
Object Detection
Lecture 5

Object Detection

ü boat
ü person

Image Classification
(what?)

Object Detection
(what + where?)

Intersection over Union (IoU) metric

https://www.pyimagesearch.com/2016/11/07/intersection-over-union-iou-for-object-detection/

https://people.cs.pitt.edu/~kovashka/cs1699/hw4.html

https://www.pyimagesearch.com/2016/11/07/intersection-over-union-iou-for-object-detection/

Mean Average Precision (mAP) metric

https://medium.com/@jonathan_hui/map-mean-average-precision-for-object-detection-45c121a31173

List of bounding boxes across entire dataset,
ranked by detector confidence:

Correct = IoU > 0.5Recall-precision curve

Orange = recall-precision
Green = interpolated
Red dots used to compute average

COCO metrics

https://medium.com/@jonathan_hui/map-mean-average-precision-for-object-detection-45c121a31173

Typical results table in paper (e.g. YOLOv3)COCO metrics

Common Objects in Context
https://cocodataset.org/#home

Leading detection benchmark

https://cocodataset.org/

Viola and Jones (2001)

Image from OpenCV 3.3 website

First effective real-time
face detector

Integral Image trick for fast
computation of features

Boosting-based learning

Deployed in numerous
real-world applications

DPM: Deformable Part Models

Object Detection with Discriminatively Trained Part Based Models Pedro F.
Felzenszwalb, Ross B. Girshick, David McAllester and Deva Ramanan, PAMI 2009

Leading detection approach
pre-deep learning

HOG-based features

Small number of deformable part
detectors

Fast R-CNN
• Deep learning-based approach
• Part of current leading direction in detection

Fast R-CNN, Girshick

One-stage vs. Two-stage
• One-stage

– Fast
– Simple

• Two-stage
– 10 - 40% better accuracy

Paper Meta-architecture Feature Extractor Matching Box Encoding �(ba, a) Location Loss functions
Szegedy et al. [40] SSD InceptionV3 Bipartite [x0, y0, x1, y1] L2

Redmon et al. [29] SSD Custom (GoogLeNet inspired) Box Center [xc, yc,
p
w,

p
h] L2

Ren et al. [31] Faster R-CNN VGG Argmax [xc
wa

, yc
ha

, logw, log h] SmoothL1

He et al. [13] Faster R-CNN ResNet-101 Argmax [xc
wa

, yc
ha

, logw, log h] SmoothL1

Liu et al. [26] (v1) SSD InceptionV3 Argmax [x0, y0, x1, y1] L2

Liu et al. [26] (v2, v3) SSD VGG Argmax [xc
wa

, yc
ha

, logw, log h] SmoothL1

Dai et al [6] R-FCN ResNet-101 Argmax [xc
wa

, yc
ha

, logw, log h] SmoothL1

Table 1: Convolutional detection models that use one of the meta-architectures described in Section 2. Boxes are encoded with respect to a matching
anchor a via a function � (Equation 1), where [x0, y0, x1, y1] are min/max coordinates of a box, xc, yc are its center coordinates, and w, h its width and
height. In some cases, wa, ha, width and height of the matching anchor are also used. Notes: (1) We include an early arXiv version of [26], which used a
different configuration from that published at ECCV 2016; (2) [29] uses a fast feature extractor described as being inspired by GoogLeNet [39], which we
do not compare to; (3) YOLO matches a groundtruth box to an anchor if its center falls inside the anchor (we refer to this as BoxCenter).

Feature Extractor

(vgg,	incep+on,	
resnet,	etc)	

Box
Regression

Multiway
Classification

Detection Generator

(a) SSD.

Multiway
Classification

Box
Refinement

Box Classifier
Feature Extractor

(vgg,	incep+on,	
resnet,	etc)	

Box
Regression

Objectness
Classification

Proposal Generator

(b) Faster RCNN.

Multiway
Classification

Box
Refinement

Box Classifier
Feature Extractor

(vgg,	incep+on,	
resnet,	etc)	

Box
Regression

Objectness
Classification

Proposal Generator

(c) R-FCN.

Figure 1: High level diagrams of the detection meta-architectures compared in this paper.

(RPN) stage of Faster R-CNN [40, 31] use this approach
to predict class-agnostic box proposals. [33, 29, 30, 9] use
SSD-like architectures to predict final (1 of K) class labels.
And Poirson et al., [28] extended this idea to predict boxes,
classes and pose.

2.1.2 Faster R-CNN.

In the Faster R-CNN setting, detection happens in two
stages (Figure 1b). In the first stage, called the region pro-

posal network (RPN), images are processed by a feature
extractor (e.g., VGG-16), and features at some selected in-
termediate level (e.g., “conv5”) are used to predict class-
agnostic box proposals. The loss function for this first stage
takes the form of Equation 1 using a grid of anchors tiled in
space, scale and aspect ratio.

