
Neural Networks

Rob Fergus

Lecture 2

Overview

Individual neuron

Non-linearities (RELU, tanh, sigmoid)

Single layer model

Multiple layer models

Theoretical discussion: representational power

Examples shown decision surface for 1,2,3-layer nets

Training models

Backprop

Example modules

Special layers

Practical training tips

Setting learning rate

Debugging training

Regularization

Fergus, Miller, Puhrsch Introduction to Deep Learning

Additional Readings
Useful books and articles

Neural Networks for Pattern Reconition, Christopher M.
Bishop, Oxford University Press 1995.

Red/Green cover, NOT newer book with yellow/beige cover.

Andrej Karpathy’s CS231n Stanford Course on Neural Nets
http://cs231n.github.io/

Yann LeCun’s NYU Deep Learning course
http://cilvr.cs.nyu.edu/doku.php?id=courses:

deeplearning2015:start

Fergus, Miller, Puhrsch Introduction to Deep Learning

Neural Networks Overview
A bit more information about this

Neural nets composed of
layers of artificial neurons.

Each layer computes some
function of layer beneath.

Inputs mapped in
feed-forward fashion to
output.

Consider only feed-forward
neural models at the
moment, i.e. no cycles

...

...
...

Input Output

Fergus, Miller, Puhrsch Introduction to Deep Learning

Historical Overview
Origins of Neural Nets

Neural nets are an example of connectionism. Connectionism [Hebb
1940s] argues that complex behaviors arise from interconnected
networks of simple units. As opposed to formal operations on
symbols (computationalism).
Early work in 1940’s and 1950’s by Hebb, McCulloch and Pitts on
artificial neurons.
Perceptrons [Rosenblatt 1950’s]. Single layer networks with simple
learning rule.

Y LeCun
MA Ranzato

This Basic Model has not evolved much since the 50's

The first learning machine: the Perceptron
Built at Cornell in 1960

The Perceptron was a linear classifier on
top of a simple feature extractor
The vast majority of practical applications
of ML today use glorified linear classifiers
or glorified template matching.
Designing a feature extractor requires
considerable efforts by experts.

y=sign (∑
i=1

N

W i F i (X)+b)

A

Featur e Extra ctor

Wi

Perceptron book [Minsky and Pappert 1969]. Showed limitations of
single layer models (e.g. cannot solve XOR).

Fergus, Miller, Puhrsch Introduction to Deep Learning

Historical Overview
More recent history

Back-propagation algorithm [Rumelhart, Hinton, Williams
1986]. Practical way to train networks.

Neocognitron [Fukushima 1980]. Proto-ConvNet, inspired by
[Hubel & Weisel 1959].

Convolutional Networks [LeCun & others 1989].

Bigger datasets, e.g. [ImageNet 2009]

Neural Nets applied to speech [Hinton’s group 2011].

ConvNets applied to ImageNet Challenge 2012 [Krizhevsky,
Sutskever & Hinton NIPS 2012]

Last few years, improved ConvNet architectures. Closing on
human performance.

Fergus, Miller, Puhrsch Introduction to Deep Learning

An Individual Neuron
Also known as a unit

Input: x (n ⇥ 1 vector)

Parameters: weights w (n ⇥ 1
vector), bias b (scalar)

Activation: a =
P

n

i=1 xiwi

+ b.
Note a is a scalar.
Multiplicative interaction
between weights and input.

Point-wise non-linear function:
�(.), e.g. �(.) = tanh(.).

Output:
y = f (a) = �(

P
n

i=1 xiwi

+ b)

Can think of bias as weight w0,
connected to constant input 1:
y = f (w̃T [1, x]).

1 b

Fergus, Miller, Puhrsch Introduction to Deep Learning

Single Layer Network
Multiple outputs

Input: x (n ⇥ 1 vector)

m neurons

Parameters:
weight matrix W (n ⇥m)
bias vector b (m ⇥ 1)

Non-linear function �(.)

Output: y = �(Wx + b)
(m ⇥ 1)

...

