, some airports added the letter X to the end of the extant code, including what airport code in California?	The airport code in California is SFO.			98\% of participants knew the answer
---:				
was LAX ($\mathrm{n}=618$).				