In the second stage, these (typically 300) box proposals
are used to crop features from the same intermediate feature
map which are subsequently fed to the remainder of the fea-
ture extractor (e.g., “fc6” followed by “fc7”) in order to pre-
dict a class and class-specific box refinement for each pro-
posal. The loss function for this second stage box classifier

also takes the form of Equation 1 using the proposals gener-
ated from the RPN as anchors. Notably, one does not crop
proposals directly from the image and re-run crops through
the feature extractor, which would be duplicated computa-
tion. However there is part of the computation that must be
run once per region, and thus the running time depends on
the number of regions proposed by the RPN.

Since appearing in 2015, Faster R-CNN has been par-

ticularly influential, and has led to a number of follow-up
works [2, 35, 34, 46, 13, 5, 19, 45, 24, 47] (including SSD
and R-FCN). Notably, half of the submissions to the COCO
object detection server as of November 2016 are reported to
be based on the Faster R-CNN system in some way.

2.2. R-FCN

While Faster R-CNN is an order of magnitude faster than
Fast R-CNN, the fact that the region-specific component
must be applied several hundred times per image led Dai
et al. [6] to propose the R-FCN (Region-based Fully Con-
volutional Networks) method which is like Faster R-CNN,
but instead of cropping features from the same layer where
region proposals are predicted, crops are taken from the
last layer of features prior to prediction (Figure 1c). This
approach of pushing cropping to the last layer minimizes
the amount of per-region computation that must be done.
Dai et al. argue that the object detection task needs local-
ization representations that respect translation variance and
thus propose a position-sensitive cropping mechanism that
is used instead of the more standard ROI pooling operations
used in [10, 31] and the differentiable crop mechanism of
[5]. They show that the R-FCN model (using Resnet 101)
could achieve comparable accuracy to Faster R-CNN often
at faster running times. Recently, the R-FCN model was
also adapted to do instance segmentation in the recent TA-

FCN model [22], which won the 2016 COCO instance seg-
mentation challenge.

3

https://arxiv.org/pdf/1611.10012.pdf

One-stage Two-stage Two-stage

One-stage vs. Two-stage

Speed/accuracy trade-offs for modern convolutional object detectors, Huang et al., CVPR 2017

One-Stage Detectors

Accurate object detection is slow!

Pascal 2007 mAP Speed

DPM v5 33.7 .07 FPS 14 s/img

Accurate object detection is slow!

Pascal 2007 mAP Speed

DPM v5 33.7 .07 FPS 14 s/img

R-CNN 66.0 .05 FPS 20 s/img

Accurate object detection is slow!

Pascal 2007 mAP Speed

DPM v5 33.7 .07 FPS 14 s/img

R-CNN 66.0 .05 FPS 20 s/img

⅓ Mile, 1760 feet

Accurate object detection is slow!

Pascal 2007 mAP Speed

DPM v5 33.7 .07 FPS 14 s/img

R-CNN 66.0 .05 FPS 20 s/img

Fast R-CNN 70.0 .5 FPS 2 s/img

176 feet

Accurate object detection is slow!

Pascal 2007 mAP Speed

DPM v5 33.7 .07 FPS 14 s/img

R-CNN 66.0 .05 FPS 20 s/img

Fast R-CNN 70.0 .5 FPS 2 s/img

Faster R-CNN 73.2 7 FPS 140 ms/img

12 feet

8 feet

Accurate object detection is slow!

Pascal 2007 mAP Speed

DPM v5 33.7 .07 FPS 14 s/img

R-CNN 66.0 .05 FPS 20 s/img

Fast R-CNN 70.0 .5 FPS 2 s/img

Faster R-CNN 73.2 7 FPS 140 ms/img

YOLO 63.4 45 FPS 22 ms/img

2 feet

Accurate object detection is slow!

Pascal 2007 mAP Speed

DPM v5 33.7 .07 FPS 14 s/img

R-CNN 66.0 .05 FPS 20 s/img

Fast R-CNN 70.0 .5 FPS 2 s/img

Faster R-CNN 73.2 7 FPS 140 ms/img

YOLO 63.4 69.0 45 FPS 22 ms/img

2 feet

With YOLO, you only look once at an image to perform
detection

YOLO: You Only Look Once

We split the image into a grid

Each cell predicts boxes and confidences: P(Object)

Each cell predicts boxes and confidences: P(Object)

Each cell predicts boxes and confidences: P(Object)

Each cell predicts boxes and confidences: P(Object)

Each cell predicts boxes and confidences: P(Object)

Each cell predicts boxes and confidences: P(Object)

Each cell also predicts a class probability.

Each cell also predicts a class probability.

Dog

Bicycle Car

Dining
Table

Conditioned on object: P(Car | Object)

Dog

Bicycle Car

Dining
Table

Then we combine the box and class predictions.