...

x1

x2

x3

x

n

y1

y

m

Input
layer

Output
layer

Fergus, Miller, Puhrsch Introduction to Deep Learning

Non-linearities: Sigmoid

�(z) = 1
1+e

�z

Interpretation as firing rate of
neuron

Bounded between [0,1]

Saturation for large +ve,-ve
inputs

Gradients go to zero

Outputs centered at 0.5 (poor
conditioning)

Not used in practice

�6 �4 �2 2 4 6

0.5

1
y = sigmoid(x)

Fergus, Miller, Puhrsch Introduction to Deep Learning

Non-linearities: Tanh

�(z) = tanh(z)

Bounded in [+1,-1] range

Saturation for large +ve, -ve
inputs

Outputs centered at zero

Preferable to sigmoid

�6 �4 �2 2 4 6

�1

1
y = tanh(z)

Fergus, Miller, Puhrsch Introduction to Deep Learning

Non-linearities: Rectified Linear (ReLU)

�(z) = max(z , 0)

Unbounded output (on positive
side)

E�cient to implement:
d�(z)
dz

= {0, 1}.

Also seems to help convergence
(see 6x speedup vs tanh in
Krizhevsky et al.)

Drawback: if strongly in
negative region, unit is dead
forever (no gradient).

Default choice: widely used in
current models.

�6 �4 �2 2 4 6

2

4

6
y = ReLU(z)

Fergus, Miller, Puhrsch Introduction to Deep Learning

Non-linearities: Leaky RELU

Leaky Rectified Linear
�(z) = 1[z > 0]max(0, x) +
1[z < 0]max(0,↵z)

where ↵ is small, e.g. 0.02

Also known as probabilistic
ReLU (PReLU)

Has non-zero gradients
everywhere (unlike ReLU)

↵ can also be learned (see
Kaiming He et al. 2015).

�6 �4 �2 2 4 6

2

4

6
y = PReLU(z)

Fergus, Miller, Puhrsch Introduction to Deep Learning

Multiple Layers
A bit more information about this

Neural networks is composed
of multiple layers of neurons.

Acyclic structure. Basic
model assumes full
connections between layers.

Layers between input and
output are called hidden.

Various names used:
Artificial Neural Nets
(ANN)
Multi-layer Perceptron
(MLP)
Fully-connected network

Neurons typically called
units.

...

...
...

x1

x2

x3

x

n

h1

h

n

y1

y

n

Input
layer

Hidden
layer

Output
layer

Fergus, Miller, Puhrsch Introduction to Deep Learning

3 layer MLP

By convention, number of
layers is hidden + output
(i.e. does not include input).

So 3-layer model has 2
hidden layers.

Parameters: weight matrices
W

1,W 2,W 3 and bias
vectors b1, b2, b3.

...

...
...

...

x1

x2

x3

x

n

h

1
1

h

1
n

h

2
1

h

2
2

h

2
n

y1

y

n

Input
layer

Hidden1
layer

Hidden2
layer

Output
layer

Fergus, Miller, Puhrsch Introduction to Deep Learning

Architecture Selection for MLPs
How to pick number of layers and units/layer

No good answer:
Problem has now shifted from picking good features to picking
good architectures.
(Non-answer) Pick using validation set.
Hyper-parameter optimization [e.g. Snoek 2012
https://arxiv.org/pdf/1206.2944].
Active area of research.

For fully connected models, 2 or 3 layers seems the most that
can be e↵ectively trained (more later).

Regarding number of units/layer:
Parameters grows with (units/layer)2.
With large units/layer, can easily overfit.
For classificaion, helps to expand towards output.

Fergus, Miller, Puhrsch Introduction to Deep Learning

16

TOY EXAMPLE: SYNTHETIC DATA
1 input & 1 output
100 hidden units in each layer

Ranzato

17

1 input & 1 output
3 hidden layers

Ranzato

TOY EXAMPLE: SYNTHETIC DATA

Representational Power
What functions can you represent with an MLP?

1 layer? Linear decision surface.
2+ layers? In theory, can represent any function. Assuming
non-trivial non-linearity.

Bengio 2009,
http://www.iro.umontreal.ca/

~

bengioy/papers/ftml.pdf

Bengio, Courville, Goodfellow book
http://www.deeplearningbook.org/contents/mlp.html

Simple proof by M. Neilsen
http://neuralnetworksanddeeplearning.com/chap4.html

D. Mackay book http:

//www.inference.phy.cam.ac.uk/mackay/itprnn/ps/482.491.pdf

But issue is e�ciency: very wide two layers vs narrow deep
model?

