
Introduction to
Convolutional Networks

Rob Fergus
New York University

Lecture 3

Convolutional Neural Networks

• LeCun et al. 1989
• Neural network with specialized

connectivity structure

Multistage Hubel-Wiesel Architecture

Slide: Y.LeCun

• Stack multiple stages of simple cells / complex cells layers
• Higher stages compute more global, more invariant features
• Classification layer on top

History:
• Neocognitron [Fukushima 1971-1982]
• Convolutional Nets [LeCun 1988-2007]
• HMAX [Poggio 2002-2006]
• Many others….

Overview of Convnets

• Feed-forward:
– Convolve input
– Non-linearity (rectified linear)
– Pooling (local max)

• Supervised
• Train convolutional filters by

back-propagating classification error

Input Image

Convolution (Learned)

Non-linearity

Pooling

LeCun et al. 1998

Feature maps

Convnet Successes

• Handwritten text/digits
– MNIST (0.17% error [Ciresan et al. 2011])
– Arabic & Chinese [Ciresan et al. 2012]

• Simpler recognition benchmarks
– CIFAR-10 (9.3% error [Wan et al. 2013])
– Traffic sign recognition

• 0.56% error vs 1.16% for humans [Ciresan et al. 2011]

• But less good at more complex datasets
– E.g. Caltech-101/256 (few training examples)

Application to ImageNet

[NIPS 2012]

Validation classification

Validation classification

Validation classification

[Deng et al. CVPR 2009]

• ~14 million labeled images, 20k classes

• Images gathered from Internet

• Human labels via Amazon Turk

Goal

Validation classification

[Krizhevsky et al. NIPS 2012]

• Image Recognition
– Pixels à Class Label

Krizhevsky et al. [NIPS2012]

• 7 hidden layers, 650,000 neurons, 60,000,000 parameters
• Trained on 2 GPUs for a week

• Same model as LeCun’98 but:
- Bigger model (8 layers)

- More data (106 vs 103 images)
- GPU implementation (50x speedup over CPU)
- Better regularization (DropOut)

Examples
• From Clarifai.com

Examples
• From Clarifai.com

Examples
• From Clarifai.com

Using Features on Other Datasets

• Train model on ImageNet 2012 training set

• Re-train classifier on new dataset
– Just the top layer (softmax)

• Classify test set of new dataset

0 10 20 30 40 50 60
25

30

35

40

45

50

55

60

65

70

75

Training Images per−class

Ac
cu

ra
cy

 %

Bo etal
Sohn etal

Caltech 256
Zeiler & Fergus, Visualizing and Understanding Convolutional Networks, arXiv 1311.2901, 2013

0 10 20 30 40 50 60
25

30

35

40

45

50

55

60

65

70

75

Training Images per−class

Ac
cu

ra
cy

 %

Our Model
Bo etal
Sohn etal

6 training examples

Caltech 256
Zeiler & Fergus, Visualizing and Understanding Convolutional Networks, arXiv 1311.2901, 2013

The Details

• Operations in each layer

• Architecture

• Training

• Results

Components of Each Layer

Pixels /
Features

Filter with
learned dictionary

Spatial local
max pooling

Non-linearity

Output Features

Defining Convolution

å --=*
lk

lkglnkmfnmgf
,

],[],[],)[(

f

• Let f be the image and g be the kernel. The
output of convolving f with g is denoted f * g.

Source: F. Durand

• Convention: kernel is �flipped�
• MATLAB: conv2 (also imfilter)

Key properties
• Linearity: filter(f1 + f2) = filter(f1) + filter(f2)

• Shift invariance: same behavior regardless of
pixel location: filter(shift(f)) = shift(filter(f))

• Theoretical result: any linear shift-invariant
operator can be represented as a convolution

Annoying details
• What is the size of the output?
• MATLAB: conv2(f, g,shape)
– shape = �full�: output size is sum of sizes of f and g
– shape = �same�: output size is same as f
– shape = �valid�: output size is difference of sizes of f and g

f

gg

gg

f

gg

gg

f

gg

gg

full same valid

ConvNet Architecture

• Exploits two properties of images:

• 1. Dependencies are local
– No need to have each

unit connect to every
pixel

• 2. Spatially stationary statistics
– Translation invariant dependencies
– Only approximately true

Filtering

• Convolution
– Filter is learned during training
– Same filter at each location

Input Feature Map

.

.

.

Filtering

• Local
– Each unit layer above
look at local window

– But no weight tying
Input

Filters

• E.g. face recognition

Filtering

• Tiled
– Filters repeat every n
– More filters than

convolution for given
features

Input

Filters Feature maps

Non-Linearity

• Rectified linear function
– Applied per-pixel
– output = max(0,input)

Input feature map Output feature map

Black = negative; white = positive values Only non-negative values

Non-Linearity

• Other choices:
– Tanh
– Sigmoid: 1/(1+exp(-x))
– PReLU

f (y) = y

y

f (y)

f (y) = y

f (y) = ay

y

f (y)

f (y) = 0

Figure 1. ReLU vs. PReLU. For PReLU, the coefficient of the
negative part is not constant and is adaptively learned.

2. Approach
In this section, we first present the PReLU activation

function (Sec. 2.1). Then we derive our initialization
method for deep rectifier networks (Sec. 2.2). Lastly we
discuss our architecture designs (Sec. 2.3).

2.1. Parametric Rectifiers
We show that replacing the parameter-free ReLU activa-

tion by a learned parametric activation unit improves clas-
sification accuracy1.

Definition

Formally, we consider an activation function defined as:

f(yi) =

(
yi, if yi > 0

aiyi, if yi 0
. (1)

Here yi is the input of the nonlinear activation f on the ith
channel, and ai is a coefficient controlling the slope of the
negative part. The subscript i in ai indicates that we allow
the nonlinear activation to vary on different channels. When
ai = 0, it becomes ReLU; when ai is a learnable parameter,
we refer to Eqn.(1) as Parametric ReLU (PReLU). Figure 1
shows the shapes of ReLU and PReLU. Eqn.(1) is equiva-
lent to f(yi) = max(0, yi) + ai min(0, yi).

If ai is a small and fixed value, PReLU becomes the
Leaky ReLU (LReLU) in [20] (ai = 0.01). The motiva-
tion of LReLU is to avoid zero gradients. Experiments in
[20] show that LReLU has negligible impact on accuracy
compared with ReLU. On the contrary, our method adap-
tively learns the PReLU parameters jointly with the whole
model. We hope for end-to-end training that will lead to
more specialized activations.

PReLU introduces a very small number of extra param-
eters. The number of extra parameters is equal to the total
number of channels, which is negligible when considering
the total number of weights. So we expect no extra risk
of overfitting. We also consider a channel-shared variant:

1Concurrent with our work, Agostinelli et al. [1] also investigated
learning activation functions and showed improvement on other tasks.

f(yi) = max(0, yi) + amin(0, yi) where the coefficient is
shared by all channels of one layer. This variant only intro-
duces a single extra parameter into each layer.

Optimization

PReLU can be trained using backpropagation [17] and opti-
mized simultaneously with other layers. The update formu-
lations of {ai} are simply derived from the chain rule. The
gradient of ai for one layer is:

@E
@ai

=
X

yi

@E
@f(yi)

@f(yi)

@ai
, (2)

where E represents the objective function. The term @E
@f(yi)

is the gradient propagated from the deeper layer. The gradi-
ent of the activation is given by:

@f(yi)

@ai
=

(
0, if yi > 0

yi, if yi 0
. (3)

The summation
P

yi
runs over all positions of the feature

map. For the channel-shared variant, the gradient of a is
@E
@a =

P
i

P
yi

@E
@f(yi)

@f(yi)
@a , where

P
i sums over all chan-

nels of the layer. The time complexity due to PReLU is
negligible for both forward and backward propagation.

We adopt the momentum method when updating ai:

�ai := µ�ai + ✏
@E
@ai

. (4)

Here µ is the momentum and ✏ is the learning rate. It is
worth noticing that we do not use weight decay (l2 regular-
ization) when updating ai. A weight decay tends to push ai
to zero, and thus biases PReLU toward ReLU. Even without
regularization, the learned coefficients rarely have a magni-
tude larger than 1 in our experiments. Further, we do not
constrain the range of ai so that the activation function may
be non-monotonic. We use ai = 0.25 as the initialization
throughout this paper.

Comparison Experiments

We conducted comparisons on a deep but efficient model
with 14 weight layers. The model was studied in [10]
(model E of [10]) and its architecture is described in Ta-
ble 1. We choose this model because it is sufficient for rep-
resenting a category of very deep models, as well as to make
the experiments feasible.

As a baseline, we train this model with ReLU applied
in the convolutional (conv) layers and the first two fully-
connected (fc) layers. The training implementation follows
[10]. The top-1 and top-5 errors are 33.82% and 13.34% on
ImageNet 2012, using 10-view testing (Table 2).

2

f (y) = y

y

f (y)

f (y) = y

f (y) = ay

y

f (y)

f (y) = 0

Figure 1. ReLU vs. PReLU. For PReLU, the coefficient of the
negative part is not constant and is adaptively learned.

2. Approach
In this section, we first present the PReLU activation

function (Sec. 2.1). Then we derive our initialization
method for deep rectifier networks (Sec. 2.2). Lastly we
discuss our architecture designs (Sec. 2.3).

2.1. Parametric Rectifiers
We show that replacing the parameter-free ReLU activa-

tion by a learned parametric activation unit improves clas-
sification accuracy1.

Definition

Formally, we consider an activation function defined as:

f(yi) =

(
yi, if yi > 0

aiyi, if yi 0
. (1)

Here yi is the input of the nonlinear activation f on the ith
channel, and ai is a coefficient controlling the slope of the
negative part. The subscript i in ai indicates that we allow
the nonlinear activation to vary on different channels. When
ai = 0, it becomes ReLU; when ai is a learnable parameter,
we refer to Eqn.(1) as Parametric ReLU (PReLU). Figure 1
shows the shapes of ReLU and PReLU. Eqn.(1) is equiva-
lent to f(yi) = max(0, yi) + ai min(0, yi).

If ai is a small and fixed value, PReLU becomes the
Leaky ReLU (LReLU) in [20] (ai = 0.01). The motiva-
tion of LReLU is to avoid zero gradients. Experiments in
[20] show that LReLU has negligible impact on accuracy
compared with ReLU. On the contrary, our method adap-
tively learns the PReLU parameters jointly with the whole
model. We hope for end-to-end training that will lead to
more specialized activations.

PReLU introduces a very small number of extra param-
eters. The number of extra parameters is equal to the total
number of channels, which is negligible when considering
the total number of weights. So we expect no extra risk
of overfitting. We also consider a channel-shared variant:

1Concurrent with our work, Agostinelli et al. [1] also investigated
learning activation functions and showed improvement on other tasks.

f(yi) = max(0, yi) + amin(0, yi) where the coefficient is
shared by all channels of one layer. This variant only intro-
duces a single extra parameter into each layer.

Optimization

PReLU can be trained using backpropagation [17] and opti-
mized simultaneously with other layers. The update formu-
lations of {ai} are simply derived from the chain rule. The
gradient of ai for one layer is:

@E
@ai

=
X

yi

@E
@f(yi)

@f(yi)

@ai
, (2)

where E represents the objective function. The term @E
@f(yi)

is the gradient propagated from the deeper layer. The gradi-
ent of the activation is given by:

@f(yi)

@ai
=

(
0, if yi > 0

yi, if yi 0
. (3)

The summation
P

yi
runs over all positions of the feature

map. For the channel-shared variant, the gradient of a is
@E
@a =

P
i

P
yi

@E
@f(yi)

@f(yi)
@a , where

P
i sums over all chan-

nels of the layer. The time complexity due to PReLU is
negligible for both forward and backward propagation.

We adopt the momentum method when updating ai:

�ai := µ�ai + ✏
@E
@ai

. (4)

Here µ is the momentum and ✏ is the learning rate. It is
worth noticing that we do not use weight decay (l2 regular-
ization) when updating ai. A weight decay tends to push ai
to zero, and thus biases PReLU toward ReLU. Even without
regularization, the learned coefficients rarely have a magni-
tude larger than 1 in our experiments. Further, we do not
constrain the range of ai so that the activation function may
be non-monotonic. We use ai = 0.25 as the initialization
throughout this paper.

Comparison Experiments

We conducted comparisons on a deep but efficient model
with 14 weight layers. The model was studied in [10]
(model E of [10]) and its architecture is described in Ta-
ble 1. We choose this model because it is sufficient for rep-
resenting a category of very deep models, as well as to make
the experiments feasible.

As a baseline, we train this model with ReLU applied
in the convolutional (conv) layers and the first two fully-
connected (fc) layers. The training implementation follows
[10]. The top-1 and top-5 errors are 33.82% and 13.34% on
ImageNet 2012, using 10-view testing (Table 2).

2

[Delving Deep into Rectifiers:
Surpassing Human-Level
Performance on ImageNet
Classification, Kaiming He et
al. arXiv:1502.01852v1.pdf,
Feb 2015]

Pooling

• Spatial Pooling
– Non-overlapping / overlapping regions
– Sum or max
– Boureau et al. ICML’10 for theoretical analysis

Max

Sum

Pooling

Feature
Map 1

Pooled
Map 1

Feature
Map 4

Pooled
Map 2

• Pooling across feature groups
• Additional form of inter-feature competition
• MaxOut Networks [Goodfellow et al. ICML 2013]

Role of Pooling

• Spatial pooling
– Invariance to small transformations
– Larger receptive fields

(see more of input)

Zeiler, Fergus [arXiv 2013]

Videos from: http://ai.stanford.edu/~quocle/TCNNweb

Visualization technique from
[Le et al. NIPS’10]:

Alternative to Pooling

• Replace pooling with strided convolution
– i.e. filters applied every r pixels (r>1)
– [Striving for Simplicity: the all Convolutional Net,

Spingenberg et al. ICL 2015]

Accepted as a workshop contribution at ICLR 2015

3 EXPERIMENTS

In order to quantify the effect of simplifying the model architecture we perform experiments on three
datasets: CIFAR-10, CIFAR-100 (Krizhevsky & Hinton, 2009) and ILSVRC-2012 ImageNet (Deng
et al., 2009) . Specifically, we use CIFAR-10 to perform an in-depth study of different models, since
a large model on this dataset can be trained with moderate computing costs of ⇡ 10 hours on a
modern GPU. We then test the best model found on CIFAR-10 and CIFAR-100 with and without
augmentations and perform a first preliminary experiment on the ILSVRC-2012 ImageNet dataset.
We performed all experiments using the Caffe (Jia et al., 2014) framework.

3.1 EXPERIMENTAL SETUP

In experiments on CIFAR-10 and CIFAR-100 we use three different base network models which are
intended to reflect current best practices for setting up CNNs for object recognition. Architectures
of these networks are described in Table 1. Starting from model A (the simplest model) the depth
and number of parameters in the network gradually increases to model C. Several things are to be
noted here. First, as described in the table, all base networks we consider use a 1-by-1 convolution at
the top to produce 10 outputs of which we then compute an average over all positions and a softmax
to produce class-probabilities (see Section 2 for the rationale behind this approach). We performed
additional experiments with fully connected layers instead of 1-by-1 convolutions but found these
models to consistently perform 0.5% � 1% worse than their fully convolutional counterparts. This
is in line with similar findings from prior work (Lin et al., 2014). We hence do not report these
numbers here to avoid cluttering the experiments. Second, it can be observed that model B from
the table is a variant of the Network in Network architecture proposed by Lin et al. (2014) in which
only one 1-by-1 convolution is performed after each “normal” convolution layer. Third, model C
replaces all 5⇥ 5 convolutions by simple 3⇥ 3 convolutions. This serves two purposes: 1) it unifies
the architecture to consist only of layers operating on 3 ⇥ 3 spatial neighborhoods of the previous
layer feature map (with occasional subsampling); 2) if max-pooling is replaced by a convolutional
layer, then 3⇥ 3 is the minimum filter size to allow overlapping convolution with stride 2. We also
highlight that model C resembles the very deep models used by Simonyan & Zisserman (2014) in
this years ImageNet competition.