Finally we do NMS and threshold detections

Each cell predicts:

- For each bounding box:
- 4 coordinates (x, y, w, h)
- 1 confidence value

- Some number of class
probabilities

For Pascal VOC:

- 7x7 grid
- 2 bounding boxes / cell
- 20 classes

7 x 7 x (2 x 5 + 20) = 7 x 7 x 30 tensor = 1470 outputs

This parameterization fixes the output size

Thus we can train one neural network to be a whole
detection pipeline

During training, match example to the right cell

During training, match example to the right cell

Dog = 1
Cat = 0
Bike = 0
...

Adjust that cell’s class prediction

Look at that cell’s predicted boxes

Find the best one, adjust it, increase the confidence

Find the best one, adjust it, increase the confidence

Find the best one, adjust it, increase the confidence

Decrease the confidence of other boxes

Decrease the confidence of other boxes

Some cells don’t have any ground truth detections!

Some cells don’t have any ground truth detections!

Decrease the confidence of these boxes

Decrease the confidence of these boxes

Don’t adjust the class probabilities or coordinates

We train with standard tricks:

- Pretraining on Imagenet
- SGD with decreasing learning rate
- Extensive data augmentation
- For details, see the paper

YOLO works across a variety of natural images

It also generalizes well to new domains (like art)

YOLO outperforms methods like DPM and R-CNN when
generalizing to person detection in artwork

S. Ginosar, D. Haas, T. Brown, and J. Malik. Detecting people in cubist art. In Computer Vision-ECCV 2014 Workshops, pages 101–116.
Springer, 2014.

H. Cai, Q. Wu, T. Corradi, and P. Hall. The cross-depiction problem: Computer vision algorithms for recognising objects in artwork and in
photographs.

Pascal 2007 mAP Speed

DPM v5 33.7 .07 FPS 14 s/img

R-CNN 66.0 .05 FPS 20 s/img

Fast R-CNN 70.0 .5 FPS 2 s/img

Faster R-CNN 73.2 7 FPS 140 ms/img

YOLO 63.4 69.0 45 FPS 22 ms/img

Code available! pjreddie.com/yolo

Pascal 2007 mAP Speed
DPM v5 33.7 .07 FPS 14 s/img

R-CNN 66.0 .05 FPS 20 s/img

Fast R-CNN 70.0 .5 FPS 2 s/img

Faster R-CNN 73.2 7 FPS 140 ms/img

YOLO 63.4 45 FPS 22 ms/img

Fine-tune 448x448 Classifier: +3.5% mAP

Train on ImageNet

Fine-tune on detection

Resize, fine-tune
on ImageNet

Multi-scale training: +1.5% mAP

Huang, Jonathan, et al. "Speed/accuracy trade-offs for modern convolutional object detectors." arXiv preprint arXiv:1611.10012 (2016).

YOLOv2

Two-stage Detectors

Fast R-CNN
Ross Girshick

Facebook AI Research (FAIR)
Work done at Microsoft Research

http://git.io/vBqm5

Reproducible research – get the code!

Fast Region-based ConvNets (R-CNNs)
for Object Detection

Recognition
What?

car : 1.000

dog : 0.997

person : 0.992

person : 0.979

horse : 0.993

Localization
Where?

Figure adapted from Kaiming He

Object detection renaissance (2013-present)

0%

10%

20%

30%

40%

50%

60%

70%

80%

2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016

m
ea
n0
Av
er
ag
e0
Pr
ec
isi
on
0(m

AP
)

year

Before deep convnets

Using deep convnets

PASCAL VOC

Object detection renaissance (2013-present)

0%

10%

20%

30%

40%

50%

60%

70%

80%

2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016

m
ea
n0
Av
er
ag
e0
Pr
ec
isi
on
0(m

AP
)

year

Before deep convnets

Using deep convnets

R-CNNv1

PASCAL VOC

Object detection renaissance (2013-present)

0%

10%

20%

30%

40%

50%

60%

70%

80%

2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016

m
ea
n0
Av
er
ag
e0
Pr
ec
isi
on
0(m

AP
)

year

+ Accurate
- Slow
- Inelegant

R-CNNv1

Fast R-CNN

+ Accurate
+ Fast
+ Streamlined

PASCAL VOC

Region-based convnets (R-CNNs)

• R-CNN (aka “slow R-CNN”) [Girshick et al. CVPR14]

• SPP-net [He et al. ECCV14]

Slow R-CNN

Girshick et al. CVPR14.

Input image

Slow R-CNN

Girshick et al. CVPR14.

Input image

Regions of Interest (RoI)
from a proposal method
(~2k)

Slow R-CNN

Girshick et al. CVPR14.

Input image

Warped image regions

Regions of Interest (RoI)
from a proposal method
(~2k)

Slow R-CNN

Girshick et al. CVPR14.