In practice, more layers helps.

But beyond 3, 4 layers no improvement for fully connected
layers.

Fergus, Miller, Puhrsch Introduction to Deep Learning

Training a model: Overview
How to set the parameters

Given dataset {x , y}, pick appropriate cost function C .

Forward-pass (f-prop) examples through the model to get
predictions.

Get error using cost function C to compare prediction to
targets y .

Use back-propagation (b-prop) to pass error back through
model, adjusting parameters to minimize loss/energy E .

Back-propagation is essentially chain rule of derivatives back
through the model.

Each layer is di↵erentiable w.r.t. to parameters and input.

Once gradients obtained, use Stochastic Gradient Descent
(SGD) to update weights.

Fergus, Miller, Puhrsch Introduction to Deep Learning

Stochastic Gradient Descent

Want to minimize overall loss function E .

Loss is sum of individual losses over each example.

In gradient descent, we start with some initial set of
parameters ✓0

Update parameters: ✓k+1 ✓k + ⌘r✓.
k is iteration index, ⌘ is learning rate (scalar; set
semi-manually).

Gradients r✓ = @E
@✓ computed by b-prop.

In Stochastic gradient descent, compute gradient on sub-set
(batch) of data.

If batchsize=1 then ✓ is updated after each example.

Gradient direction is noisy, relative to average over all
examples (standard gradient descent).

Fergus, Miller, Puhrsch Introduction to Deep Learning

Computing Gradients in a multi-stage architecture
Forward Pass

Consider model with N layers.
Layer i has vector of weights
W

i

.

F-Prop (in red) takes input x
and passes it through each
layer F

i

: x
i

= F

i

(x
i�1,Wi

)

Output of each layer x
i

;
prediction x

n

is output of top
layer.

Cost function C compares x
n

to y .

Overall energy
E =

P
M

m=1 C (xm
n

, ym), i.e sum
over all examples of C (x

n

, y).

Y LeCun
MA Ranzato

Multimodule Systems: Cascade

Complex learning machines can be
built by assembling modules into
networks

 Simple example: sequential/layered
feed-forward architecture (cascade)

Forward Propagation:

[Figure: Y. LeCun and M. Ranzato]

Fergus, Miller, Puhrsch Introduction to Deep Learning

Computing	gradients
To	compute	the	gradients,	we	could	start	by	
wring	the	full	energy	E	as	a	function	of	the	
network	parameters.

11

And then compute the partial
derivatives… instead, we can use the
chain rule to derive a compact
algorithm: back-propagation

Matrix calculus

•We now define a function on vector x: y = F(x)
• If y is a scalar, then

• If y is a vector [m×1], then (Jacobian formulation):

The derivative of y is a row vector of size [1×n]

• x column vector of size [n×1]

The derivative of y is a matrix of size [m×n]
(m rows and n columns)

ROB FERGUS
……�

ROB FERGUS
……�

ROB FERGUS
……�

ROB FERGUS
.
.
.�

ROB FERGUS
.
.
.�

ROB FERGUS
.
.
.�

ROB FERGUS
.
.
.�

Matrix calculus

• If y is a scalar and x is a matrix of size [n×m], then

The output is a matrix of size [m×n]

ROB FERGUS
.
.
.�

ROB FERGUS
.
.
.�

ROB FERGUS
.
.
.�

ROB FERGUS
……�

ROB FERGUS
……�

Matrix calculus
• Chain rule:

For the function: z = h(x) = f (g(x))

and writing z=f(u), and u=g(x):

h’(x) = f’ (g(x)) g’(x)Its derivative is:

with p = length vector u = |u|, m = |z|, and n = |x|
[m×n] [m×p] [p×n]

Example, if |z|=1, |u| = 2, |x|=4

=h’(x) =

Matrix calculus
• Chain rule:

For the function: h(x) = fn(fn-1(…(f1(x))))

With u1= f1(x)
ui = fi(ui-1)
z = un= fn(un-1)

The derivative becomes a product of matrices:

(exercise: check that all the matrix dimensions work fine)

Computing gradients

The energy E is the sum of the costs

associated to each training example xm,

ym

Its gradient with respect to the networks

parameters is:

27

€

E θ() = C xn
m ,ym;θ()

m=1

M

∑

€

∂E
∂θ i

=
C xn

m,ym;θ()
∂θ im=1

M

∑

is how much E varies when the parameter θi is varied.