Table 2: Model description of the three networks derived from base model C used for evaluating the
importance of pooling in case of classification on CIFAR-10 and CIFAR-100. The derived models
for base models A and B are built analogously. The higher layers are the same as in Table 1 .

Model

Strided-CNN-C ConvPool-CNN-C All-CNN-C
Input 32⇥ 32 RGB image

3⇥ 3 conv. 96 ReLU 3⇥ 3 conv. 96 ReLU 3⇥ 3 conv. 96 ReLU
3⇥ 3 conv. 96 ReLU 3⇥ 3 conv. 96 ReLU 3⇥ 3 conv. 96 ReLU

with stride r = 2 3⇥ 3 conv. 96 ReLU
3⇥ 3 max-pooling stride 2 3⇥ 3 conv. 96 ReLU

with stride r = 2
3⇥ 3 conv. 192 ReLU 3⇥ 3 conv. 192 ReLU 3⇥ 3 conv. 192 ReLU
3⇥ 3 conv. 192 ReLU 3⇥ 3 conv. 192 ReLU 3⇥ 3 conv. 192 ReLU

with stride r = 2 3⇥ 3 conv. 192 ReLU
3⇥ 3 max-pooling stride 2 3⇥ 3 conv. 192 ReLU

with stride r = 2
...

For each of the base models we then experiment with three additional variants. The additional
(derived) models for base model C are described in in Table 2. The derived models for base models
A and B are built analogously but not shown in the table to avoid cluttering the paper. In general the
additional models for each base model consist of:

• A model in which max-pooling is removed and the stride of the convolution layers pre-
ceding the max-pool layers is increased by 1 (to ensure that the next layer covers the same
spatial region of the input image as before). This is column “Strided-CNN-C” in the table.

4

Accepted as a workshop contribution at ICLR 2015

• A model in which max-pooling is replaced by a convolution layer. This is column “All-
CNN-C” in the table.

• A model in which a dense convolution is placed before each max-pooling layer (the ad-
ditional convolutions have the same kernel size as the respective pooling layer). This is
model “ConvPool-CNN-C” in the table. Experiments with this model are necessary to en-
sure that the effect we measure is not solely due to increasing model size when going from
a “normal” CNN to its “All-CNN” counterpart.

Finally, to test whether a network solely using convolutions also performs well on a larger scale
recognition problem we trained an up-scaled version of ALL-CNN-B on the ILSVRC 2012 part of
the ImageNet database. Although we expect that a larger network using only 3 ⇥ 3 convolutions
and having stride 1 in the first layer (and thus similar in style to Simonyan & Zisserman (2014))
would perform even better on this dataset, training it would take several weeks and could thus not
be completed in time for this manuscript.

3.2 CLASSIFICATION RESULTS

3.2.1 CIFAR-10

Table 3: Comparison between the base and derived models on the CIFAR-10 dataset.

CIFAR-10 classification error

Model Error (%) # parameters
without data augmentation
Model A 12.47% ⇡ 0.9 M
Strided-CNN-A 13.46% ⇡ 0.9 M
ConvPool-CNN-A 10.21% ⇡ 1.28 M
ALL-CNN-A 10.30% ⇡ 1.28 M
Model B 10.20% ⇡ 1 M
Strided-CNN-B 10.98% ⇡ 1 M
ConvPool-CNN-B 9.33% ⇡ 1.35 M
ALL-CNN-B 9.10% ⇡ 1.35 M
Model C 9.74% ⇡ 1.3 M
Strided-CNN-C 10.19% ⇡ 1.3 M
ConvPool-CNN-C 9.31% ⇡ 1.4 M
ALL-CNN-C 9.08% ⇡ 1.4 M

In our first experiment we compared all models from Section 3.1 on the CIFAR-10 dataset without
using any augmentations. All networks were trained using stochastic gradient descent with fixed
momentum of 0.9. The learning rate � was adapted using a schedule S = e1, e2, e3 in which � is
multiplied by a fixed multiplier of 0.1 after e1.e2 and e3 epochs respectively. To keep the amount of
computation necessary to perform our comparison bearable 3 we only treat � as a changeable hyper-
parameter for each method. The learning rate schedule and the total amount of training epochs were
determined in a preliminary experiment using base model A and then fixed for all other experiments.
We used S = [200, 250, 300] and trained all networks for a total of 350 epochs. It should be noted
that this strategy is not guaranteed to result in the best performance for all methods and thus care
must be taken when interpreting the the following results from our experiments. The learning rate �
was individually adapted for each model by searching over the fixed set � 2 [0.25, 0.1, 0.05, 0.01].
In the following we only report the results for the best � for each method. Dropout (Hinton et al.,
2012) was used to regularize all networks. We applied dropout to the input image as well as af-
ter each pooling layer (or after the layer replacing the pooling layer respectively). The dropout
probabilities were 20% for dropping out inputs and 50% otherwise. We also experimented with
additional dropout (i.e. dropout on all layers or only on the 1⇥ 1 convolution layer) which however
did not result in increased accuracy4 . Additionally all models were regularized with weight decay

3Training one network on CIFAR-10 can take up to 10 hours on a modern GPU.
4In the case were dropout of 0.5 is applied to all layers accuracy even dropped, suggesting that the gradients

become too noisy in this case

5

CIFAR-10 classification error

Components of Each Layer

Pixels /
Features

Filter with
learned dictionary

Spatial local
max pooling

Non-linearity

Output
Features

[Optional]
Normalization

across data/features

Normalization

• Lots of different normalization approaches
• https://mlexplained.com/2018/11/30/an-overview-of-normalization-methods-in-deep-learning/

• Basic idea:
• Make mean = 0
• Make standard deviation = 1
• Question: which dimensions?

H
, W

C N

Batch Norm

H
, W

C N

Layer Norm
H

, W

C N

Instance Norm

H
, W

C N

Group Norm

Figure 2. Normalization methods. Each subplot shows a feature map tensor, with N as the batch axis, C as the channel axis, and (H,W)
as the spatial axes. The pixels in blue are normalized by the same mean and variance, computed by aggregating the values of these pixels.

number. ShuffleNet [65] proposes a channel shuffle oper-
ation that permutes the axes of grouped features. These
methods all involve dividing the channel dimension into
groups. Despite the relation to these methods, GN does not
require group convolutions. GN is a generic layer, as we
evaluate in standard ResNets [20].

3. Group Normalization

The channels of visual representations are not entirely
independent. Classical features of SIFT [39], HOG [9],
and GIST [41] are group-wise representations by design,
where each group of channels is constructed by some kind
of histogram. These features are often processed by group-
wise normalization over each histogram or each orientation.
Higher-level features such as VLAD [29] and Fisher Vec-
tors (FV) [44] are also group-wise features where a group
can be thought of as the sub-vector computed with respect
to a cluster.

Analogously, it is not necessary to think of deep neu-
ral network features as unstructured vectors. For example,
for conv1 (the first convolutional layer) of a network, it is
reasonable to expect a filter and its horizontal flipping to
exhibit similar distributions of filter responses on natural
images. If conv1 happens to approximately learn this pair
of filters, or if the horizontal flipping (or other transforma-
tions) is made into the architectures by design [11, 8], then
the corresponding channels of these filters can be normal-
ized together.

The higher-level layers are more abstract and their be-
haviors are not as intuitive. However, in addition to orien-
tations (SIFT [39], HOG [9], or [11, 8]), there are many
factors that could lead to grouping, e.g., frequency, shapes,
illumination, textures. Their coefficients can be interde-
pendent. In fact, a well-accepted computational model
in neuroscience is to normalize across the cell responses
[21, 52, 55, 5], “with various receptive-field centers (cov-
ering the visual field) and with various spatiotemporal fre-
quency tunings” (p183, [21]); this can happen not only in
the primary visual cortex, but also “throughout the visual
system” [5]. Motivated by these works, we propose new
generic group-wise normalization for deep neural networks.

3.1. Formulation

We first describe a general formulation of feature nor-
malization, and then present GN in this formulation. A fam-
ily of feature normalization methods, including BN, LN, IN,
and GN, perform the following computation:

x̂i =
1

�i

(xi � µi). (1)

Here x is the feature computed by a layer, and i is an index.
In the case of 2D images, i = (iN , iC , iH , iW) is a 4D vec-
tor indexing the features in (N,C,H,W) order, where N is
the batch axis, C is the channel axis, and H and W are the
spatial height and width axes.

µ and � in (1) are the mean and standard deviation (std)
computed by:

µi =
1

m

X

k2Si

xk, �i =

s
1

m

X

k2Si

(xk � µi)2 + ✏, (2)

with ✏ as a small constant. Si is the set of pixels in which
the mean and std are computed, and m is the size of this set.
Many types of feature normalization methods mainly differ
in how the set Si is defined (Figure 2), discussed as follows.

In Batch Norm [26], the set Si is defined as:

Si = {k | kC = iC}, (3)

where iC (and kC) denotes the sub-index of i (and k) along
the C axis. This means that the pixels sharing the same
channel index are normalized together, i.e., for each chan-
nel, BN computes µ and � along the (N,H,W) axes. In
Layer Norm [3], the set is:

Si = {k | kN = iN}, (4)

meaning that LN computes µ and � along the (C,H,W)
axes for each sample. In Instance Norm [61], the set is:

Si = {k | kN = iN , kC = iC}. (5)

meaning that IN computes µ and � along the (H,W) axes
for each sample and each channel. The relations among BN,
LN, and IN are in Figure 2.

3

https://arxiv.org/pdf/1803.08494.pdf

https://mlexplained.com/2018/11/30/an-overview-of-normalization-methods-in-deep-learning/

Normalization across Data

• Batch Normalization
[Batch Normalization: Accelerating Deep Network Training by Reducing Internal
Covariate Shift, Sergey Ioffe, Christian Szegedy, arXiv:1502.03167]

vector, and X be the set of these inputs over the training
data set. The normalization can then be written as a trans-
formation

x̂ = Norm(x,X)

which depends not only on the given training example x
but on all examples X – each of which depends on Θ if
x is generated by another layer. For backpropagation, we
would need to compute the Jacobians

∂Norm(x,X)

∂x
and

∂Norm(x,X)

∂X
;

ignoring the latter term would lead to the explosion de-
scribed above. Within this framework, whitening the layer
inputs is expensive, as it requires computing the covari-
ance matrix Cov[x] = Ex∈X [xxT] − E[x]E[x]T and its
inverse square root, to produce the whitened activations
Cov[x]−1/2(x − E[x]), as well as the derivatives of these
transforms for backpropagation. This motivates us to seek
an alternative that performs input normalization in a way
that is differentiable and does not require the analysis of
the entire training set after every parameter update.
Some of the previous approaches (e.g.

(Lyu & Simoncelli, 2008)) use statistics computed
over a single training example, or, in the case of image
networks, over different feature maps at a given location.
However, this changes the representation ability of a
network by discarding the absolute scale of activations.
We want to a preserve the information in the network, by
normalizing the activations in a training example relative
to the statistics of the entire training data.

3 Normalization via Mini-Batch
Statistics

Since the full whitening of each layer’s inputs is costly
and not everywhere differentiable, we make two neces-
sary simplifications. The first is that instead of whitening
the features in layer inputs and outputs jointly, we will
normalize each scalar feature independently, by making it
have the mean of zero and the variance of 1. For a layer
with d-dimensional input x = (x(1) . . . x(d)), we will nor-
malize each dimension

x̂(k) =
x(k) − E[x(k)]√

Var[x(k)]

where the expectation and variance are computed over the
training data set. As shown in (LeCun et al., 1998b), such
normalization speeds up convergence, even when the fea-
tures are not decorrelated.
Note that simply normalizing each input of a layer may

change what the layer can represent. For instance, nor-
malizing the inputs of a sigmoid would constrain them to
the linear regime of the nonlinearity. To address this, we
make sure that the transformation inserted in the network
can represent the identity transform. To accomplish this,

we introduce, for each activation x(k), a pair of parameters
γ(k),β(k), which scale and shift the normalized value:

y(k) = γ(k)x̂(k) + β(k).

These parameters are learned along with the original
model parameters, and restore the representation power
of the network. Indeed, by setting γ(k) =

√
Var[x(k)] and

β(k) = E[x(k)], we could recover the original activations,
if that were the optimal thing to do.
In the batch setting where each training step is based on

the entire training set, we would use the whole set to nor-
malize activations. However, this is impractical when us-
ing stochastic optimization. Therefore, we make the sec-
ond simplification: since we use mini-batches in stochas-
tic gradient training, each mini-batch produces estimates
of the mean and variance of each activation. This way, the
statistics used for normalization can fully participate in
the gradient backpropagation. Note that the use of mini-
batches is enabled by computation of per-dimension vari-
ances rather than joint covariances; in the joint case, reg-
ularization would be required since the mini-batch size is
likely to be smaller than the number of activations being
whitened, resulting in singular covariance matrices.
Consider a mini-batch B of size m. Since the normal-

ization is applied to each activation independently, let us
focus on a particular activation x(k) and omit k for clarity.
We havem values of this activation in the mini-batch,

B = {x1...m}.

Let the normalized values be x̂1...m, and their linear trans-
formations be y1...m. We refer to the transform

BNγ,β : x1...m → y1...m

as the Batch Normalizing Transform. We present the BN
Transform in Algorithm 1. In the algorithm, ϵ is a constant
added to the mini-batch variance for numerical stability.

Input: Values of x over a mini-batch: B = {x1...m};
Parameters to be learned: γ, β

Output: {yi = BNγ,β(xi)}

µB ←
1

m

m∑

i=1

xi // mini-batch mean

σ2
B ←

1

m

m∑

i=1

(xi − µB)
2 // mini-batch variance

x̂i ←
xi − µB√
σ2
B
+ ϵ

// normalize

yi ← γx̂i + β ≡ BNγ,β(xi) // scale and shift

Algorithm 1: Batch Normalizing Transform, applied to
activation x over a mini-batch.

The BN transform can be added to a network to manip-
ulate any activation. In the notation y = BNγ,β(x), we

3

5M 10M 15M 20M 25M 30M
0.4

0.5

0.6

0.7

0.8

Inception
BN−Baseline
BN−x5
BN−x30
BN−x5−Sigmoid
Steps to match Inception

Figure 2: Single crop validation accuracy of Inception
and its batch-normalized variants, vs. the number of
training steps.

Model Steps to 72.2% Max accuracy
Inception 31.0 · 106 72.2%
BN-Baseline 13.3 · 106 72.7%
BN-x5 2.1 · 106 73.0%
BN-x30 2.7 · 106 74.8%

BN-x5-Sigmoid 69.8%

Figure 3: For Inception and the batch-normalized
variants, the number of training steps required to
reach the maximum accuracy of Inception (72.2%),
and the maximum accuracy achieved by the net-
work.

4.2.2 Single-Network Classification

We evaluated the following networks, all trained on the
LSVRC2012 training data, and tested on the validation
data:
Inception: the network described at the beginning of

Section 4.2, trained with the initial learning rate of 0.0015.
BN-Baseline: Same as Inception with Batch Normal-

ization before each nonlinearity.
BN-x5: Inception with Batch Normalization and the

modifications in Sec. 4.2.1. The initial learning rate was
increased by a factor of 5, to 0.0075. The same learning
rate increase with original Inception caused the model pa-
rameters to reach machine infinity.
BN-x30: Like BN-x5, but with the initial learning rate

0.045 (30 times that of Inception).
BN-x5-Sigmoid: Like BN-x5, but with sigmoid non-

linearity g(t) = 1
1+exp(−x) instead of ReLU. We also at-

tempted to train the original Inception with sigmoid, but
the model remained at the accuracy equivalent to chance.
In Figure 2, we show the validation accuracy of the

networks, as a function of the number of training steps.
Inception reached the accuracy of 72.2% after 31 · 106
training steps. The Figure 3 shows, for each network,
the number of training steps required to reach the same
72.2% accuracy, as well as the maximum validation accu-
racy reached by the network and the number of steps to
reach it.
By only using Batch Normalization (BN-Baseline), we

match the accuracy of Inception in less than half the num-
ber of training steps. By applying the modifications in
Sec. 4.2.1, we significantly increase the training speed of
the network. BN-x5 needs 14 times fewer steps than In-
ception to reach the 72.2% accuracy. Interestingly, in-
creasing the learning rate further (BN-x30) causes the
model to train somewhat slower initially, but allows it to
reach a higher final accuracy. It reaches 74.8% after 6·106
steps, i.e. 5 times fewer steps than required by Inception
to reach 72.2%.
We also verified that the reduction in internal covari-

ate shift allows deep networks with Batch Normalization

to be trained when sigmoid is used as the nonlinearity,
despite the well-known difficulty of training such net-
works. Indeed, BN-x5-Sigmoid achieves the accuracy of
69.8%. Without Batch Normalization, Inception with sig-
moid never achieves better than 1/1000 accuracy.