Input image

ConvNet

ConvNet

ConvNet
Warped image regions

Forward each region
through ConvNet

Regions of Interest (RoI)
from a proposal method
(~2k)

Slow R-CNN

Girshick et al. CVPR14.

Input image

ConvNet

ConvNet

ConvNet

SVMs

SVMs

SVMs

Warped image regions

Forward each region
through ConvNet

Classify regions with SVMs

Regions of Interest (RoI)
from a proposal method
(~2k)

Post hoc component

Slow R-CNN

Girshick et al. CVPR14.

Input image

ConvNet

ConvNet

ConvNet

SVMs

SVMs

SVMs

Warped image regions

Forward each region
through ConvNet

Bbox reg

Bbox reg

Bbox reg

Apply bounding-box regressors

Classify regions with SVMs

Regions of Interest (RoI)
from a proposal method
(~2k)

Post hoc component

What’s wrong with slow R-CNN?

What’s wrong with slow R-CNN?

• Ad hoc training objectives
• Fine-tune network with softmax classifier (log loss)
• Train post-hoc linear SVMs (hinge loss)
• Train post-hoc bounding-box regressors (squared loss)

What’s wrong with slow R-CNN?

• Training is slow (84h), takes a lot of disk space

What’s wrong with slow R-CNN?

• Inference (detection) is slow
• 47s / image with VGG16 [Simonyan & Zisserman. ICLR15]
• Fixed by SPP-net [He et al. ECCV14]

~2000 ConvNet forward passes per image

SPP-net

Input image

He et al. ECCV14.

SPP-net

ConvNet

Input image

Forward whole image through ConvNet

He et al. ECCV14.

“conv5” feature map of image

SPP-net

ConvNet

Input image

Forward whole image through ConvNet

“conv5” feature map of imageRegions of
Interest (RoIs)
from a proposal
method

He et al. ECCV14.

SPP-net

ConvNet

Input image

Forward whole image through ConvNet

“conv5” feature map of imageRegions of
Interest (RoIs)
from a proposal
method

Spatial Pyramid Pooling (SPP) layer

He et al. ECCV14.

Spatial Pyramid Pooling (SPP) Layer

Kaiming He, Xiangyu Zhang, Shaoqing Ren, & Jian Sun. “Spatial Pyramid Pooling in Deep Convolutional Networks for Visual Recognition”. ECCV 2014.

• fix the number of bins
(instead of filter sizes)

• adaptively-sized bins

concatenate,
fc layers…

pooling

a finer level maintains
explicit spatial information

a coarser level removes
explicit spatial information

(bag-of-features)

SPP-net

ConvNet

Input image

Forward whole image through ConvNet

“conv5” feature map of imageRegions of
Interest (RoIs)
from a proposal
method

Spatial Pyramid Pooling (SPP) layer

He et al. ECCV14.

SVMs

Fully-connected layers

Classify regions with SVMs

FCs

Post hoc component

SPP-net

ConvNet

Input image

Forward whole image through ConvNet

“conv5” feature map of imageRegions of
Interest (RoIs)
from a proposal
method

Spatial Pyramid Pooling (SPP) layer

He et al. ECCV14.

SVMs

Fully-connected layers

Classify regions with SVMs

FCs

Bbox reg

Apply bounding-box regressors

Post hoc component

What’s good about SPP-net?

• Fixes one issue with R-CNN: makes testing fast

ConvNet

SVMs

FCs

Bbox reg

Region-wise
computation

Image-wise
computation
(shared)

Post hoc component

What’s wrong with SPP-net?

• Inherits the rest of R-CNN’s problems
• Ad hoc training objectives
• Training is slow (25h), takes a lot of disk space

What’s wrong with SPP-net?

• Introduces a new problem: cannot update parameters below SPP
layer during training

SPP-net: the main limitation

ConvNet

He et al. ECCV14.

SVMs

Trainable
(3 layers)

Frozen
(13 layers)

FCs

Bbox reg

Post hoc component

Fast R-CNN

• Fast test-time, like SPP-net

Fast R-CNN

• Fast test-time, like SPP-net
• One network, trained in one stage

Fast R-CNN

• Fast test-time, like SPP-net
• One network, trained in one stage
• Higher mean average precision than slow R-CNN

and SPP-net

Fast R-CNN (test time)

ConvNet

Input image

Forward whole image through ConvNet

“conv5” feature map of imageRegions of
Interest (RoIs)
from a proposal
method

Fast R-CNN (test time)

ConvNet

Input image

Forward whole image through ConvNet

“conv5” feature map of image

“RoI Pooling” (single-level SPP) layer

Regions of
Interest (RoIs)
from a proposal
method

Fast R-CNN (test time)