Computing gradients

28

€

C xn,y;θ() = C Fn xn−1,wn(),y()

We could write the cost function to get the gradients:

If we compute the gradient with respect to the parameters of  
the last layer (output layer) wn, using the chain rule:

€

θ = w1,w2,L ,wn[]with

€

∂C
∂wn

=
∂C
∂xn

⋅
∂xn
∂wn

=
∂C
∂xn

⋅
∂Fn xn−1,wn()

∂wn

(how much the cost changes when we change wn: is the product between how much the cost changes
when we change the output of the last layer and how much the output changes when we change the
layer parameters.)

ROB FERGUS
…�

Computing gradients: cost layer

29

If we compute the gradient with respect to the parameters of  
the last layer (output layer) wn, using the chain rule:

€

∂C
∂wn

=
∂C
∂xn

⋅
∂xn
∂wn

=
∂C
∂xn

⋅
∂Fn xn−1,wn()

∂wn

€

C(xn,y) =
1
2
xn − y

2

For example, for an Euclidean loss:

€

∂C
∂xn

= xn − y

The gradient is:

Will depend on the  
layer structure and  
non-linearity.

Computing gradients: layer i

30

€

C xn,y;θ() = C Fn Fn−1 F2 F1 x0,w1(),w2(),wn−1(),wn
⎛
⎝
⎜ ⎞

⎠
⎟ ,y⎛

⎝
⎜

⎞
⎠
⎟

We could write the full cost function to get the gradients:

If we compute the gradient with respect to wi, using the chain rule:

€

∂C
∂wi

=
∂C
∂xn

⋅
∂xn
∂xn−1

⋅
∂xn−1
∂xn−2

⋅K ⋅
∂xi+1
∂xi

⋅
∂xi
∂wi

€

∂C
∂xi

And this can be 
computed iteratively!

€

∂Fi xi−1,wi()
∂wi

This is easy.

ROB FERGUS
…�

Backpropagation

€

∂C
∂wi

=
∂C
∂xn

⋅
∂xn
∂xn−1

⋅
∂xn−1
∂xn−2

⋅K ⋅
∂xi+1
∂xi

⋅
∂xi
∂wi

€

∂C
∂xi

€

∂Fi xi−1,wi()
∂wi

€

∂C
∂xi−1

=
∂C
∂xi

⋅
∂xi
∂xi−1

If we have the value of we can compute the gradient at the  
layer bellow as:

€

∂C
∂xi

€

∂Fi xi−1,wi()
∂xi−1

Gradient  
layer i

Gradient  
layer i-1

ROB FERGUS
…�

Hidden layer i Fi(xi-1, Wi)

Fi+1

Fi-1
€

∂Fi(xi−1,wi)
∂xi−1

€

∂Fi(xi−1,wi)
∂wi

• For layer i, we need the derivatives:

• We compute the outputs

xi

€

xi = Fi(xi−1,wi)

€

∂C
∂xi−1

€

∂C
∂xi−1

=
∂C
∂xi

⋅
∂Fi(xi−1,wi)

∂xi−1
• The weight update equation is:

€

∂C
∂wi

=
∂C
∂xi

⋅
∂Fi(xi−1,wi)

∂wi

Backpropagation: layer i

€

wi
k+1← wi

k +ηt
∂E
∂wi

(sum over all 
 training examples  
to get E)

Forward 
pass

Backward  
pass

• Layer i has two inputs (during training)

€

∂C
∂xi

€

∂C
∂xi

xi-1

xi-1

F1(x0, W1)

F2(x1, W2)

Fi(xi-1, Wi)

Fn(xn-1, Wn)

x0

x1

x2

xi-1

xi

xn-1…
…

xn(output)

(input)

E

C(Xn,Y)

y

Backpropagation: summary
• Forward pass: for each

training example.

Compute the outputs for

all layers

• Backwards pass: compute

cost derivatives iteratively

from top to bottom:

• Compute gradients and

update weights.