4.2.3 Ensemble Classification

The current reported best results on the ImageNet Large
Scale Visual Recognition Competition are reached by the
Deep Image ensemble of traditional models (Wu et al.,
2015) and the ensemble model of (He et al., 2015). The
latter reports the top-5 error of 4.94%, as evaluated by the
ILSVRC server. Here we report a top-5 validation error of
4.9%, and test error of 4.82% (according to the ILSVRC
server). This improves upon the previous best result, and
exceeds the estimated accuracy of human raters according
to (Russakovsky et al., 2014).
For our ensemble, we used 6 networks. Each was based

on BN-x30, modified via some of the following: increased
initial weights in the convolutional layers; using Dropout
(with the Dropout probability of 5% or 10%, vs. 40%
for the original Inception); and using non-convolutional,
per-activation Batch Normalization with last hidden lay-
ers of the model. Each network achieved its maximum
accuracy after about 6 · 106 training steps. The ensemble
prediction was based on the arithmetic average of class
probabilities predicted by the constituent networks. The
details of ensemble and multicrop inference are similar to
(Szegedy et al., 2014).
We demonstrate in Fig. 4 that batch normalization al-

lows us to set new state-of-the-art by a healthy margin on
the ImageNet classification challenge benchmarks.

5 Conclusion
We have presented a novel mechanism for dramatically
accelerating the training of deep networks. It is based on
the premise that covariate shift, which is known to com-
plicate the training of machine learning systems, also ap-

7

Normalization

• But batch normalization has issues, e.g.
when batch size is small or 1

H
, W

C N

Batch Norm

H
, W

C N

Layer Norm

H
, W

C N

Instance Norm

H
, W

C N

Group Norm

Figure 2. Normalization methods. Each subplot shows a feature map tensor, with N as the batch axis, C as the channel axis, and (H,W)
as the spatial axes. The pixels in blue are normalized by the same mean and variance, computed by aggregating the values of these pixels.

number. ShuffleNet [65] proposes a channel shuffle oper-
ation that permutes the axes of grouped features. These
methods all involve dividing the channel dimension into
groups. Despite the relation to these methods, GN does not
require group convolutions. GN is a generic layer, as we
evaluate in standard ResNets [20].

3. Group Normalization

The channels of visual representations are not entirely
independent. Classical features of SIFT [39], HOG [9],
and GIST [41] are group-wise representations by design,
where each group of channels is constructed by some kind
of histogram. These features are often processed by group-
wise normalization over each histogram or each orientation.
Higher-level features such as VLAD [29] and Fisher Vec-
tors (FV) [44] are also group-wise features where a group
can be thought of as the sub-vector computed with respect
to a cluster.

Analogously, it is not necessary to think of deep neu-
ral network features as unstructured vectors. For example,
for conv1 (the first convolutional layer) of a network, it is
reasonable to expect a filter and its horizontal flipping to
exhibit similar distributions of filter responses on natural
images. If conv1 happens to approximately learn this pair
of filters, or if the horizontal flipping (or other transforma-
tions) is made into the architectures by design [11, 8], then
the corresponding channels of these filters can be normal-
ized together.

The higher-level layers are more abstract and their be-
haviors are not as intuitive. However, in addition to orien-
tations (SIFT [39], HOG [9], or [11, 8]), there are many
factors that could lead to grouping, e.g., frequency, shapes,
illumination, textures. Their coefficients can be interde-
pendent. In fact, a well-accepted computational model
in neuroscience is to normalize across the cell responses
[21, 52, 55, 5], “with various receptive-field centers (cov-
ering the visual field) and with various spatiotemporal fre-
quency tunings” (p183, [21]); this can happen not only in
the primary visual cortex, but also “throughout the visual
system” [5]. Motivated by these works, we propose new
generic group-wise normalization for deep neural networks.

3.1. Formulation

We first describe a general formulation of feature nor-
malization, and then present GN in this formulation. A fam-
ily of feature normalization methods, including BN, LN, IN,
and GN, perform the following computation:

x̂i =
1

�i

(xi � µi). (1)

Here x is the feature computed by a layer, and i is an index.
In the case of 2D images, i = (iN , iC , iH , iW) is a 4D vec-
tor indexing the features in (N,C,H,W) order, where N is
the batch axis, C is the channel axis, and H and W are the
spatial height and width axes.

µ and � in (1) are the mean and standard deviation (std)
computed by:

µi =
1

m

X

k2Si

xk, �i =

s
1

m

X

k2Si

(xk � µi)2 + ✏, (2)

with ✏ as a small constant. Si is the set of pixels in which
the mean and std are computed, and m is the size of this set.
Many types of feature normalization methods mainly differ
in how the set Si is defined (Figure 2), discussed as follows.

In Batch Norm [26], the set Si is defined as:

Si = {k | kC = iC}, (3)

where iC (and kC) denotes the sub-index of i (and k) along
the C axis. This means that the pixels sharing the same
channel index are normalized together, i.e., for each chan-
nel, BN computes µ and � along the (N,H,W) axes. In
Layer Norm [3], the set is:

Si = {k | kN = iN}, (4)

meaning that LN computes µ and � along the (C,H,W)
axes for each sample. In Instance Norm [61], the set is:

Si = {k | kN = iN , kC = iC}. (5)

meaning that IN computes µ and � along the (H,W) axes
for each sample and each channel. The relations among BN,
LN, and IN are in Figure 2.

3

0 10 20 30 40 50 60 70 80 90 100
epochs

20

25

30

35

40

45

50

55

60

er
ro

r (
%

)

train error

Batch Norm (BN)
Layer Norm (LN)
Instance Norm (IN)
Group Norm (GN)

BN
LN

IN

GN

0 10 20 30 40 50 60 70 80 90 100
epochs

20

25

30

35

40

45

50

55

60

er
ro

r (
%

)

val error

Batch Norm (BN)
Layer Norm (LN)
Instance Norm (IN)
Group Norm (GN)

BN

LN

IN

GN

Figure 4. Comparison of error curves with a batch size of 32 images/GPU. We show the ImageNet training error (left) and validation
error (right) vs. numbers of training epochs. The model is ResNet-50.

0 10 20 30 40 50 60 70 80 90 100
epochs

20

25

30

35

40

45

50

55

60
er

ro
r (

%
)

Batch Norm (BN)

BN, 32 ims/gpu
BN, 16 ims/gpu
BN, 8 ims/gpu
BN, 4 ims/gpu
BN, 2 ims/gpu

0 10 20 30 40 50 60 70 80 90 100
epochs

20

25

30

35

40

45

50

55

60

er
ro

r (
%

)

Group Norm (GN)

GN, 32 ims/gpu
GN, 16 ims/gpu
GN, 8 ims/gpu
GN, 4 ims/gpu
GN, 2 ims/gpu

Figure 5. Sensitivity to batch sizes: ResNet-50’s validation error of BN (left) and GN (right) trained with 32, 16, 8, 4, and 2 images/GPU.

BN LN IN GN
val error 23.6 25.3 28.4 24.1

4 (vs. BN) - 1.7 4.8 0.5

Table 1. Comparison of error rates (%) of ResNet-50 in the Ima-
geNet validation set, trained with a batch size of 32 images/GPU.
The error curves are in Figure 4.

comparing with BN. This is an encouraging result, as it sug-
gests that normalizing along all channels (as done by LN) of
a convolutional network is reasonably good. IN also makes
the model converge, but is 4.8% worse than BN.3

In this regime where BN works well, GN is able to ap-
proach BN’s accuracy, with a decent degradation of 0.5% in
the validation set. Actually, Figure 4 (left) shows that GN
has lower training error than BN, indicating that GN is ef-
fective for easing optimization. The slightly higher valida-
tion error of GN implies that GN loses some regularization
ability of BN. This is understandable, because BN’s mean
and variance computation introduces uncertainty caused by
the stochastic batch sampling, which helps regularization
[26]. This uncertainty is missing in GN (and LN/IN). But
it is possible that GN combined with a suitable regularizer
will improve results. This can be a future research topic.

3For completeness, we have also trained ResNet-50 with WN [51],
which is filter (instead of feature) normalization. WN’s result is 28.2%.

batch size 32 16 8 4 2
BN 23.6 23.7 24.8 27.3 34.7
GN 24.1 24.2 24.0 24.2 24.1

4 0.5 0.5 -0.8 -3.1 -10.6

Table 2. Sensitivity to batch sizes. We show ResNet-50’s vali-
dation error (%) in ImageNet. The last row shows the differences
between BN and GN. The error curves are in Figure 5. This table
is visualized in Figure 1.

Small batch sizes. Although BN benefits from the stochas-
ticity under some situations, its error increases when the
batch size becomes smaller and the uncertainty gets bigger.
We show this in Figure 1, Figure 5, and Table 2.

We evaluate batch sizes of 32, 16, 8, 4, 2 images per
GPU. In all cases, the BN mean and variance are computed
within each GPU and not synchronized. All models are
trained in 8 GPUs. In this set of experiments, we adopt the
linear learning rate scaling rule [31, 4, 16] to adapt to batch
size changes — we use a learning rate of 0.1 [20] for the
batch size of 32, and 0.1N/32 for a batch size of N . This
linear scaling rule works well for BN if the total batch size
changes (by changing the number of GPUs) but the per-
GPU batch size does not change [16]. We keep the same
number of training epochs for all cases (Figure 5, x-axis).
All other hyper-parameters are unchanged.

5

https://arxiv.org/pdf/1803.08494.pdf

Normalization

• But batch normalization has issues, e.g.
when batch size is small or 1

H
, W

C N

Batch Norm

H
, W

C N

Layer Norm

H
, W

C N

Instance Norm

H
, W

C N

Group Norm

Figure 2. Normalization methods. Each subplot shows a feature map tensor, with N as the batch axis, C as the channel axis, and (H,W)
as the spatial axes. The pixels in blue are normalized by the same mean and variance, computed by aggregating the values of these pixels.

number. ShuffleNet [65] proposes a channel shuffle oper-
ation that permutes the axes of grouped features. These
methods all involve dividing the channel dimension into
groups. Despite the relation to these methods, GN does not
require group convolutions. GN is a generic layer, as we
evaluate in standard ResNets [20].

3. Group Normalization

The channels of visual representations are not entirely
independent. Classical features of SIFT [39], HOG [9],
and GIST [41] are group-wise representations by design,
where each group of channels is constructed by some kind
of histogram. These features are often processed by group-
wise normalization over each histogram or each orientation.
Higher-level features such as VLAD [29] and Fisher Vec-
tors (FV) [44] are also group-wise features where a group
can be thought of as the sub-vector computed with respect
to a cluster.

Analogously, it is not necessary to think of deep neu-
ral network features as unstructured vectors. For example,
for conv1 (the first convolutional layer) of a network, it is
reasonable to expect a filter and its horizontal flipping to
exhibit similar distributions of filter responses on natural
images. If conv1 happens to approximately learn this pair
of filters, or if the horizontal flipping (or other transforma-
tions) is made into the architectures by design [11, 8], then
the corresponding channels of these filters can be normal-
ized together.

The higher-level layers are more abstract and their be-
haviors are not as intuitive. However, in addition to orien-
tations (SIFT [39], HOG [9], or [11, 8]), there are many
factors that could lead to grouping, e.g., frequency, shapes,
illumination, textures. Their coefficients can be interde-
pendent. In fact, a well-accepted computational model
in neuroscience is to normalize across the cell responses
[21, 52, 55, 5], “with various receptive-field centers (cov-
ering the visual field) and with various spatiotemporal fre-
quency tunings” (p183, [21]); this can happen not only in
the primary visual cortex, but also “throughout the visual
system” [5]. Motivated by these works, we propose new
generic group-wise normalization for deep neural networks.

3.1. Formulation

We first describe a general formulation of feature nor-
malization, and then present GN in this formulation. A fam-
ily of feature normalization methods, including BN, LN, IN,
and GN, perform the following computation:

x̂i =
1

�i

(xi � µi). (1)

Here x is the feature computed by a layer, and i is an index.
In the case of 2D images, i = (iN , iC , iH , iW) is a 4D vec-
tor indexing the features in (N,C,H,W) order, where N is
the batch axis, C is the channel axis, and H and W are the
spatial height and width axes.

µ and � in (1) are the mean and standard deviation (std)
computed by:

µi =
1

m

X

k2Si

xk, �i =

s
1

m

X

k2Si

(xk � µi)2 + ✏, (2)

with ✏ as a small constant. Si is the set of pixels in which
the mean and std are computed, and m is the size of this set.
Many types of feature normalization methods mainly differ
in how the set Si is defined (Figure 2), discussed as follows.

In Batch Norm [26], the set Si is defined as:

Si = {k | kC = iC}, (3)

where iC (and kC) denotes the sub-index of i (and k) along
the C axis. This means that the pixels sharing the same
channel index are normalized together, i.e., for each chan-
nel, BN computes µ and � along the (N,H,W) axes. In
Layer Norm [3], the set is:

Si = {k | kN = iN}, (4)

meaning that LN computes µ and � along the (C,H,W)
axes for each sample. In Instance Norm [61], the set is:

Si = {k | kN = iN , kC = iC}. (5)

meaning that IN computes µ and � along the (H,W) axes
for each sample and each channel. The relations among BN,
LN, and IN are in Figure 2.

3

0 10 20 30 40 50 60 70 80 90 100
epochs

20

25

30

35

40

45

50

55

60

er
ro

r (
%

)

train error

Batch Norm (BN)
Layer Norm (LN)
Instance Norm (IN)
Group Norm (GN)

BN
LN

IN

GN

0 10 20 30 40 50 60 70 80 90 100
epochs

20

25

30

35

40

45

50

55

60

er
ro

r (
%

)

val error

Batch Norm (BN)
Layer Norm (LN)
Instance Norm (IN)
Group Norm (GN)

BN

LN

IN

GN

Figure 4. Comparison of error curves with a batch size of 32 images/GPU. We show the ImageNet training error (left) and validation
error (right) vs. numbers of training epochs. The model is ResNet-50.

0 10 20 30 40 50 60 70 80 90 100
epochs

20

25

30

35

40

45

50

55

60
er

ro
r (

%
)

Batch Norm (BN)

BN, 32 ims/gpu
BN, 16 ims/gpu
BN, 8 ims/gpu
BN, 4 ims/gpu
BN, 2 ims/gpu

0 10 20 30 40 50 60 70 80 90 100
epochs

20

25

30

35

40

45

50

55

60

er
ro

r (
%

)

Group Norm (GN)

GN, 32 ims/gpu
GN, 16 ims/gpu
GN, 8 ims/gpu
GN, 4 ims/gpu
GN, 2 ims/gpu

Figure 5. Sensitivity to batch sizes: ResNet-50’s validation error of BN (left) and GN (right) trained with 32, 16, 8, 4, and 2 images/GPU.