ConvNet

Input image

Forward whole image through ConvNet

“conv5” feature map of image

“RoI Pooling” (single-level SPP) layer

Linear +
softmax

FCs Fully-connected layers

Softmax classifier

Regions of
Interest (RoIs)
from a proposal
method

Fast R-CNN (test time)

ConvNet

Input image

Forward whole image through ConvNet

“conv5” feature map of image

“RoI Pooling” (single-level SPP) layer

Linear +
softmax

FCs Fully-connected layers

Softmax classifier

Regions of
Interest (RoIs)
from a proposal
method

Linear Bounding-box regressors

Fast R-CNN
(training)

ConvNet

Linear +
softmax

FCs

Linear

Fast R-CNN
(training) Log loss + smooth L1 loss

ConvNet

Linear +
softmax

FCs

Linear

Multi-task loss

Fast R-CNN
(training) Log loss + smooth L1 loss

ConvNet

Linear +
softmax

FCs

Linear

Trainable

Multi-task loss

Obstacle #1: Differentiable RoI pooling

Region of Interest (RoI) pooling must be (sub-)
differentiable to train conv layers

Obstacle #1: Differentiable RoI pooling
RoI pooling

RoI pooling

𝑖∗ 0,2 = 23

𝑖∗ 1,0 = 23

Over regions 𝑟,
locations 𝑗

Partial
for 𝑥!

1 if 𝑟, 𝑗 “pooled”
input 𝑖; 0 o/w

Partial from
next layer

𝜕𝐿
𝜕𝑥!

=%
"

%
#

𝑖 = 𝑖∗ 𝑟, 𝑗
𝜕𝐿
𝜕𝑦"#

𝑟"

𝑟#

𝑥$%

𝑦!,#

𝑦$,!

𝑟"

𝑟#

max pooling “switch”
(i.e. argmax back-pointer)

Obstacle #2: efficient SGD steps
Slow R-CNN and SPP-net use region-wise sampling to
make mini-batches

• Sample 128 example RoIs uniformly at random
• Examples will come from different images with high

probability

...

SGD mini-batch

...

Obstacle #2: efficient SGD steps
Note the receptive field for one example RoI is often
very large

• Worst case: the receptive field is the entire image

Example RoI

RoI’s receptive field

Example RoI

Obstacle #2: efficient SGD steps
Worst case cost per mini-batch (crude model of
computational complexity)

128*600*1000 / (128*224 *224) = 12x more
computation than slow R-CNN

input size for Fast R-CNN input size for slow R-CNN

Example RoI

RoI’s receptive field

Example RoI

Obstacle #2: efficient SGD steps
Solution: use hierarchical sampling to build mini-
batches

...

Obstacle #2: efficient SGD steps
Solution: use hierarchical sampling to build mini-
batches

...

Sample images

...

• Sample a small
number of images
(2)

Obstacle #2: efficient SGD steps
Solution: use hierarchical sampling to build mini-
batches

...

Sample images

...

SGD mini-batch

• Sample a small
number of images
(2)

• Sample many
examples from
each image (64)

Obstacle #2: efficient SGD steps
Use the test-time trick from SPP-net during training

• Share computation between overlapping examples
from the same image

Example RoI
2

Union of RoIs’ receptive fields
(shared computation)

Example RoI
1

Example RoI 3

Example RoI
2

Example RoI
1

Example RoI 3

Obstacle #2: efficient SGD steps
Cost per mini-batch compared to slow R-CNN (same
crude cost model)

• 2*600*1000 / (128*224*224) = 0.19x less
computation than slow R-CNN

input size for Fast R-CNN input size for slow R-CNN

Example RoI
2

Union of RoIs’ receptive fields
(shared computation)

Example RoI
1

Example RoI 3

Example RoI
2

Example RoI
1

Example RoI 3

Main results
Fast R-CNN R-CNN [1] SPP-net [2]

Train time (h) 9.5 84 25

- Speedup 8.8x 1x 3.4x

Timings exclude object proposal time, which is equal for all methods.
All methods use VGG16 from Simonyan and Zisserman.

[1] Girshick et al. CVPR14.
[2] He et al. ECCV14.

Main results
Fast R-CNN R-CNN [1] SPP-net [2]

Test time / image 0.32s 47.0s 2.3s

Test speedup 146x 1x 20x

Timings exclude object proposal time, which is equal for all methods.
All methods use VGG16 from Simonyan and Zisserman.

[1] Girshick et al. CVPR14.
[2] He et al. ECCV14.

Main results
Fast R-CNN R-CNN [1] SPP-net [2]

mAP 66.9% 66.0% 63.1%

Timings exclude object proposal time, which is equal for all methods.
All methods use VGG16 from Simonyan and Zisserman.

[1] Girshick et al. CVPR14.
[2] He et al. ECCV14.