€

xi = Fi(xi−1,wi)

€

∂C
∂xi−1

=
∂C
∂xi

⋅
∂Fi(xi−1,wi)

∂xi−1

€

∂C
∂xi

€

∂C
∂xn

€

∂C
∂x2

€

∂C
∂x1

€

∂C
∂xi−1

Linear Module

34

F(xin, W)

xout

€

∂C
∂xout

xin

€

∂C
∂xin €

xout = F(xin ,W) =Wxin

With W being a  
matrix of size  
|xout|×|xin|

€

∂xouti
∂xin j

=Wij

• Forward propagation:

• Backprop to input:

If we look at the j component of output xout, with respect to the i component of the

input, xin:

€

∂C
∂xin

=
∂C
∂xout

⋅
∂F(xin ,W)

∂xin
=
∂C
∂xout

⋅
∂xout
∂xin

€

∂F(xin ,W)
∂xin

=W

Therefore:

€

∂C
∂xin

=
∂C
∂xout

⋅W

Linear Module

35

• Backprop to weights:

€

∂C
∂W

=
∂C
∂xout

⋅
∂F(xin ,W)

∂W
=
∂C
∂xout

⋅
∂xout
∂W

F(xin, W)

xout

€

∂C
∂xout

xin

€

∂C
∂xin

If we look at how the parameter Wij changes the cost, only the i component of the

output 
will change, therefore:

€

∂C
∂Wij

=
∂C
∂xouti

⋅
xouti
∂Wij

€

xout = F(xin ,W) =Wxin• Forward propagation:

€

=
∂C
∂xouti

⋅ xin j

€

∂xouti
∂Wij

= xin j

€

Wij
k+1←Wij

k +ηt
∂E
∂Wij

(sum over all 
 training examples  
to get E)

And now we can update the weights (by summing over all the training examples):

€

∂C
∂W

= xin ⋅
∂C
∂xout

Linear Module

xout

€

∂C
∂xout

xin

€

∂C
∂xin€

xout =Wxin

€

∂C
∂xin

=
∂C
∂xout

⋅W

€

∂C
∂W

= xin ⋅
∂C
∂xout

Weight updates

€

W k+1←W k +ηt
∂E
∂W
⎛

⎝
⎜

⎞

⎠
⎟
T

Pointwise function

F(xin, W)

xout

€

∂C
∂xout

xin

€

∂C
∂xin

• Forward propagation:

€

xouti = h(xini + bi)
h = an arbitrary function, bi is a bias term.

• Backprop to input:

€

∂C
∂xini

=
∂C
∂xouti

⋅
∂xouti
∂xini

=
∂C
∂xouti

⋅ h'(xini + bi)

• Backprop to bias:

€

∂C
∂bi

=
∂C
∂xouti

⋅
∂xouti
∂bi

=
∂C
∂xouti

⋅ h'(xini + bi)

We use this last expression to update the bias.

€

tanh'(x) =1− tanh2(x)For hyperbolic tangent:

For ReLU: h(x) = max(0,x) h’(x) = 1 [x>0]

Some useful derivatives:

Pointwise function

xout

€

∂C
∂xout

xin

€

∂C
∂xin

Weight updates

€

bi
k+1← bi

k +ηt
∂E
∂bi€

xouti = h(xini + bi)

€

∂C
∂xini

=
∂C
∂xouti

⋅ h'(xini + bi)

€

∂C
∂bi

=
∂C
∂xouti

⋅ h'(xini + bi)

Euclidean cost module

C

€

∂C
∂C

=1

xin

€

∂C
∂xin

€

C =
1
2
xin − y

2

€

∂C
∂xin

= xin − y

y

Back propagation example

node 1

node 2

node 3

node 4

node 5

w13=1

0.2

-3

1

1

-1

Training data:

input

desired output

1.0 0.1 0.5
node 1 node 2 node 5

input

output

tanh

tanh

linear

Learning rate = -0.2 (because we used positive increments)

Euclidean loss

Exercise: run one iteration of back propagation

Back propagation example

node 1

node 2

node 3

node 4

node 5

w13=1.02

0.17

-3

1

1.02

-0.99

input output

tanh

tanh

linear

node 1

node 2

node 3

node 4

node 5

w13=1

0.2

-3

1

1

-1

input output

tanh

tanh

linear

After one iteration (rounding to two digits):