BN LN IN GN
val error 23.6 25.3 28.4 24.1

4 (vs. BN) - 1.7 4.8 0.5

Table 1. Comparison of error rates (%) of ResNet-50 in the Ima-
geNet validation set, trained with a batch size of 32 images/GPU.
The error curves are in Figure 4.

comparing with BN. This is an encouraging result, as it sug-
gests that normalizing along all channels (as done by LN) of
a convolutional network is reasonably good. IN also makes
the model converge, but is 4.8% worse than BN.3

In this regime where BN works well, GN is able to ap-
proach BN’s accuracy, with a decent degradation of 0.5% in
the validation set. Actually, Figure 4 (left) shows that GN
has lower training error than BN, indicating that GN is ef-
fective for easing optimization. The slightly higher valida-
tion error of GN implies that GN loses some regularization
ability of BN. This is understandable, because BN’s mean
and variance computation introduces uncertainty caused by
the stochastic batch sampling, which helps regularization
[26]. This uncertainty is missing in GN (and LN/IN). But
it is possible that GN combined with a suitable regularizer
will improve results. This can be a future research topic.

3For completeness, we have also trained ResNet-50 with WN [51],
which is filter (instead of feature) normalization. WN’s result is 28.2%.

batch size 32 16 8 4 2
BN 23.6 23.7 24.8 27.3 34.7
GN 24.1 24.2 24.0 24.2 24.1

4 0.5 0.5 -0.8 -3.1 -10.6

Table 2. Sensitivity to batch sizes. We show ResNet-50’s vali-
dation error (%) in ImageNet. The last row shows the differences
between BN and GN. The error curves are in Figure 5. This table
is visualized in Figure 1.

Small batch sizes. Although BN benefits from the stochas-
ticity under some situations, its error increases when the
batch size becomes smaller and the uncertainty gets bigger.
We show this in Figure 1, Figure 5, and Table 2.

We evaluate batch sizes of 32, 16, 8, 4, 2 images per
GPU. In all cases, the BN mean and variance are computed
within each GPU and not synchronized. All models are
trained in 8 GPUs. In this set of experiments, we adopt the
linear learning rate scaling rule [31, 4, 16] to adapt to batch
size changes — we use a learning rate of 0.1 [20] for the
batch size of 32, and 0.1N/32 for a batch size of N . This
linear scaling rule works well for BN if the total batch size
changes (by changing the number of GPUs) but the per-
GPU batch size does not change [16]. We keep the same
number of training epochs for all cases (Figure 5, x-axis).
All other hyper-parameters are unchanged.

5

https://arxiv.org/pdf/1803.08494.pdf

Normalization

• Instance Norm, Layer Norm, Group Norm

H
, W

C N

Instance Norm

H
, W

C N

Group Norm

Figure 2. Normalization methods. Each subplot shows a feature map tensor, with N as the batch axis, C as the channel axis, and (H,W)
as the spatial axes. The pixels in blue are normalized by the same mean and variance, computed by aggregating the values of these pixels.

number. ShuffleNet [65] proposes a channel shuffle oper-
ation that permutes the axes of grouped features. These
methods all involve dividing the channel dimension into
groups. Despite the relation to these methods, GN does not
require group convolutions. GN is a generic layer, as we
evaluate in standard ResNets [20].

3. Group Normalization

The channels of visual representations are not entirely
independent. Classical features of SIFT [39], HOG [9],
and GIST [41] are group-wise representations by design,
where each group of channels is constructed by some kind
of histogram. These features are often processed by group-
wise normalization over each histogram or each orientation.
Higher-level features such as VLAD [29] and Fisher Vec-
tors (FV) [44] are also group-wise features where a group
can be thought of as the sub-vector computed with respect
to a cluster.

Analogously, it is not necessary to think of deep neu-
ral network features as unstructured vectors. For example,
for conv1 (the first convolutional layer) of a network, it is
reasonable to expect a filter and its horizontal flipping to
exhibit similar distributions of filter responses on natural
images. If conv1 happens to approximately learn this pair
of filters, or if the horizontal flipping (or other transforma-
tions) is made into the architectures by design [11, 8], then
the corresponding channels of these filters can be normal-
ized together.

The higher-level layers are more abstract and their be-
haviors are not as intuitive. However, in addition to orien-
tations (SIFT [39], HOG [9], or [11, 8]), there are many
factors that could lead to grouping, e.g., frequency, shapes,
illumination, textures. Their coefficients can be interde-
pendent. In fact, a well-accepted computational model
in neuroscience is to normalize across the cell responses
[21, 52, 55, 5], “with various receptive-field centers (cov-
ering the visual field) and with various spatiotemporal fre-
quency tunings” (p183, [21]); this can happen not only in
the primary visual cortex, but also “throughout the visual
system” [5]. Motivated by these works, we propose new
generic group-wise normalization for deep neural networks.

3.1. Formulation

We first describe a general formulation of feature nor-
malization, and then present GN in this formulation. A fam-
ily of feature normalization methods, including BN, LN, IN,
and GN, perform the following computation:

x̂i =
1

�i

(xi � µi). (1)

Here x is the feature computed by a layer, and i is an index.
In the case of 2D images, i = (iN , iC , iH , iW) is a 4D vec-
tor indexing the features in (N,C,H,W) order, where N is
the batch axis, C is the channel axis, and H and W are the
spatial height and width axes.

µ and � in (1) are the mean and standard deviation (std)
computed by:

µi =
1

m

X

k2Si

xk, �i =

s
1

m

X

k2Si

(xk � µi)2 + ✏, (2)

with ✏ as a small constant. Si is the set of pixels in which
the mean and std are computed, and m is the size of this set.
Many types of feature normalization methods mainly differ
in how the set Si is defined (Figure 2), discussed as follows.

In Batch Norm [26], the set Si is defined as:

Si = {k | kC = iC}, (3)

where iC (and kC) denotes the sub-index of i (and k) along
the C axis. This means that the pixels sharing the same
channel index are normalized together, i.e., for each chan-
nel, BN computes µ and � along the (N,H,W) axes. In
Layer Norm [3], the set is:

Si = {k | kN = iN}, (4)

meaning that LN computes µ and � along the (C,H,W)
axes for each sample. In Instance Norm [61], the set is:

Si = {k | kN = iN , kC = iC}. (5)

meaning that IN computes µ and � along the (H,W) axes
for each sample and each channel. The relations among BN,
LN, and IN are in Figure 2.

3

https://arxiv.org/pdf/1803.08494.pdf

0 10 20 30 40 50 60 70 80 90 100
epochs

20

25

30

35

40

45

50

55

60

er
ro

r (
%

)

train error

Batch Norm (BN)
Layer Norm (LN)
Instance Norm (IN)
Group Norm (GN)

BN
LN

IN

GN

0 10 20 30 40 50 60 70 80 90 100
epochs

20

25

30

35

40

45

50

55

60

er
ro

r (
%

)

val error

Batch Norm (BN)
Layer Norm (LN)
Instance Norm (IN)
Group Norm (GN)

BN

LN

IN

GN

Figure 4. Comparison of error curves with a batch size of 32 images/GPU. We show the ImageNet training error (left) and validation
error (right) vs. numbers of training epochs. The model is ResNet-50.

0 10 20 30 40 50 60 70 80 90 100
epochs

20

25

30

35

40

45

50

55

60

er
ro

r (
%

)

Batch Norm (BN)

BN, 32 ims/gpu
BN, 16 ims/gpu
BN, 8 ims/gpu
BN, 4 ims/gpu
BN, 2 ims/gpu

0 10 20 30 40 50 60 70 80 90 100
epochs

20

25

30

35

40

45

50

55

60

er
ro

r (
%

)

Group Norm (GN)

GN, 32 ims/gpu
GN, 16 ims/gpu
GN, 8 ims/gpu
GN, 4 ims/gpu
GN, 2 ims/gpu

Figure 5. Sensitivity to batch sizes: ResNet-50’s validation error of BN (left) and GN (right) trained with 32, 16, 8, 4, and 2 images/GPU.

BN LN IN GN
val error 23.6 25.3 28.4 24.1

4 (vs. BN) - 1.7 4.8 0.5

Table 1. Comparison of error rates (%) of ResNet-50 in the Ima-
geNet validation set, trained with a batch size of 32 images/GPU.
The error curves are in Figure 4.

comparing with BN. This is an encouraging result, as it sug-
gests that normalizing along all channels (as done by LN) of
a convolutional network is reasonably good. IN also makes
the model converge, but is 4.8% worse than BN.3

In this regime where BN works well, GN is able to ap-
proach BN’s accuracy, with a decent degradation of 0.5% in
the validation set. Actually, Figure 4 (left) shows that GN
has lower training error than BN, indicating that GN is ef-
fective for easing optimization. The slightly higher valida-
tion error of GN implies that GN loses some regularization
ability of BN. This is understandable, because BN’s mean
and variance computation introduces uncertainty caused by
the stochastic batch sampling, which helps regularization
[26]. This uncertainty is missing in GN (and LN/IN). But
it is possible that GN combined with a suitable regularizer
will improve results. This can be a future research topic.

3For completeness, we have also trained ResNet-50 with WN [51],
which is filter (instead of feature) normalization. WN’s result is 28.2%.

batch size 32 16 8 4 2
BN 23.6 23.7 24.8 27.3 34.7
GN 24.1 24.2 24.0 24.2 24.1

4 0.5 0.5 -0.8 -3.1 -10.6

Table 2. Sensitivity to batch sizes. We show ResNet-50’s vali-
dation error (%) in ImageNet. The last row shows the differences
between BN and GN. The error curves are in Figure 5. This table
is visualized in Figure 1.

Small batch sizes. Although BN benefits from the stochas-
ticity under some situations, its error increases when the
batch size becomes smaller and the uncertainty gets bigger.
We show this in Figure 1, Figure 5, and Table 2.

We evaluate batch sizes of 32, 16, 8, 4, 2 images per
GPU. In all cases, the BN mean and variance are computed
within each GPU and not synchronized. All models are
trained in 8 GPUs. In this set of experiments, we adopt the
linear learning rate scaling rule [31, 4, 16] to adapt to batch
size changes — we use a learning rate of 0.1 [20] for the
batch size of 32, and 0.1N/32 for a batch size of N . This
linear scaling rule works well for BN if the total batch size
changes (by changing the number of GPUs) but the per-
GPU batch size does not change [16]. We keep the same
number of training epochs for all cases (Figure 5, x-axis).
All other hyper-parameters are unchanged.

5

H
, W

C N

Batch Norm

H
, W

C N

Layer Norm

Figure 2. Normalization methods. Each subplot shows a feature map tensor, with N as the batch axis, C as the channel axis, and (H,W)
as the spatial axes. The pixels in blue are normalized by the same mean and variance, computed by aggregating the values of these pixels.

number. ShuffleNet [65] proposes a channel shuffle oper-
ation that permutes the axes of grouped features. These
methods all involve dividing the channel dimension into
groups. Despite the relation to these methods, GN does not
require group convolutions. GN is a generic layer, as we
evaluate in standard ResNets [20].

3. Group Normalization

The channels of visual representations are not entirely
independent. Classical features of SIFT [39], HOG [9],
and GIST [41] are group-wise representations by design,
where each group of channels is constructed by some kind
of histogram. These features are often processed by group-
wise normalization over each histogram or each orientation.
Higher-level features such as VLAD [29] and Fisher Vec-
tors (FV) [44] are also group-wise features where a group
can be thought of as the sub-vector computed with respect
to a cluster.

Analogously, it is not necessary to think of deep neu-
ral network features as unstructured vectors. For example,
for conv1 (the first convolutional layer) of a network, it is
reasonable to expect a filter and its horizontal flipping to
exhibit similar distributions of filter responses on natural
images. If conv1 happens to approximately learn this pair
of filters, or if the horizontal flipping (or other transforma-
tions) is made into the architectures by design [11, 8], then
the corresponding channels of these filters can be normal-
ized together.

The higher-level layers are more abstract and their be-
haviors are not as intuitive. However, in addition to orien-
tations (SIFT [39], HOG [9], or [11, 8]), there are many
factors that could lead to grouping, e.g., frequency, shapes,
illumination, textures. Their coefficients can be interde-
pendent. In fact, a well-accepted computational model
in neuroscience is to normalize across the cell responses
[21, 52, 55, 5], “with various receptive-field centers (cov-
ering the visual field) and with various spatiotemporal fre-
quency tunings” (p183, [21]); this can happen not only in
the primary visual cortex, but also “throughout the visual
system” [5]. Motivated by these works, we propose new
generic group-wise normalization for deep neural networks.

3.1. Formulation

We first describe a general formulation of feature nor-
malization, and then present GN in this formulation. A fam-
ily of feature normalization methods, including BN, LN, IN,
and GN, perform the following computation:

x̂i =
1

�i

(xi � µi). (1)

Here x is the feature computed by a layer, and i is an index.
In the case of 2D images, i = (iN , iC , iH , iW) is a 4D vec-
tor indexing the features in (N,C,H,W) order, where N is
the batch axis, C is the channel axis, and H and W are the
spatial height and width axes.

µ and � in (1) are the mean and standard deviation (std)
computed by:

µi =
1

m

X

k2Si

xk, �i =

s
1

m

X

k2Si

(xk � µi)2 + ✏, (2)

with ✏ as a small constant. Si is the set of pixels in which
the mean and std are computed, and m is the size of this set.
Many types of feature normalization methods mainly differ
in how the set Si is defined (Figure 2), discussed as follows.

In Batch Norm [26], the set Si is defined as:

Si = {k | kC = iC}, (3)

where iC (and kC) denotes the sub-index of i (and k) along
the C axis. This means that the pixels sharing the same
channel index are normalized together, i.e., for each chan-
nel, BN computes µ and � along the (N,H,W) axes. In
Layer Norm [3], the set is:

Si = {k | kN = iN}, (4)

meaning that LN computes µ and � along the (C,H,W)
axes for each sample. In Instance Norm [61], the set is:

Si = {k | kN = iN , kC = iC}. (5)

meaning that IN computes µ and � along the (H,W) axes
for each sample and each channel. The relations among BN,
LN, and IN are in Figure 2.

3

Normalization

FiltersInput

• Local contrast normalization across features
• See Divisive Normalization in Neuroscience
• Local version of

Layer Norm

H
, W

C N

Layer Norm

Figure 2. Normalization methods. Each subplot shows a feature map tensor, with N as the batch axis, C as the channel axis, and (H,W)
as the spatial axes. The pixels in blue are normalized by the same mean and variance, computed by aggregating the values of these pixels.

number. ShuffleNet [65] proposes a channel shuffle oper-
ation that permutes the axes of grouped features. These
methods all involve dividing the channel dimension into
groups. Despite the relation to these methods, GN does not
require group convolutions. GN is a generic layer, as we
evaluate in standard ResNets [20].

3. Group Normalization

The channels of visual representations are not entirely
independent. Classical features of SIFT [39], HOG [9],
and GIST [41] are group-wise representations by design,
where each group of channels is constructed by some kind
of histogram. These features are often processed by group-
wise normalization over each histogram or each orientation.
Higher-level features such as VLAD [29] and Fisher Vec-
tors (FV) [44] are also group-wise features where a group
can be thought of as the sub-vector computed with respect
to a cluster.

Analogously, it is not necessary to think of deep neu-
ral network features as unstructured vectors. For example,
for conv1 (the first convolutional layer) of a network, it is
reasonable to expect a filter and its horizontal flipping to
exhibit similar distributions of filter responses on natural
images. If conv1 happens to approximately learn this pair
of filters, or if the horizontal flipping (or other transforma-
tions) is made into the architectures by design [11, 8], then
the corresponding channels of these filters can be normal-
ized together.

The higher-level layers are more abstract and their be-
haviors are not as intuitive. However, in addition to orien-
tations (SIFT [39], HOG [9], or [11, 8]), there are many
factors that could lead to grouping, e.g., frequency, shapes,
illumination, textures. Their coefficients can be interde-
pendent. In fact, a well-accepted computational model
in neuroscience is to normalize across the cell responses
[21, 52, 55, 5], “with various receptive-field centers (cov-
ering the visual field) and with various spatiotemporal fre-
quency tunings” (p183, [21]); this can happen not only in
the primary visual cortex, but also “throughout the visual
system” [5]. Motivated by these works, we propose new
generic group-wise normalization for deep neural networks.