Further test-time speedups

Fully connected layers take
45% of the forward pass
time

Further test-time speedups

Compress these layers with
truncated SVD

J. Xue, J. Li, and Y. Gong.
Restructuring of deep neural network acoustic models with singular value decomposition.
Interspeech, 2013.

Further test-time speedups

Without SVD With SVD

Other findings

End-to-end training matters

Fast R-CNN (VGG16)

Fine-tune layers ≥ fc6 ≥ conv3_1 ≥ conv2_1

VOC07 mAP 61.4% 66.9% 67.2%

Test time per image 0.32s 0.32s 0.32s
1.4x slower
training

Multi-task training helps

Fast R-CNN (VGG16)

Multi-task training? Y Y

Stage-wise training? Y

Test-time bbox reg. Y Y

VOC07 mAP 62.6% 63.4% 64.0% 66.9%

Multi-task training helps

Fast R-CNN (VGG16)

Multi-task training? Y Y

Stage-wise training? Y

Test-time bbox reg. Y Y

VOC07 mAP 62.6% 63.4% 64.0% 66.9%

Trained without
a bbox regressor

Multi-task training helps

Fast R-CNN (VGG16)

Multi-task training? Y Y

Stage-wise training? Y

Test-time bbox reg. Y Y

VOC07 mAP 62.6% 63.4% 64.0% 66.9%

Trained with
a bbox regressor,
but it’s disabled at
test time

Multi-task training helps

Fast R-CNN (VGG16)

Multi-task training? Y Y

Stage-wise training? Y

Test-time bbox reg. Y Y

VOC07 mAP 62.6% 63.4% 64.0% 66.9%

Post hoc bbox
regressor, used
at test time

Multi-task training helps

Fast R-CNN (VGG16)

Multi-task training? Y Y

Stage-wise training? Y

Test-time bbox reg. Y Y

VOC07 mAP 62.6% 63.4% 64.0% 66.9%

Multi-task objective,
using bbox regressors
at test time

More proposals is harmful

What’s still wrong?

• Out-of-network region proposals
• Selective search: 2s / im; EdgeBoxes: 0.2s / im

• Fortunately, we have a solution
• Our follow-up work was presented last week at NIPS

Shaoqing Ren, Kaiming He, Ross Girshick & Jian Sun.
“Faster R-CNN: Towards Real-Time Object Detection with Region
Proposal Networks.” NIPS 2015.

Object Detection: Faster R-CNN

• Faster R-CNN
• Solely based on CNN
• No external modules
• Each step is end-to-end

End-to-End
training

image

CNN

feature map

Region Proposal Net

proposals

features

RoI pooling

Shaoqing Ren, Kaiming He, Ross Girshick, & Jian Sun. “Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks”. NIPS 2015.

Region Proposal Network

• Slide a small window on the feature map
• Build a small network for:

• classifying object or not-object, and
• regressing bbox locations

• Position of the sliding window provides localization
information with reference to the image

• Box regression provides finer localization information
with reference to this sliding window

convolutional feature map

sliding window

classify
obj./not-obj.

regress
box locations

Shaoqing Ren, Kaiming He, Ross Girshick, & Jian Sun. “Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks”. NIPS 2015.

256-d

n scores 4n coordinates n anchors

Anchors as references

• Anchors: pre-defined reference boxes
• Box regression is with reference to anchors:

regressing an anchor box to a ground-truth box

• Object probability is with reference to anchors, e.g.:
• anchors as positive samples: if IoU > 0.7 or IoU is max
• anchors as negative samples: if IoU < 0.3

Shaoqing Ren, Kaiming He, Ross Girshick, & Jian Sun. “Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks”. NIPS 2015.

Anchors as references

• Anchors: pre-defined reference boxes

• Multi-scale/size anchors:
• multiple anchors are used at each position:

e.g., 3 scales (1282, 2562, 5122) and 3 aspect ratios
(2:1, 1:1, 1:2) yield 9 anchors

• each anchor has its own prediction function
• single-scale features, multi-scale predictions

256-d

n scores 4n coordinates n anchors

Shaoqing Ren, Kaiming He, Ross Girshick, & Jian Sun. “Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks”. NIPS 2015.

Region Proposal Network

• RPN is fully convolutional [Long et al. 2015]

• RPN is trained end-to-end

• RPN shares convolutional feature maps with
the detection network
(covered in Ross’s section)

256-d

n scores 4n coordinates n anchors

Shaoqing Ren, Kaiming He, Ross Girshick, & Jian Sun. “Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks”. NIPS 2015.