3.1. Formulation

We first describe a general formulation of feature nor-
malization, and then present GN in this formulation. A fam-
ily of feature normalization methods, including BN, LN, IN,
and GN, perform the following computation:

x̂i =
1

�i

(xi � µi). (1)

Here x is the feature computed by a layer, and i is an index.
In the case of 2D images, i = (iN , iC , iH , iW) is a 4D vec-
tor indexing the features in (N,C,H,W) order, where N is
the batch axis, C is the channel axis, and H and W are the
spatial height and width axes.

µ and � in (1) are the mean and standard deviation (std)
computed by:

µi =
1

m

X

k2Si

xk, �i =

s
1

m

X

k2Si

(xk � µi)2 + ✏, (2)

with ✏ as a small constant. Si is the set of pixels in which
the mean and std are computed, and m is the size of this set.
Many types of feature normalization methods mainly differ
in how the set Si is defined (Figure 2), discussed as follows.

In Batch Norm [26], the set Si is defined as:

Si = {k | kC = iC}, (3)

where iC (and kC) denotes the sub-index of i (and k) along
the C axis. This means that the pixels sharing the same
channel index are normalized together, i.e., for each chan-
nel, BN computes µ and � along the (N,H,W) axes. In
Layer Norm [3], the set is:

Si = {k | kN = iN}, (4)

meaning that LN computes µ and � along the (C,H,W)
axes for each sample. In Instance Norm [61], the set is:

Si = {k | kN = iN , kC = iC}. (5)

meaning that IN computes µ and � along the (H,W) axes
for each sample and each channel. The relations among BN,
LN, and IN are in Figure 2.

3

H
, W

C N

Layer Norm

Figure 2. Normalization methods. Each subplot shows a feature map tensor, with N as the batch axis, C as the channel axis, and (H,W)
as the spatial axes. The pixels in blue are normalized by the same mean and variance, computed by aggregating the values of these pixels.

number. ShuffleNet [65] proposes a channel shuffle oper-
ation that permutes the axes of grouped features. These
methods all involve dividing the channel dimension into
groups. Despite the relation to these methods, GN does not
require group convolutions. GN is a generic layer, as we
evaluate in standard ResNets [20].

3. Group Normalization

The channels of visual representations are not entirely
independent. Classical features of SIFT [39], HOG [9],
and GIST [41] are group-wise representations by design,
where each group of channels is constructed by some kind
of histogram. These features are often processed by group-
wise normalization over each histogram or each orientation.
Higher-level features such as VLAD [29] and Fisher Vec-
tors (FV) [44] are also group-wise features where a group
can be thought of as the sub-vector computed with respect
to a cluster.

Analogously, it is not necessary to think of deep neu-
ral network features as unstructured vectors. For example,
for conv1 (the first convolutional layer) of a network, it is
reasonable to expect a filter and its horizontal flipping to
exhibit similar distributions of filter responses on natural
images. If conv1 happens to approximately learn this pair
of filters, or if the horizontal flipping (or other transforma-
tions) is made into the architectures by design [11, 8], then
the corresponding channels of these filters can be normal-
ized together.

The higher-level layers are more abstract and their be-
haviors are not as intuitive. However, in addition to orien-
tations (SIFT [39], HOG [9], or [11, 8]), there are many
factors that could lead to grouping, e.g., frequency, shapes,
illumination, textures. Their coefficients can be interde-
pendent. In fact, a well-accepted computational model
in neuroscience is to normalize across the cell responses
[21, 52, 55, 5], “with various receptive-field centers (cov-
ering the visual field) and with various spatiotemporal fre-
quency tunings” (p183, [21]); this can happen not only in
the primary visual cortex, but also “throughout the visual
system” [5]. Motivated by these works, we propose new
generic group-wise normalization for deep neural networks.

3.1. Formulation

We first describe a general formulation of feature nor-
malization, and then present GN in this formulation. A fam-
ily of feature normalization methods, including BN, LN, IN,
and GN, perform the following computation:

x̂i =
1

�i

(xi � µi). (1)

Here x is the feature computed by a layer, and i is an index.
In the case of 2D images, i = (iN , iC , iH , iW) is a 4D vec-
tor indexing the features in (N,C,H,W) order, where N is
the batch axis, C is the channel axis, and H and W are the
spatial height and width axes.

µ and � in (1) are the mean and standard deviation (std)
computed by:

µi =
1

m

X

k2Si

xk, �i =

s
1

m

X

k2Si

(xk � µi)2 + ✏, (2)

with ✏ as a small constant. Si is the set of pixels in which
the mean and std are computed, and m is the size of this set.
Many types of feature normalization methods mainly differ
in how the set Si is defined (Figure 2), discussed as follows.

In Batch Norm [26], the set Si is defined as:

Si = {k | kC = iC}, (3)

where iC (and kC) denotes the sub-index of i (and k) along
the C axis. This means that the pixels sharing the same
channel index are normalized together, i.e., for each chan-
nel, BN computes µ and � along the (N,H,W) axes. In
Layer Norm [3], the set is:

Si = {k | kN = iN}, (4)

meaning that LN computes µ and � along the (C,H,W)
axes for each sample. In Instance Norm [61], the set is:

Si = {k | kN = iN , kC = iC}. (5)

meaning that IN computes µ and � along the (H,W) axes
for each sample and each channel. The relations among BN,
LN, and IN are in Figure 2.

3

Local contrast Norm

• Local Contrast normalization (across feature maps)
– Local mean = 0, local std. = 1, “Local” à 7x7 Gaussian
– Equalizes the features maps

Normalization

Feature Maps Feature Maps
After Contrast Normalization

Image Whitening

• Convariance matrix of
32x32 real-world images

• Compute whitening matrix
W via ZCA transform

• Rows of W, reshaped to
32x32 images
– Reveals local dependencies

• Whitened image

https://www.cs.toronto.edu/~kriz/learning-features-2009-TR.pdf

•

W Wi W

Wi

Xj

(2, 0)
(15, 15)

W
�1

W

V H

E(v,h) = �
VX

i=1

HX

j=1

vihjwij �
VX

i=1

vib
v

i
�

HX

j=1

hjb
h

j

• v

• h

• vi i

• hj j

• wij i j

ZCA Transform

• Convariance matrix C = 1/(n-1) X XT

• Want linear transform W: Y =W X
such that YYT = (n-1) I

• [Some math] W = (1/(n-1) (XXT))-1/2
• Compute W using SVD

• Note: only applicable to small images
• For large images, use local contrast

normalization
https://www.cs.toronto.edu/~kriz/learning-features-2009-TR.pdf

How important is Depth

• “Deep” in Deep Learning

• Ablation study

• Tap off features

Architecture of Krizhevsky et al.

• 8 layers total

• Trained on Imagenet
dataset [Deng et al. CVPR’09]

• 18.2% top-5 error

• Our reimplementation:
18.1% top-5 error

Input Image

Layer 1: Conv + Pool

Layer 6: Full

Layer 3: Conv

Softmax Output

Layer 2: Conv + Pool

Layer 4: Conv

Layer 5: Conv + Pool

Layer 7: Full

Architecture of Krizhevsky et al.

• Remove top fully
connected layer
– Layer 7

• Drop 16 million
parameters

• Only 1.1% drop in
performance!

Input Image

Layer 1: Conv + Pool

Layer 6: Full

Layer 3: Conv

Softmax Output

Layer 2: Conv + Pool

Layer 4: Conv

Layer 5: Conv + Pool

Architecture of Krizhevsky et al.

• Remove both fully connected
layers
– Layer 6 & 7

• Drop ~50 million parameters

• 5.7% drop in performance

Input Image

Layer 1: Conv + Pool

Layer 3: Conv

Softmax Output

Layer 2: Conv + Pool

Layer 4: Conv

Layer 5: Conv + Pool

Architecture of Krizhevsky et al.

• Now try removing upper feature
extractor layers:
– Layers 3 & 4

• Drop ~1 million parameters

• 3.0% drop in performance

Input Image

Layer 1: Conv + Pool

Layer 6: Full

Softmax Output

Layer 2: Conv + Pool

Layer 5: Conv + Pool

Layer 7: Full

Architecture of Krizhevsky et al.

• Now try removing upper feature
extractor layers & fully connected:
– Layers 3, 4, 6 ,7

• Now only 4 layers

• 33.5% drop in performance

àDepth of network is key
Input Image

Layer 1: Conv + Pool

Softmax Output

Layer 2: Conv + Pool

Layer 5: Conv + Pool

Tapping off Features at each Layer

Plug features from each layer into linear SVM or soft-max

Translation (Vertical)
La

yer
 1

La
yer

 7
Ou

tpu
t

−60 −40 −20 0 20 40 60
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Vertical Translation (Pixels)

Ca
no

nic
al

Di
sta

nc
e

Lawn Mower
Shih−Tzu
African Crocodile
African Grey
Entertrainment Center

−60 −40 −20 0 20 40 60
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Vertical Translation (Pixels)

P(
tru

e c
las

s)

Lawn Mower
Shih−Tzu
African Crocodile
African Grey
Entertrainment Center

−60 −40 −20 0 20 40 60
0

1

2

3

4

5

6

7

8

9

10

Vertical Translation (Pixels)

Ca
no

nic
al

Di
sta

nc
e

Lawn Mower
Shih−Tzu
African Crocodile
African Grey
Entertrainment Center

Scale Invariance

1 1.2 1.4 1.6 1.8
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Scale (Ratio)

Ca
no

nic
al

Di
sta

nc
e

Lawn Mower
Shih−Tzu
African Crocodile
African Grey
Entertrainment Center

1 1.2 1.4 1.6 1.8
0

2

4

6

8

10

12

Scale (Ratio)

Ca
no

nic
al

Di
sta

nc
e

Lawn Mower
Shih−Tzu
African Crocodile
African Grey
Entertrainment Center

1 1.2 1.4 1.6 1.8
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Scale (Ratio)

P(
tru

e
cla

ss
)

Lawn Mower
Shih−Tzu
African Crocodile
African Grey
Entertrainment Center

La
yer

 1

La
yer

 7
Ou

tpu
t

Rotation Invariance
La

yer
 1

La
yer

 7
Ou

tpu
t

0 50 100 150 200 250 300 350
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Rotation Degrees

P(
tru

e c
las

s)

Lawn Mower
Shih−Tzu
African Crocodile
African Grey
Entertrainment Center

0 50 100 150 200 250 300 350
0

0.2

0.4

0.6

0.8

1

1.2

1.4

Rotation Degrees

Ca
no

nic
al

Di
sta

nc
e

Lawn Mower
Shih−Tzu
African Crocodile
African Grey
Entertrainment Center

0 50 100 150 200 250 300 350
0

5

10

15

Rotation Degrees

Ca
no

nic
al

Di
sta

nc
e

Lawn Mower
Shih−Tzu
African Crocodile
African Grey
Entertrainment Center

Very Deep Models (1)
[Very Deep Convolutional Networks for Large-Scale Image Recognition,
Karen Simonyan & Andrew Zisserman, arXiv:1409.1556, 2014]

Published as a conference paper at ICLR 2015

Table 1: ConvNet configurations (shown in columns). The depth of the configurations increases
from the left (A) to the right (E), as more layers are added (the added layers are shown in bold). The
convolutional layer parameters are denoted as “conv⟨receptive field size⟩-⟨number of channels⟩”.
The ReLU activation function is not shown for brevity.

ConvNet Configuration
A A-LRN B C D E

11 weight 11 weight 13 weight 16 weight 16 weight 19 weight
layers layers layers layers layers layers

input (224× 224 RGB image)
conv3-64 conv3-64 conv3-64 conv3-64 conv3-64 conv3-64

LRN conv3-64 conv3-64 conv3-64 conv3-64
maxpool

conv3-128 conv3-128 conv3-128 conv3-128 conv3-128 conv3-128
conv3-128 conv3-128 conv3-128 conv3-128

maxpool
conv3-256 conv3-256 conv3-256 conv3-256 conv3-256 conv3-256
conv3-256 conv3-256 conv3-256 conv3-256 conv3-256 conv3-256

conv1-256 conv3-256 conv3-256
conv3-256

maxpool
conv3-512 conv3-512 conv3-512 conv3-512 conv3-512 conv3-512
conv3-512 conv3-512 conv3-512 conv3-512 conv3-512 conv3-512

conv1-512 conv3-512 conv3-512
conv3-512

maxpool
conv3-512 conv3-512 conv3-512 conv3-512 conv3-512 conv3-512
conv3-512 conv3-512 conv3-512 conv3-512 conv3-512 conv3-512

conv1-512 conv3-512 conv3-512
conv3-512

maxpool
FC-4096
FC-4096
FC-1000
soft-max

Table 2: Number of parameters (in millions).
Network A,A-LRN B C D E
Number of parameters 133 133 134 138 144

such layers have a 7 × 7 effective receptive field. So what have we gained by using, for instance, a
stack of three 3×3 conv. layers instead of a single 7×7 layer? First, we incorporate three non-linear
rectification layers instead of a single one, which makes the decision function more discriminative.
Second, we decrease the number of parameters: assuming that both the input and the output of a
three-layer 3× 3 convolution stack has C channels, the stack is parametrised by 3

(

32C2
)

= 27C2

weights; at the same time, a single 7 × 7 conv. layer would require 72C2 = 49C2 parameters, i.e.
81% more. This can be seen as imposing a regularisation on the 7× 7 conv. filters, forcing them to
have a decomposition through the 3× 3 filters (with non-linearity injected in between).

The incorporation of 1 × 1 conv. layers (configuration C, Table 1) is a way to increase the non-
linearity of the decision function without affecting the receptive fields of the conv. layers. Even
though in our case the 1× 1 convolution is essentially a linear projection onto the space of the same
dimensionality (the number of input and output channels is the same), an additional non-linearity is
introduced by the rectification function. It should be noted that 1×1 conv. layers have recently been
utilised in the “Network in Network” architecture of Lin et al. (2014).

Small-size convolution filters have been previously used by Ciresan et al. (2011), but their nets
are significantly less deep than ours, and they did not evaluate on the large-scale ILSVRC
dataset. Goodfellow et al. (2014) applied deep ConvNets (11 weight layers) to the task of
street number recognition, and showed that the increased depth led to better performance.
GoogLeNet (Szegedy et al., 2014), a top-performing entry of the ILSVRC-2014 classification task,
was developed independently of our work, but is similar in that it is based on very deep ConvNets

3

Published as a conference paper at ICLR 2015

main evaluation criterion used in ILSVRC, and is computed as the proportion of images such that
the ground-truth category is outside the top-5 predicted categories.

For the majority of experiments, we used the validation set as the test set. Certain experiments were
also carried out on the test set and submitted to the official ILSVRC server as a “VGG” team entry
to the ILSVRC-2014 competition (Russakovsky et al., 2014).

4.1 SINGLE SCALE EVALUATION

We begin with evaluating the performance of individual ConvNet models at a single scale with the
layer configurations described in Sect. 2.2. The test image size was set as follows: Q = S for fixed
S, and Q = 0.5(Smin + Smax) for jittered S ∈ [Smin, Smax]. The results of are shown in Table 3.

First, we note that using local response normalisation (A-LRN network) does not improve on the
model A without any normalisation layers. We thus do not employ normalisation in the deeper
architectures (B–E).

Second, we observe that the classification error decreases with the increased ConvNet depth: from
11 layers in A to 19 layers in E. Notably, in spite of the same depth, the configuration C (which
contains three 1× 1 conv. layers), performs worse than the configuration D, which uses 3× 3 conv.
layers throughout the network. This indicates that while the additional non-linearity does help (C is
better than B), it is also important to capture spatial context by using conv. filters with non-trivial
receptive fields (D is better than C). The error rate of our architecture saturates when the depth
reaches 19 layers, but even deeper models might be beneficial for larger datasets. We also compared
the net B with a shallow net with five 5 × 5 conv. layers, which was derived from B by replacing
each pair of 3× 3 conv. layers with a single 5× 5 conv. layer (which has the same receptive field as
explained in Sect. 2.3). The top-1 error of the shallow net was measured to be 7% higher than that
of B (on a center crop), which confirms that a deep net with small filters outperforms a shallow net
with larger filters.