Faster R-CNN

Shaoqing Ren, Kaiming He, Ross Girshick, & Jian Sun. “Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks”. NIPS 2015.

image

CNN

feature map

RPN

proposals

detector

RoI pooling

system time 07 data 07+12 data
R-CNN ~50s 66.0 -

Fast R-CNN ~2s 66.9 70.0

Faster R-CNN 198ms 69.9 73.2

detection mAP on PASCAL VOC 2007, with VGG-16 pre-trained on ImageNet

Focal Loss for
Dense Object Detection

Tsung-Yi Lin, Google Brain

Work done at Facebook AI Research with
Priya Goyal, Ross Girshick, Kaiming He, Piotr Dollár

Toward dense detection

• YOLOv1 – 98 boxes
• YOLOv2 – ~1k
• OverFeat – ~1-2k
• SSD – ~8-26k

• This work – ~100k

Class Imbalance

• Few training examples from foreground
• Most examples from background

– Easy and uninformative
– Distracting

Few positive
examples, rich
information

Many negative
examples, no
useful signal

Cross Entropy

Well classified
examples

Cross Entropy

Loss = 0.1

Loss = 2.3

Cross Entropy with Imbalance Data

• 100000 easy : 100 hard examples
• 40x bigger loss from easy examples

Loss = 0.1

Loss = 2.3

Focal Loss

FL(pt) = �(1� pt)
� log(pt) (1)

CE(pt) = � log(pt) (2)

1

FL(pt) = �(1� pt)
� log(pt) (1)

CE(pt) = � log(pt) (2)

1

CE = 0.1
FL = 0.01

CE = 2.3
FL = 2.1

Focal Loss

Prior

• α-balanced Cross entropy

• α-balanced Focal Loss

• γ: focus more on hard examples
• α: offset class imbalance of number of examples

FL(pt) = �↵t(1� pt)
� log(pt) (1)

FL(pt) = �(1� pt)
� log(pt) (2)

CE(pt) = � log(pt) (3)

1

FL(pt) = �(1� pt)
� log(pt) (1)

CE(pt) = � log(pt) (2)

1

FL(pt) = �(1� pt)
� log(pt) (1)

CE(pt) = � log(pt) (2)

1

FL(pt) = �↵t(1� pt)
� log(pt) (1)

FL(pt) = �(1� pt)
� log(pt) (2)

CE(pt) = � log(pt) (3)

1

Feature Pyramid Network

• Multiscale
• Semantically strong at all scales
• Fast to compute(a) Featurized image pyramid

predict

predict

predict

predict

(b) Single feature map

predict

(d) Feature Pyramid Network

predict

predict

predict

(c) Pyramidal feature hierarchy

predict

predict

predict

Feature Pyramid Network for Object Detection, Lin et al., CVPR 2017

Architecture

• RetinaNet
– FPN + 100k boxes
– Focal loss

Loss Distribution under Focal Loss
Background Boxes

Loss Distribution under Focal Loss

Foreground Boxes

Foreground Boxes

vs. Cross Entropy

• + 2.9 AP to α-balanced cross entropy

(ResNet-50-FPN 600px input image)

vs. OHEM

• +3.2 AP to best OHEM (ResNet-101 FPN)

Best OHEM

Best Focal Loss
Online Hard Example Mining, Shrivastava et al., 2016

RetinaNet performance

R-FCN
SSD513

DSSD513

FPN Fast R-CNN

YOLOv2
AP 22 @ 25ms

SSD321 DSSD321

Summary

• Identify class imbalance is the major issue for training one-
stage dense detector

• Propose Focal Loss to address class imbalance
• Achieve state-of-the-art accuracy and speed

Mask R-CNN:

ICCV 2017 Tutorial, Venice, Italy

Kaiming He
in collaboration with: Georgia Gkioxari, Piotr Dollár, and Ross Girshick

Facebook AI Research (FAIR)

Introduction

Visual Perception Problems

Person 1
Person 2 Person 3

Person 4 Person 5

Person

Object Detection Semantic Segmentation Instance Segmentation

✓ ✓ ?

A Challenging Problem...

31

5

Object Det. Instance Seg.

entries on COCO
leaderboard

58

11

Semantic Seg. Instance Seg.

entries on Cityscapes
leaderboard

Object Detection

• Fast/Faster R-CNN
üGood speed
üGood accuracy
üIntuitive
üEasy to use

Ross Girshick. “Fast R-CNN”. ICCV 2015.
Shaoqing Ren, Kaiming He, Ross Girshick, & Jian Sun. “Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks”. NIPS 2015.

Semantic Segmentation

• Fully Convolutional Net (FCN)
üGood speed
üGood accuracy
üIntuitive
üEasy to use

Jonathan Long, Evan Shelhamer, & Trevor Darrell. “Fully Convolutional Networks for Semantic Segmentation”. CVPR 2015.

Figure credit: Long et al

Instance Segmentation

• Goals of Mask R-CNN
üGood speed
üGood accuracy
üIntuitive
üEasy to use

? ? ? ? ?

Person 1

Person 2 Person 3

Person 4 Person 5

R-CNN driven
Instance Segmentation Methods

person

Person 1

Person 2 Person 3

Person 4 Person 5

FCN driven

(proposals)

?
? ?

? ?

Person 1

Person 2
Person 3

Person 4

Person 5
Person 1

Person 2
Person 3

Person 4

Person 5

Person

RCNN-driven FCN-driven

• SDS [Hariharan et al, ECCV’14]

• HyperCol [Hariharan et al, CVPR’15]

• CFM [Dai et al, CVPR’15]

• MNC [Dai et al, CVPR’16]

• PFN [Liang et al, arXiv’15]

• InstanceCut [Kirillov et al, CVPR’17]

• Watershed [Bai & Urtasun, CVPR’17]

• FCIS [Li et al, CVPR’17]

• DIN [Arnab & Torr, CVPR’17]

Instance Segmentation Methods

Mask R-CNN

• Mask R-CNN = Faster R-CNN with FCN on RoIs
Faster R-CNN

FCN on RoI

Parallel Heads

• Easy, fast to implement and train
cls

bbox
reg

mask

Feat.

(slow) R-CNN

cls

bbox
reg

Feat.

Fast/er R-CNN Mask R-CNN

Feat.

step1
cls

step2
bbox
reg

Invariance vs. Equivariance

• Convolutions are translation-equivariant

• Fully-ConvNet (FCN) is translation-equivariant

• ConvNet becomes translation-invariant due to fully-connected or global
pool layers

Equivariance in Mask R-CNN

1. Fully-Conv Features:
equivariant to global (image) translation

Equivariance in Mask R-CNN

2. Fully-Conv on RoI:
equivariant to translation within RoI

Fully-Conv on RoI
target masks on RoIs

Translation of object in RoI => Same translation of mask in RoI
• Equivariant to small translation of RoIs
• More robust to RoI’s localization imperfection

Equivariance in Mask R-CNN

3. RoIAlign:
3a. maintain translation-equivariance before/after RoI

RoIAlign

Grid points of
bilinear interpolation

RoIAlign
output

(Variable size RoI)

(Fixed dimensional
representation)

conv feat. map

FAQs: how to sample grid points within a cell?
• 4 regular points in 2x2 sub-cells
• other implementation could work

RoIAlign vs. RoIPool

• RoIPool breaks pixel-to-pixel translation-equivariance

RoIPool coordinate
quantization

😖

😖

😖

original RoI
quantized RoI

see also “What is wrong with convolutional neural nets?”, Geoffrey Hinton, 2017

Equivariance in Mask R-CNN

3. RoIAlign:
3b. Scale-equivariant (and aspect-ratio-equivariant)

Equivariance in Mask R-CNN: Summary

• Translation-equivariant
• FCN features
• FCN mask head
• RoIAlign (pixel-to-pixel behavior)

• Scale-equivariant (and aspect-ratio-equivariant)
• RoIAlign (warping and normalization behavior) + paste-back
• FPN features

Mask R-CNN results on COCO

object
surrounded by
same-category

objects

Result Analysis

Ablation: RoIPool vs. RoIAlign
baseline: ResNet-50-Conv5 backbone, stride=32

mask AP box AP

• huge gain at high IoU,
in case of big stride (32)

Ablation: RoIPool vs. RoIAlign

mask AP box AP

• nice box AP without dilation/upsampling

baseline: ResNet-50-Conv5 backbone, stride=32

Instance Segmentation Results on COCO

• 2 AP better than SOTA w/ R101, without bells and whistles
• 200ms / img

Instance Segmentation Results on COCO

• benefit from better features (ResNeXt [Xie et al. CVPR’17])

Object Detection Results on COCO

bbox detection improved by:
• RoIAlign

Object Detection Results on COCO

bbox detection improved by:
• RoIAlign
• Multi-task training w/ mask

Mask R-CNN results on COCO

disconnected
object

Mask R-CNN results on COCO

small
objects

Mask R-CNN results on CityScapes

Mask R-CNN results on COCO

Failure case: detection/segmentation

missing missing,
false mask

Mask R-CNN results on COCO

Failure case: recognition

not a kite

28x28 soft prediction from Mask R-CNN
(enlarged)

Soft prediction resampled to image coordinates
(bilinear and bicubic interpolation work equally well)

Final prediction (threshold at 0.5)

Validation image with box detection shown in red

28x28 soft prediction

Resized Soft prediction

Final mask

Validation image with box detection shown in red

Mask R-CNN: for Human Keypoint Detection

• 1 keypoint = 1-hot “mask”
• Human pose = 17 masks

• Softmax over spatial locations
• e.g. 562-way softmax on 56x56

• Desire the same equivariances
• translation, scale, aspect ratio

Mask R-CNN frame-by-frame

Conclusion

Mask R-CNN
üGood speed
üGood accuracy
üIntuitive
üEasy to use
üEquivariance matters

Code will be open-sourced as
Facebook AI Research’s Detectron platform