Finally, scale jittering at training time (S ∈ [256; 512]) leads to significantly better results than
training on images with fixed smallest side (S = 256 or S = 384), even though a single scale is
used at test time. This confirms that training set augmentation by scale jittering is indeed helpful for
capturing multi-scale image statistics.

Table 3: ConvNet performance at a single test scale.
ConvNet config. (Table 1) smallest image side top-1 val. error (%) top-5 val. error (%)

train (S) test (Q)
A 256 256 29.6 10.4
A-LRN 256 256 29.7 10.5
B 256 256 28.7 9.9

C
256 256 28.1 9.4
384 384 28.1 9.3

[256;512] 384 27.3 8.8

D
256 256 27.0 8.8
384 384 26.8 8.7

[256;512] 384 25.6 8.1

E
256 256 27.3 9.0
384 384 26.9 8.7

[256;512] 384 25.5 8.0

4.2 MULTI-SCALE EVALUATION

Having evaluated the ConvNet models at a single scale, we now assess the effect of scale jittering at
test time. It consists of running a model over several rescaled versions of a test image (corresponding
to different values of Q), followed by averaging the resulting class posteriors. Considering that a
large discrepancy between training and testing scales leads to a drop in performance, the models
trained with fixed S were evaluated over three test image sizes, close to the training one: Q =
{S − 32, S, S + 32}. At the same time, scale jittering at training time allows the network to be
applied to a wider range of scales at test time, so the model trained with variable S ∈ [Smin;Smax]
was evaluated over a larger range of sizes Q = {Smin, 0.5(Smin + Smax), Smax}.

6

• Lots of 3x3 conv layers: more
non-linearity than single 7x7 layer

• Close to SOA results on
Imagenet: 6.8% top-5 val

• Can be hard to train

Very Deep Models (2)
[Going Deep with Convolutions, Szegedy et al., arXiv:1409.4842, 2014]

1x1
number of
filters

3x3

5x5
(a) Inception module, naı̈ve version

�[��FRQYROXWLRQV

�[��FRQYROXWLRQV �[��FRQYROXWLRQV

)LOWHU�
FRQFDWHQDWLRQ

3UHYLRXV�OD\HU

�[��PD[�SRROLQJ�[��FRQYROXWLRQV �[��FRQYROXWLRQV

�[��FRQYROXWLRQV

(b) Inception module with dimension reductions

Figure 2: Inception module

increase in the number of outputs from stage to stage. Even while this architecture might cover the
optimal sparse structure, it would do it very inefficiently, leading to a computational blow up within
a few stages.

This leads to the second idea of the proposed architecture: judiciously applying dimension reduc-
tions and projections wherever the computational requirements would increase too much otherwise.
This is based on the success of embeddings: even low dimensional embeddings might contain a lot
of information about a relatively large image patch. However, embeddings represent information in
a dense, compressed form and compressed information is harder to model. We would like to keep
our representation sparse at most places (as required by the conditions of [2]) and compress the
signals only whenever they have to be aggregated en masse. That is, 1⇥1 convolutions are used to
compute reductions before the expensive 3⇥3 and 5⇥5 convolutions. Besides being used as reduc-
tions, they also include the use of rectified linear activation which makes them dual-purpose. The
final result is depicted in Figure 2(b).

In general, an Inception network is a network consisting of modules of the above type stacked upon
each other, with occasional max-pooling layers with stride 2 to halve the resolution of the grid. For
technical reasons (memory efficiency during training), it seemed beneficial to start using Inception
modules only at higher layers while keeping the lower layers in traditional convolutional fashion.
This is not strictly necessary, simply reflecting some infrastructural inefficiencies in our current
implementation.

One of the main beneficial aspects of this architecture is that it allows for increasing the number of
units at each stage significantly without an uncontrolled blow-up in computational complexity. The
ubiquitous use of dimension reduction allows for shielding the large number of input filters of the
last stage to the next layer, first reducing their dimension before convolving over them with a large
patch size. Another practically useful aspect of this design is that it aligns with the intuition that
visual information should be processed at various scales and then aggregated so that the next stage
can abstract features from different scales simultaneously.

The improved use of computational resources allows for increasing both the width of each stage
as well as the number of stages without getting into computational difficulties. Another way to
utilize the inception architecture is to create slightly inferior, but computationally cheaper versions
of it. We have found that all the included the knobs and levers allow for a controlled balancing of
computational resources that can result in networks that are 2� 3⇥ faster than similarly performing
networks with non-Inception architecture, however this requires careful manual design at this point.

5 GoogLeNet

We chose GoogLeNet as our team-name in the ILSVRC14 competition. This name is an homage to
Yann LeCuns pioneering LeNet 5 network [10]. We also use GoogLeNet to refer to the particular
incarnation of the Inception architecture used in our submission for the competition. We have also
used a deeper and wider Inception network, the quality of which was slightly inferior, but adding it
to the ensemble seemed to improve the results marginally. We omit the details of that network, since
our experiments have shown that the influence of the exact architectural parameters is relatively

5

GoogLeNet inception module:

1. Multiple filter scales at each layer

2. Dimensionality reduction to keep computational requirements down

[From http://image-
net.org/challenges/LSVRC/2014/slides/Go
ogLeNet.pptx]

GoogLeNet vs Previous Models

GoogLeNet

Zeiler-Fergus Architecture (1 tower)

Convolution
Pooling
Softmax
Other

[From http://image-
net.org/challenges/LSVRC/2014/slides/Go
ogLeNet.pptx]

[Going Deep with Convolutions, Szegedy et al., arXiv:1409.4842, 2014]

Google Inception model

Width of inception modules ranges from 256 filters (in early modules) to 1024
in top inception modules.

Can remove fully connected layers on top completely

Number of parameters is reduced to 5 million

6.7% top-5 validation error on Imagnet

256 480 480
512

512 512
832 832 1024

Computional cost is
increased by less than 2X
compared to Krizhevsky’s
network. (<1.5Bn
operations/evaluation)

[From http://image-
net.org/challenges/LSVRC/2014/slides/Go
ogLeNet.pptx]

Residual Networks
[He, Zhang, Ren, Sun, CVPR 2016]

model top-1 err. top-5 err.
VGG-16 [41] 28.07 9.33
GoogLeNet [44] - 9.15
PReLU-net [13] 24.27 7.38

plain-34 28.54 10.02
ResNet-34 A 25.03 7.76
ResNet-34 B 24.52 7.46
ResNet-34 C 24.19 7.40
ResNet-50 22.85 6.71
ResNet-101 21.75 6.05
ResNet-152 21.43 5.71

Table 3. Error rates (%, 10-crop testing) on ImageNet validation.
VGG-16 is based on our test. ResNet-50/101/152 are of option B
that only uses projections for increasing dimensions.

method top-1 err. top-5 err.
VGG [41] (ILSVRC’14) - 8.43†

GoogLeNet [44] (ILSVRC’14) - 7.89
VGG [41] (v5) 24.4 7.1
PReLU-net [13] 21.59 5.71
BN-inception [16] 21.99 5.81
ResNet-34 B 21.84 5.71
ResNet-34 C 21.53 5.60
ResNet-50 20.74 5.25
ResNet-101 19.87 4.60
ResNet-152 19.38 4.49

Table 4. Error rates (%) of single-model results on the ImageNet
validation set (except † reported on the test set).

method top-5 err. (test)
VGG [41] (ILSVRC’14) 7.32
GoogLeNet [44] (ILSVRC’14) 6.66
VGG [41] (v5) 6.8
PReLU-net [13] 4.94
BN-inception [16] 4.82
ResNet (ILSVRC’15) 3.57

Table 5. Error rates (%) of ensembles. The top-5 error is on the
test set of ImageNet and reported by the test server.

ResNet reduces the top-1 error by 3.5% (Table 2), resulting
from the successfully reduced training error (Fig. 4 right vs.
left). This comparison verifies the effectiveness of residual
learning on extremely deep systems.

Last, we also note that the 18-layer plain/residual nets
are comparably accurate (Table 2), but the 18-layer ResNet
converges faster (Fig. 4 right vs. left). When the net is “not
overly deep” (18 layers here), the current SGD solver is still
able to find good solutions to the plain net. In this case, the
ResNet eases the optimization by providing faster conver-
gence at the early stage.

Identity vs. Projection Shortcuts. We have shown that

3x3, 64

1x1, 64

relu

1x1, 256

relu

relu

3x3, 64

3x3, 64

relu

relu

64-d 256-d

Figure 5. A deeper residual function F for ImageNet. Left: a
building block (on 56⇥56 feature maps) as in Fig. 3 for ResNet-
34. Right: a “bottleneck” building block for ResNet-50/101/152.

parameter-free, identity shortcuts help with training. Next
we investigate projection shortcuts (Eqn.(2)). In Table 3 we
compare three options: (A) zero-padding shortcuts are used
for increasing dimensions, and all shortcuts are parameter-
free (the same as Table 2 and Fig. 4 right); (B) projec-
tion shortcuts are used for increasing dimensions, and other
shortcuts are identity; and (C) all shortcuts are projections.

Table 3 shows that all three options are considerably bet-
ter than the plain counterpart. B is slightly better than A. We
argue that this is because the zero-padded dimensions in A
indeed have no residual learning. C is marginally better than
B, and we attribute this to the extra parameters introduced
by many (thirteen) projection shortcuts. But the small dif-
ferences among A/B/C indicate that projection shortcuts are
not essential for addressing the degradation problem. So we
do not use option C in the rest of this paper, to reduce mem-
ory/time complexity and model sizes. Identity shortcuts are
particularly important for not increasing the complexity of
the bottleneck architectures that are introduced below.

Deeper Bottleneck Architectures. Next we describe our
deeper nets for ImageNet. Because of concerns on the train-
ing time that we can afford, we modify the building block
as a bottleneck design4. For each residual function F , we
use a stack of 3 layers instead of 2 (Fig. 5). The three layers
are 1⇥1, 3⇥3, and 1⇥1 convolutions, where the 1⇥1 layers
are responsible for reducing and then increasing (restoring)
dimensions, leaving the 3⇥3 layer a bottleneck with smaller
input/output dimensions. Fig. 5 shows an example, where
both designs have similar time complexity.

The parameter-free identity shortcuts are particularly im-
portant for the bottleneck architectures. If the identity short-
cut in Fig. 5 (right) is replaced with projection, one can
show that the time complexity and model size are doubled,
as the shortcut is connected to the two high-dimensional
ends. So identity shortcuts lead to more efficient models
for the bottleneck designs.

50-layer ResNet: We replace each 2-layer block in the

4Deeper non-bottleneck ResNets (e.g., Fig. 5 left) also gain accuracy
from increased depth (as shown on CIFAR-10), but are not as economical
as the bottleneck ResNets. So the usage of bottleneck designs is mainly due
to practical considerations. We further note that the degradation problem
of plain nets is also witnessed for the bottleneck designs.

6

7x7 conv, 64, /2

pool, /2

3x3 conv, 64

3x3 conv, 64

3x3 conv, 64

3x3 conv, 64

3x3 conv, 64

3x3 conv, 64

3x3 conv, 128, /2

3x3 conv, 128

3x3 conv, 128

3x3 conv, 128

3x3 conv, 128

3x3 conv, 128

3x3 conv, 128

3x3 conv, 128

3x3 conv, 256, /2

3x3 conv, 256

3x3 conv, 256

3x3 conv, 256

3x3 conv, 256

3x3 conv, 256

3x3 conv, 256

3x3 conv, 256

3x3 conv, 256

3x3 conv, 256

3x3 conv, 256

3x3 conv, 256

3x3 conv, 512, /2

3x3 conv, 512

3x3 conv, 512

3x3 conv, 512

3x3 conv, 512

3x3 conv, 512

avg pool

fc 1000

image

3x3 conv, 512

3x3 conv, 64

3x3 conv, 64

pool, /2

3x3 conv, 128

3x3 conv, 128

pool, /2

3x3 conv, 256

3x3 conv, 256

3x3 conv, 256

3x3 conv, 256

pool, /2

3x3 conv, 512

3x3 conv, 512

3x3 conv, 512

pool, /2

3x3 conv, 512

3x3 conv, 512

3x3 conv, 512

3x3 conv, 512

pool, /2

fc 4096

fc 4096

fc 1000

image

output

size: 112

output

size: 224

output

size: 56

output

size: 28

output

size: 14

output

size: 7

output

size: 1

VGG-19 34-layer plain

7x7 conv, 64, /2

pool, /2

3x3 conv, 64

3x3 conv, 64

3x3 conv, 64

3x3 conv, 64

3x3 conv, 64

3x3 conv, 64

3x3 conv, 128, /2

3x3 conv, 128

3x3 conv, 128

3x3 conv, 128

3x3 conv, 128

3x3 conv, 128

3x3 conv, 128

3x3 conv, 128

3x3 conv, 256, /2

3x3 conv, 256

3x3 conv, 256

3x3 conv, 256

3x3 conv, 256

3x3 conv, 256

3x3 conv, 256

3x3 conv, 256

3x3 conv, 256

3x3 conv, 256

3x3 conv, 256

3x3 conv, 256

3x3 conv, 512, /2

3x3 conv, 512

3x3 conv, 512

3x3 conv, 512

3x3 conv, 512

3x3 conv, 512

avg pool

fc 1000

image

34-layer residual

Figure 3. Example network architectures for ImageNet. Left: the
VGG-19 model [41] (19.6 billion FLOPs) as a reference. Mid-

dle: a plain network with 34 parameter layers (3.6 billion FLOPs).
Right: a residual network with 34 parameter layers (3.6 billion
FLOPs). The dotted shortcuts increase dimensions. Table 1 shows
more details and other variants.

Residual Network. Based on the above plain network, we
insert shortcut connections (Fig. 3, right) which turn the
network into its counterpart residual version. The identity
shortcuts (Eqn.(1)) can be directly used when the input and
output are of the same dimensions (solid line shortcuts in
Fig. 3). When the dimensions increase (dotted line shortcuts
in Fig. 3), we consider two options: (A) The shortcut still
performs identity mapping, with extra zero entries padded
for increasing dimensions. This option introduces no extra
parameter; (B) The projection shortcut in Eqn.(2) is used to
match dimensions (done by 1⇥1 convolutions). For both
options, when the shortcuts go across feature maps of two
sizes, they are performed with a stride of 2.

3.4. Implementation

Our implementation for ImageNet follows the practice
in [21, 41]. The image is resized with its shorter side ran-
domly sampled in [256, 480] for scale augmentation [41].
A 224⇥224 crop is randomly sampled from an image or its
horizontal flip, with the per-pixel mean subtracted [21]. The
standard color augmentation in [21] is used. We adopt batch
normalization (BN) [16] right after each convolution and
before activation, following [16]. We initialize the weights
as in [13] and train all plain/residual nets from scratch. We
use SGD with a mini-batch size of 256. The learning rate
starts from 0.1 and is divided by 10 when the error plateaus,
and the models are trained for up to 60⇥ 104 iterations. We
use a weight decay of 0.0001 and a momentum of 0.9. We
do not use dropout [14], following the practice in [16].

In testing, for comparison studies we adopt the standard
10-crop testing [21]. For best results, we adopt the fully-
convolutional form as in [41, 13], and average the scores
at multiple scales (images are resized such that the shorter
side is in {224, 256, 384, 480, 640}).

4. Experiments

4.1. ImageNet Classification

We evaluate our method on the ImageNet 2012 classifi-
cation dataset [36] that consists of 1000 classes. The models
are trained on the 1.28 million training images, and evalu-
ated on the 50k validation images. We also obtain a final
result on the 100k test images, reported by the test server.
We evaluate both top-1 and top-5 error rates.

Plain Networks. We first evaluate 18-layer and 34-layer
plain nets. The 34-layer plain net is in Fig. 3 (middle). The
18-layer plain net is of a similar form. See Table 1 for de-
tailed architectures.

The results in Table 2 show that the deeper 34-layer plain
net has higher validation error than the shallower 18-layer
plain net. To reveal the reasons, in Fig. 4 (left) we com-
pare their training/validation errors during the training pro-
cedure. We have observed the degradation problem - the

4

Deep Residual Learning for Image Recognition

Kaiming He Xiangyu Zhang Shaoqing Ren Jian Sun
Microsoft Research

{kahe, v-xiangz, v-shren, jiansun}@microsoft.com

Abstract

Deeper neural networks are more difficult to train. We
present a residual learning framework to ease the training
of networks that are substantially deeper than those used
previously. We explicitly reformulate the layers as learn-
ing residual functions with reference to the layer inputs, in-
stead of learning unreferenced functions. We provide com-
prehensive empirical evidence showing that these residual
networks are easier to optimize, and can gain accuracy from
considerably increased depth. On the ImageNet dataset we
evaluate residual nets with a depth of up to 152 layers—8⇥
deeper than VGG nets [41] but still having lower complex-
ity. An ensemble of these residual nets achieves 3.57% error
on the ImageNet test set. This result won the 1st place on the
ILSVRC 2015 classification task. We also present analysis
on CIFAR-10 with 100 and 1000 layers.

The depth of representations is of central importance
for many visual recognition tasks. Solely due to our ex-
tremely deep representations, we obtain a 28% relative im-
provement on the COCO object detection dataset. Deep
residual nets are foundations of our submissions to ILSVRC
& COCO 2015 competitions1, where we also won the 1st
places on the tasks of ImageNet detection, ImageNet local-
ization, COCO detection, and COCO segmentation.

1. Introduction

Deep convolutional neural networks [22, 21] have led
to a series of breakthroughs for image classification [21,
50, 40]. Deep networks naturally integrate low/mid/high-
level features [50] and classifiers in an end-to-end multi-
layer fashion, and the “levels” of features can be enriched
by the number of stacked layers (depth). Recent evidence
[41, 44] reveals that network depth is of crucial importance,
and the leading results [41, 44, 13, 16] on the challenging
ImageNet dataset [36] all exploit “very deep” [41] models,
with a depth of sixteen [41] to thirty [16]. Many other non-
trivial visual recognition tasks [8, 12, 7, 32, 27] have also

1
http://image-net.org/challenges/LSVRC/2015/ and

http://mscoco.org/dataset/#detections-challenge2015.

0 1 2 3 4 5 60

10

20

iter. (1e4)

tra
in

in
g

er
ro

r (
%

)

0 1 2 3 4 5 60

10

20

iter. (1e4)

te
st

 e
rr

or
 (%

)

56-layer

20-layer

56-layer

20-layer

Figure 1. Training error (left) and test error (right) on CIFAR-10
with 20-layer and 56-layer “plain” networks. The deeper network
has higher training error, and thus test error. Similar phenomena
on ImageNet is presented in Fig. 4.

greatly benefited from very deep models.
Driven by the significance of depth, a question arises: Is

learning better networks as easy as stacking more layers?
An obstacle to answering this question was the notorious
problem of vanishing/exploding gradients [1, 9], which
hamper convergence from the beginning. This problem,
however, has been largely addressed by normalized initial-
ization [23, 9, 37, 13] and intermediate normalization layers
[16], which enable networks with tens of layers to start con-
verging for stochastic gradient descent (SGD) with back-
propagation [22].

When deeper networks are able to start converging, a
degradation problem has been exposed: with the network
depth increasing, accuracy gets saturated (which might be
unsurprising) and then degrades rapidly. Unexpectedly,
such degradation is not caused by overfitting, and adding
more layers to a suitably deep model leads to higher train-
ing error, as reported in [11, 42] and thoroughly verified by
our experiments. Fig. 1 shows a typical example.

The degradation (of training accuracy) indicates that not
all systems are similarly easy to optimize. Let us consider a
shallower architecture and its deeper counterpart that adds
more layers onto it. There exists a solution by construction
to the deeper model: the added layers are identity mapping,
and the other layers are copied from the learned shallower
model. The existence of this constructed solution indicates
that a deeper model should produce no higher training error
than its shallower counterpart. But experiments show that
our current solvers on hand are unable to find solutions that

1

ar
X

iv
:1

51
2.

03
38

5v
1

 [c
s.C

V
]

10
 D

ec
 2

01
5

identity

weight layer

weight layer

relu

relu

F(x)�+�x

x

F(x) x

Figure 2. Residual learning: a building block.

are comparably good or better than the constructed solution
(or unable to do so in feasible time).

In this paper, we address the degradation problem by
introducing a deep residual learning framework. In-
stead of hoping each few stacked layers directly fit a
desired underlying mapping, we explicitly let these lay-
ers fit a residual mapping. Formally, denoting the desired
underlying mapping as H(x), we let the stacked nonlinear
layers fit another mapping of F(x) := H(x)�x. The orig-
inal mapping is recast into F(x)+x. We hypothesize that it
is easier to optimize the residual mapping than to optimize
the original, unreferenced mapping. To the extreme, if an
identity mapping were optimal, it would be easier to push
the residual to zero than to fit an identity mapping by a stack
of nonlinear layers.

The formulation of F(x)+x can be realized by feedfor-
ward neural networks with “shortcut connections” (Fig. 2).
Shortcut connections [2, 34, 49] are those skipping one or
more layers. In our case, the shortcut connections simply
perform identity mapping, and their outputs are added to
the outputs of the stacked layers (Fig. 2). Identity short-
cut connections add neither extra parameter nor computa-
tional complexity. The entire network can still be trained
end-to-end by SGD with backpropagation, and can be eas-
ily implemented using common libraries (e.g., Caffe [19])
without modifying the solvers.

We present comprehensive experiments on ImageNet
[36] to show the degradation problem and evaluate our
method. We show that: 1) Our extremely deep residual nets
are easy to optimize, but the counterpart “plain” nets (that
simply stack layers) exhibit higher training error when the
depth increases; 2) Our deep residual nets can easily enjoy
accuracy gains from greatly increased depth, producing re-
sults substantially better than previous networks.

Similar phenomena are also shown on the CIFAR-10 set
[20], suggesting that the optimization difficulties and the
effects of our method are not just akin to a particular dataset.
We present successfully trained models on this dataset with
over 100 layers, and explore models with over 1000 layers.

On the ImageNet classification dataset [36], we obtain
excellent results by extremely deep residual nets. Our 152-
layer residual net is the deepest network ever presented on
ImageNet, while still having lower complexity than VGG
nets [41]. Our ensemble has 3.57% top-5 error on the

ImageNet test set, and won the 1st place in the ILSVRC
2015 classification competition. The extremely deep rep-
resentations also have excellent generalization performance
on other recognition tasks, and lead us to further win the
1st places on: ImageNet detection, ImageNet localization,
COCO detection, and COCO segmentation in ILSVRC &
COCO 2015 competitions. This strong evidence shows that
the residual learning principle is generic, and we expect that
it is applicable in other vision and non-vision problems.

2. Related Work

Residual Representations. In image recognition, VLAD
[18] is a representation that encodes by the residual vectors
with respect to a dictionary, and Fisher Vector [30] can be
formulated as a probabilistic version [18] of VLAD. Both
of them are powerful shallow representations for image re-
trieval and classification [4, 48]. For vector quantization,
encoding residual vectors [17] is shown to be more effec-
tive than encoding original vectors.

In low-level vision and computer graphics, for solv-
ing Partial Differential Equations (PDEs), the widely used
Multigrid method [3] reformulates the system as subprob-
lems at multiple scales, where each subproblem is respon-
sible for the residual solution between a coarser and a finer
scale. An alternative to Multigrid is hierarchical basis pre-
conditioning [45, 46], which relies on variables that repre-
sent residual vectors between two scales. It has been shown
[3, 45, 46] that these solvers converge much faster than stan-
dard solvers that are unaware of the residual nature of the
solutions. These methods suggest that a good reformulation
or preconditioning can simplify the optimization.

Shortcut Connections. Practices and theories that lead to
shortcut connections [2, 34, 49] have been studied for a long
time. An early practice of training multi-layer perceptrons
(MLPs) is to add a linear layer connected from the network
input to the output [34, 49]. In [44, 24], a few interme-
diate layers are directly connected to auxiliary classifiers
for addressing vanishing/exploding gradients. The papers
of [39, 38, 31, 47] propose methods for centering layer re-
sponses, gradients, and propagated errors, implemented by
shortcut connections. In [44], an “inception” layer is com-
posed of a shortcut branch and a few deeper branches.

Concurrent with our work, “highway networks” [42, 43]
present shortcut connections with gating functions [15].
These gates are data-dependent and have parameters, in
contrast to our identity shortcuts that are parameter-free.
When a gated shortcut is “closed” (approaching zero), the
layers in highway networks represent non-residual func-
tions. On the contrary, our formulation always learns
residual functions; our identity shortcuts are never closed,
and all information is always passed through, with addi-
tional residual functions to be learned. In addition, high-

2

Really, really deep convnets don’t train well,
E.g. CIFAR10:

Key idea: introduce “pass
through” into each layer

Thus only residual now
needs to be learned

With ensembling, 3.57% top-5
test error on ImageNet

Visualizing Convnets

• Want to know what they are learning

• Raw coefficients of learned filters in higher
layers difficult to interpret

• Two classes of method:
1. Project activations back to pixel space
2. Optimize input image to maximize a particular

feature map or class

Visualizing Convnets

• Projection from higher layers back to input
– Several similar approaches:
– Visualizing and Understanding Convolutional

Networks, Matt Zeiler & Rob Fergus, ECCV 2014
– Deep Inside Convolutional Networks: Visualising

Image Classification Models and Saliency Maps,
Karen Simonyan, Andrea Vedaldi, Andrew
Zisserman, arXiv 1312.6034, 2013

– Object Detectors Emerge in Deep Scene CNNs, Bolei
Zhou, Aditya Khosla, Agata Lapedriza, Aude Oliva,
Antonio Torralba, ICLR 2015

Projection from Higher Layers

Input ImageVisualization

Layer 1: Feature maps

Layer 2: Feature maps

Feature
Map

Filters

Layer 1 Reconstruction

Layer 2 Reconstruction

0 0....

Filters

ConvnetDe
co

nv
ne

t
[Zeiler et al. ECCV14]

Deconvnet layer
Details of Operation

Convnet layer

Unpooling Operation

Layer 1 Filters

Visualizations of Higher Layers

• Use ImageNet 2012 validation set
• Push each image through network

Input
Image

Feature
Map

Lower Layers

....

Filters

Validation Images

• Take max activation from
feature map associated
with each filter

• Use Deconvnet to project
back to pixel space

• Use pooling “switches”
peculiar to that activation

Layer 1: Top-9 Patches

Layer 2: Top-9 Patches

• Patches from validation images that give maximal activation of a given feature map

Layer 2: Top-9

• NOT SAMPLES FROM MODEL
• Just parts of input image that give strong activation of this feature map
• Non-parametric view on invariances learned by model

Receptive Field

• Receptive field of the first layer is the filter size
• Receptive field (w.r.t. input image) of a deeper layer

depends on all previous layers’ filter size and strides

• Correspondence between a feature map pixel and
an image pixel is not unique

• Map a feature map pixel to the center of the
receptive field on the image in the SPP-net paper

Kaiming He, Xiangyu Zhang, Shaoqing Ren, & Jian Sun. “Spatial Pyramid Pooling in Deep Convolutional Networks for Visual Recognition”. ECCV 2014.

Layer 3: Top-9 Patches

Layer 3: Top-9

Layer 4: Top-9 Patches

Layer 4: Top-9

Layer 5: Top-9 Patches

Layer 5: Top-9

Visualizing Convnets

• Optimize input to maximize particular ouput
– Lots of approaches, e.g. Erhan et al. [Tech Report

2009], Le et al. [NIPS 2010].
– Depend on initialization

• Google DeepDream
[http://googleresearch.blogspot.ch/2015/06/inceptionism-going-deeper-
into-neural.html]
– Maximize “banana”

output

Google DeepDream

https://photos.google.com/share/F1QipPX0SCl7OzWilt9LnuQliattX4OUCj_8EP65_cTVnBmS1jnYgsGQAieQUc1VQWd
gQ/photo/AF1QipMYTXpt0TvZ0Q5kubkGw8VAq2isxBuL02wKZafB?key=aVBxWjhwSzg2RjJWLWRuVFBBZEN1d20
5bUdEMnhB

Training Big ConvNets

• Stochastic Gradient Descent
– Compute (noisy estimate of) gradient on small batch

of data & make step
– Take as many steps as possible (even if they are noisy)
– Large initial learning rate
– Anneal learning rate

• Momentum
– Variants [Sutskever ICML 2012]

Annealing of Learning Rate

• Start large, slowly reduce
• Explore different scales of energy surface

Evolution of Features During Training

Evolution of Features During Training

Fooling Convnets

• Search for images that are misclassified
by the network

• Intriguing properties of neural
networks, Christian Szegedy et al. arXiv
1312.6199, 2013

• Deep Neural Networks are Easily
Fooled: High Confidence Predictions
for Unrecognizable Images, Anh
Nguyen, Jason Yosinski, Jeff Clune,
arXiv 1412.1897.

• Problem common to any discriminative
method

Deep Neural Networks are Easily Fooled:

High Confidence Predictions for Unrecognizable Images

Anh Nguyen
University of Wyoming
anguyen8@uwyo.edu

Jason Yosinski
Cornell University

yosinski@cs.cornell.edu

Jeff Clune
University of Wyoming
jeffclune@uwyo.edu

Full Citation: Nguyen A, Yosinski J, Clune J. Deep Neural Networks are Easily Fooled: High Confidence Predictions
for Unrecognizable Images. In Computer Vision and Pattern Recognition (CVPR ’15), IEEE, 2015.

Abstract

Deep neural networks (DNNs) have recently been
achieving state-of-the-art performance on a variety of
pattern-recognition tasks, most notably visual classification
problems. Given that DNNs are now able to classify objects
in images with near-human-level performance, questions
naturally arise as to what differences remain between com-
puter and human vision. A recent study [30] revealed that
changing an image (e.g. of a lion) in a way imperceptible to
humans can cause a DNN to label the image as something
else entirely (e.g. mislabeling a lion a library). Here we
show a related result: it is easy to produce images that are
completely unrecognizable to humans, but that state-of-the-
art DNNs believe to be recognizable objects with 99.99%
confidence (e.g. labeling with certainty that white noise
static is a lion). Specifically, we take convolutional neu-
ral networks trained to perform well on either the ImageNet
or MNIST datasets and then find images with evolutionary
algorithms or gradient ascent that DNNs label with high
confidence as belonging to each dataset class. It is possi-
ble to produce images totally unrecognizable to human eyes
that DNNs believe with near certainty are familiar objects,
which we call “fooling images” (more generally, fooling ex-
amples). Our results shed light on interesting differences
between human vision and current DNNs, and raise ques-
tions about the generality of DNN computer vision.

1. Introduction

Deep neural networks (DNNs) learn hierarchical lay-
ers of representation from sensory input in order to per-
form pattern recognition [2, 14]. Recently, these deep ar-
chitectures have demonstrated impressive, state-of-the-art,
and sometimes human-competitive results on many pattern
recognition tasks, especially vision classification problems
[16, 7, 31, 17]. Given the near-human ability of DNNs to
classify visual objects, questions arise as to what differences
remain between computer and human vision.

Figure 1. Evolved images that are unrecognizable to humans,
but that state-of-the-art DNNs trained on ImageNet believe with
� 99.6% certainty to be a familiar object. This result highlights
differences between how DNNs and humans recognize objects.
Images are either directly (top) or indirectly (bottom) encoded.

A recent study revealed a major difference between DNN
and human vision [30]. Changing an image, originally cor-
rectly classified (e.g. as a lion), in a way imperceptible to
human eyes, can cause a DNN to label the image as some-
thing else entirely (e.g. mislabeling a lion a library).

In this paper, we show another way that DNN and human
vision differ: It is easy to produce images that are com-
pletely unrecognizable to humans (Fig. 1), but that state-of-
the-art DNNs believe to be recognizable objects with over
99% confidence (e.g. labeling with certainty that TV static

1

ar
X

iv
:1

41
2.

18
97

v4
 [

cs
.C

V
]

2
A

pr
 2

01
5

Adversarial Examples

• Szegedy et al. arXiv 1312.6199, 2013

● !: the original input; y: the ground truth label; !∗: adversarial example
● Non-targeted adversarial examples: mislead the model to provide any wrong prediction

max
&∗

ℓ () !∗ , +
s. t. 		0 !, !∗ ≤ 2

● Targeted adversarial examples: mislead the model to provide the target prediction 3∗ ≠ 3
specified by the adversary

m56
&∗

ℓ () !∗ , +∗
s. t. 		0 !, !∗ ≤ 2

● 0 !,!∗ is an ℓ7	norm in most existing work
● B is a constant to make sure that !∗ is visually similar to !

Adversarial examples: the formulation

More material:
• Survey paper: https://arxiv.org/pdf/1911.05268.pdf
• Blog: http://karpathy.github.io/2015/03/30/breaking-convnets/
• CVPR 2021 Tutotal: https://advmlincv.github.io/cvpr21-tutorial/

Adversarial Attacks in Computer Vision: An Overview, Xinyun Chen, CVPR 2021 tutorial

http://karpathy.github.io/2015/03/30/breaking-convnets/

● 0 !,!∗ is the ℓ8	norm
● !∗ = ! + 2sgn =&ℓ () ! , +
● Simple yet effective attacks against models without defense
● Not effective against models with defense

Fast Gradient-Sign Method (FGSM): a one-step attack

Goodfellow et al. Explaining and Harnessing Adversarial Examples, ICLR 2015.

Adversarial Attacks in Computer Vision: An Overview, Xinyun Chen, CVPR 2021 tutorial

Black-Box
Model

Transfer to

Black-box attacks based on transferability

White-Box
Model

Adversarial examples

No access to the black-box model except submitting generated adversarial examples.

Adversarial Attacks in Computer Vision: An Overview, Xinyun Chen, CVPR 2021 tutorial

Non-targeted attacks on ImageNet

Liu, Chen, Liu, Song. Delving into Transferable Adversarial Examples and Black-box Attacks, ICLR 2017.

● RMSD: root mean square deviation 0 !,!∗ = ∑ !U∗ − !U
V/XU , X: image size

● All selected original images are predicted correctly by all models by top-1 accuracy.
● >60% adversarial examples are wrongly classified by different models.

Adversarial Attacks in Computer Vision: An Overview, Xinyun Chen, CVPR 2021 tutorial

Transferability of targeted attacks between two models is poor

<5% adversarial examples are predicted with the same label by two models.
Ground truth: running shoe

Adversarial Attacks in Computer Vision: An Overview, Xinyun Chen, CVPR 2021 tutorial

Universal Adversarial Examples

• Moosave-Dezfooli et al.
arXiv 1610.08401, Oct 2016

Universal adversarial perturbations

Seyed-Mohsen Moosavi-Dezfooli⇤†
seyed.moosavi@epfl.ch

Alhussein Fawzi⇤†
alhussein.fawzi@epfl.ch

Omar Fawzi‡
omar.fawzi@ens-lyon.fr

Pascal Frossard†

pascal.frossard@epfl.ch

Abstract

Given a state-of-the-art deep neural network classifier,
we show the existence of a universal (image-agnostic) and
very small perturbation vector that causes natural images
to be misclassified with high probability. We propose a sys-
tematic algorithm for computing universal perturbations,
and show that state-of-the-art deep neural networks are
highly vulnerable to such perturbations, albeit being quasi-
imperceptible to the human eye. We further empirically an-
alyze these universal perturbations and show, in particular,
that they generalize very well across neural networks. The
surprising existence of universal perturbations reveals im-
portant geometric correlations among the high-dimensional
decision boundary of classifiers. It further outlines poten-
tial security breaches with the existence of single directions
in the input space that adversaries can possibly exploit to
break a classifier on most natural images.

1. Introduction
Can we find a single small image perturbation that fools

a state-of-the-art deep neural network classifier on all nat-
ural images? We show in this paper the existence of such
quasi-imperceptible universal perturbation vectors that lead
to misclassify natural images with high probability. Specif-
ically, by adding such a quasi-imperceptible perturbation
to natural images, the label estimated by the deep neu-
ral network is changed with high probability (see Fig. 1).
Such perturbations are dubbed universal, as they are image-
agnostic. The existence of these perturbations is problem-
atic when the classifier is deployed in real-world (and pos-
sibly hostile) environments, as such a single perturbation
can be exploited by adversaries to break the classifier. In-
deed, the perturbation process involves the mere addition of

⇤The first two authors contributed equally to this work.
†École Polytechnique Fédérale de Lausanne, Switzerland
‡ENS de Lyon, LIP, UMR 5668 ENS Lyon - CNRS - UCBL - INRIA,

Université de Lyon, France

Joystick

Whiptail lizard

Balloon

Lycaenid

Tibetan mastiff

Thresher

Grille

Flagpole

Face powder

Laborador

Chihuahua

Chihuahua

Jay

Laborador

Laborador

Tibetan mastiff

Brabancon griffon

Border terrier

Figure 1: When added to a natural image, a universal per-
turbation image causes the image to be misclassified by the
deep neural network with high probability. Left images:
Original natural images. The labels are shown on top of
each arrow. Central image: Universal perturbation. Right
images: Perturbed images. The estimated labels of the per-
turbed images are shown on top of each arrow.

1

ar
X

iv
:1

61
0.

08
40

1v
1

 [c
s.C

V
]

26
 O

ct
 2

01
6

wool Indian elephant Indian elephant African grey

tabby African grey common newt carousel

grey fox macaw three-toed sloth macaw

Figure 3: Examples of perturbed images and their corresponding labels. The first two rows of images belong to the ILSVRC
2012 validations set, and the last row are random images taken by a mobile phone camera. We refer to the appendix for the
original images.

izability of universal perturbations across different architec-
tures on the ImageNet data set. This result shows that such
perturbations are of practical relevance, as they generalize
well across data points and architectures. In particular, in
order to fool a new image on an unknown neural network, a
mere addition of a universal perturbation computed on the
VGG-19 architecture is likely to misclassify the data point.

Visualization of the effect of universal perturbations.
To gain insights on the effect of universal perturbations on
natural images, we now visualize the distribution of labels
on the ImageNet validation set. Specifically, we build a di-
rected graph G = (V,E), whose vertices denote the labels,
and directed edges e = (i ! j) indicate that the majority of
images of class i are fooled into label j when applying the
universal perturbation. The existence of edges i ! j there-
fore suggests that the preferred fooling label for images of
class i is j. We construct this graph for GoogLeNet, and vi-
sualize the full graph in Appendix A for space constraints.
The visualization of this graph shows a very peculiar topol-

ogy. In particular, the graph is a union of disjoint compo-
nents, where all edges in one component mostly connect to
one target label. See Fig. 7 for an illustration of two differ-
ent connected components. This visualization clearly shows
the existence of several dominant labels, and that universal
perturbations mostly make natural images classified with
such labels. We hypothesize that these dominant labels oc-
cupy large regions in the image space, and therefore repre-
sent good candidate labels for fooling most natural images.
Note that such dominant labels are automatically found by
the algorithm to generate universal perturbations, and are
not imposed a priori in the computation of perturbations.

4. Explaining the vulnerability to universal
perturbations

The goal of this section is to analyze and explain the high
vulnerability of deep neural network classifiers to universal
perturbations. To understand the unique characteristics of
universal perturbations, we first compare such perturbations

Our approach: attacking an ensemble of models

Black-Box
Model

Transfer to

White-Box
Model

Adversarial examples

White-Box
ModelWhite-Box

ModelWhite-Box
Models

Intuition: If an adversarial example can fool N-1 white-box models, it might
transfer better to the N-th black-box model.

Liu, Chen, Liu, Song. Delving into Transferable Adversarial Examples and Black-box Attacks, ICLR 2017.

Adversarial Attacks in Computer Vision: An Overview, Xinyun Chen, CVPR 2021 tutorial

Non-targeted attacks with ensemble

● - Model: the model architecture is not included in the white-box ensemble.

● Ensemble further decreases the accuracy on adversarial examples, and decreases
the perturbation magnitude.

Adversarial Attacks in Computer Vision: An Overview, Xinyun Chen, CVPR 2021 tutorial

Invisibility Cloak
• https://www.cs.umd.edu/~tomg/projects/invisible/
• Adversarial attack on YOLO v2 person detector

https://www.cs.umd.edu/~tomg/projects/invisible/

References

• P. Felzenszwalb, R. Girshick, D. McAllester, D. Ramanan, Object Detection with
Discriminatively Trained Part Based Models,IEEE Transactions on Pattern Analysis and
Machine Intelligence, Vol. 32, No. 9, September 2010

• Zheng Song*, Qiang Chen*, Zhongyang Huang, Yang Hua, and Shuicheng Yan. Contextual-
izing Object Detection and Classification. In CVPR'11. (* indicates equal contribution) [No.
1 performance in VOC'10 classification task]

• Finding the Weakest Link in Person Detectors, D. Parikh, and C. L. Zitnick, CVPR, 2011.
• Gehler and Nowozin, On Feature Combination for Multiclass Object Classification,

ICCV’09
• Yoshua Bengio and Yann LeCun: Scaling learning algorithms towards AI, in Bottou, L. and

Chapelle, O. and DeCoste, D. and Weston, J. (Eds), Large-Scale Kernel Machines, MIT
Press, 2007

References

• S. Lazebnik, C. Schmid, and J. Ponce, Beyond Bags of Features: Spatial Pyramid Matching
for Recognizing Natural Scene Categories, CVPR 2006

• Christoph H. Lampert, Hannes Nickisch, Stefan Harmeling: "Learning To Detect Unseen
Object Classes by Between-Class Attribute Transfer", IEEE Computer Vision and Pattern
Recognition (CVPR), Miami, FL, 2009

• Riesenhuber, M. & Poggio, T. (1999). Hierarchical Models of Object Recognition in Cortex.
Nature Neuroscience 2: 1019-1025.

• http://www.scholarpedia.org/article/Neocognitron
• K. Fukushima: "Neocognitron: A self-organizing neural network model for a mechanism of

pattern recognition unaffected by shift in position", Biological Cybernetics, 36[4], pp. 193-
202 (April 1980).

• Y. LeCun, L. Bottou, Y. Bengio and P. Haffner: Gradient-Based Learning Applied to
Document Recognition, Proceedings of the IEEE, 86(11):2278-2324, November 1998

http://www.scholarpedia.org/article/Neocognitron

References

• Y-Lan Boureau, Jean Ponce, and Yann LeCun, A theoretical analysis of feature
pooling in vision algorithms, Proc. International Conference on Machine learning
(ICML'10), 2010

• Q.V. Le, J. Ngiam, Z. Chen, D. Chia, P. Koh, A.Y. Ng , Tiled Convolutional
Neural Networks. NIPS, 2010

• http://ai.stanford.edu/~quocle/TCNNweb
• Matthew D. Zeiler, Graham W. Taylor, and Rob Fergus, Adaptive

Deconvolutional Networks for Mid and High Level Feature Learning,
International Conference on Computer Vision(November 6-13, 2011)

• Yuanhao Chen, Long Zhu, Chenxi Lin, Alan Yuille, Hongjiang Zhang. Rapid
Inference on a Novel AND/OR graph for Object Detection, Segmentation and
Parsing. NIPS 2007.

http://ai.stanford.edu/~quocle/TCNNweb

References

• P. Smolensky, Parallel Distributed Processing: Volume 1: Foundations, D. E.
Rumelhart, J. L. McClelland, Eds. (MIT Press, Cambridge, 1986), pp. 194–281.

• G. E. Hinton, Neural Comput. 14, 1711 (2002).
• M. Ranzato, Y. Boureau, Y. LeCun. "Sparse Feature Learning for Deep Belief

Networks". Advances in Neural Information Processing Systems 20 (NIPS 2007).
• Hinton, G. E. and Salakhutdinov, R. R., Reducing the dimensionality of data with

neural networks. Science, Vol. 313. no. 5786, pp. 504 - 507, 28 July 2006.
• A. Torralba, K. P. Murphy and W. T. Freeman, Contextual Models for Object

Detection using Boosted Random Fields, Adv. in Neural Information Processing
Systems 17 (NIPS), pp. 1401-1408, 2005.

References

• Ruslan Salakhutdinov and Geoffrey Hinton, Deep Boltzmann Machines, 12th
International Conference on Artificial Intelligence and Statistics (2009).

• P. Felzenszwalb, R. Girshick, D. McAllester, D. Ramanan, Object Detection with
Discriminatively Trained Part Based Models,IEEE Transactions on Pattern
Analysis and Machine Intelligence, Vol. 32, No. 9, September 2010

• Long Zhu, Yuanhao Chen, Alan Yuille, William Freeman. Latent Hierarchical
Structural Learning for Object Detection. CVPR 2010.

• Matthew D. Zeiler, Graham W. Taylor, and Rob Fergus, Adaptive
Deconvolutional Networks for Mid and High Level Feature Learning,
International Conference on Computer Vision(November 6-13, 2011)

References

• S.C. Zhu and D. Mumford, A Stochastic Grammar of Images, Foundations and
Trends in Computer Graphics and Vision, Vol.2, No.4, pp 259-362, 2006.

• R. Girshick, P. Felzenszwalb, D. McAllester, Object Detection with Grammar
Models, NIPS 2011

• P. Felzenszwalb, D. Huttenlocher, Pictorial Structures for Object Recognition,
International Journal of Computer Vision, Vol. 61, No. 1, January 2005

• M. Fischler and R. Elschlager. The Representation and Matching of Pictoral
Structures. (1973)

• S. Fidler, M. Boben, A. Leonardis. A coarse-to-fine Taxonomy of Constellations
for Fast Multi-class Object Detection. ECCV 2010.

• S. Fidler and A. Leonardis. Towards Scalable Representations of Object
Categories: Learning a Hierarchy of Parts. CVPR 2007.

References

• Long Zhu, Chenxi Lin, Haoda Huang, Yuanhao Chen, Alan Yuille. Unsupervised Structure
Learning: Hierarchical Recursive Composition, Suspicious Coincidence and Competitive
Exclusion. ECCV 2008.

• Hinton, G. E., Krizhevsky, A. and Wang, S, Transforming Auto-encoders. ICANN-11:
International Conference on Artificial Neural Networks, 2011

• Matthew D. Zeiler, Graham W. Taylor, and Rob Fergus, Adaptive Deconvolutional
Networks for Mid and High Level Feature Learning, International Conference on Computer
Vision(November 6-13, 2011)

• Q.V. Le, M.A. Ranzato, R. Monga, M. Devin, K. Chen, G.S. Corrado, J. Dean, A.Y. Ng.,
Building high-level features using large scale unsupervised learning. ICML, 2012.

• Ruslan Salakhutdinov and Geoffrey Hinton, Deep Boltzmann Machines, 12th International
Conference on Artificial Intelligence and Statistics (2009).

References

• http://www.image-net.org/challenges/LSVRC/2010/
• Q.V. Le, M.A. Ranzato, R. Monga, M. Devin, K.

Chen, G.S. Corrado, J. Dean, A.Y. Ng., Building
high-level features using large scale unsupervised
learning. ICML, 2012.

• Q.V. Le, W.Y. Zou, S.Y. Yeung, A.Y. Ng., Learning
hierarchical spatio-temporal features for action
recognition with independent subspace analysis,
CVPR 2011