42

Toy Code: Neural Net Trainer in
MATLAB% F-PROP

for i = 1 : nr_layers - 1
 [h{i} jac{i}] = logistic(W{i} * h{i-1} + b{i});
end
h{nr_layers-1} = W{nr_layers-1} * h{nr_layers-2} + b{nr_layers-1};
prediction = softmax(h{l-1});

% CROSS ENTROPY LOSS
loss = - sum(sum(log(prediction) .* target));

% B-PROP
dh{l-1} = prediction - target;
for i = nr_layers – 1 : -1 : 1
 Wgrad{i} = dh{i} * h{i-1}';
 bgrad{i} = sum(dh{i}, 2);
 dh{i-1} = (W{i}' * dh{i}) .* jac{i-1};
end

% UPDATE
for i = 1 : nr_layers - 1
 W{i} = W{i} – (lr / batch_size) * Wgrad{i};
 b{i} = b{i} – (lr / batch_size) * bgrad{i};
end

Ranzato

43

1 input & 1 output
3 hidden layers, 1000 hiddens
Regression of cosine

Ranzato

TOY EXAMPLE: SYNTHETIC DATA

44

1 input & 1 output
3 hidden layers, 1000 hiddens
Regression of cosine

Ranzato

TOY EXAMPLE: SYNTHETIC DATA

Alternate Topologies

Models with complex graph
structures can be trained by
backprop.

Each node in the graph must
be di↵erentiable w.r.t.
parameters and inputs.

If no cycles exist, then b-prop
takes a single pass.

If cycles exist, we have a
recurrent network which will be
discussed in subsequent
lectures.

Y LeCun
MA Ranzato

Any Architecture works

Any connection is permissible
Networks with loops must be

“unfolded in time”.

Any module is permissible
As long as it is continuous and

differentiable almost everywhere

with respect to the parameters, and

with respect to non-terminal inputs.

[Figure: Y. LeCun and M. Ranzato]

Fergus, Miller, Puhrsch Introduction to Deep Learning

Branch / Plus Module

Plus module has K inputs
x1, . . . , xK . Output is sum of
inputs: x

out

=
P

K

k=1 xk

Plus B-prop: @E
@x

k

= @E
@x

out

8k

Branch module has a single
input, but K outputs
x1, . . . , xK that are just copies
of input: x

k

= x

in

8k
Branch B-prop:
@E
@x

in

=
P

K

k=1
@E
@x

k

.

+

Plus&Module
+

Branch(Module

[Slide: Y. LeCun and M. Ranzato]

Fergus, Miller, Puhrsch Introduction to Deep Learning

Softmax Module

Single input x . Normalized output vector z , i.e.
P

i

z

i

=1.

F-Prop: z
i

= exp��x
iP

k

exp��x
k

� is ”temperature”, usually set to 1.

B-prop:
If i = j , then @z

i

@x
j

= z

i

(1� z

i

).

If i 6= j , then @z
i

@x
j

= �z

i

z

j

.

Often combined with cross-entropy cost function:
E = �

P
C

c=1 yi log(zi).

Conveniently, this yields b-prop: @E
@x

i

= x

i

� y

i

.

Fergus, Miller, Puhrsch Introduction to Deep Learning

Practical Tips for Backprop
[from M. Ranzato and Y. LeCun]

Use ReLU non-linearities (tanh and logistic are falling out of favor).

Use cross-entropy loss for classification.

Use Stochastic Gradient Descent on minibatches.

Shu✏e the training samples.

Normalize the input variables (zero mean, unit variance). More on
this later.

Schedule to decrease the learning rate

Use a bit of L1 or L2 regularization on the weights (or a
combination) But it’s best to turn it on after a couple of epochs

Use dropout for regularization (Hinton et al 2012
http://arxiv.org/abs/1207.0580)

See also [LeCun et al. E�cient Backprop 1998]

And also Neural Networks, Tricks of the Trade (2012 edition) edited
by G. Montavon, G. B. Orr, and K-R Muller (Springer)

Fergus, Miller, Puhrsch Introduction to Deep Learning

Training

• Many parameters: O(106+)
• 2nd order methods not practical (Hessian too big)

• Big datasets: O(106)
• Expensive to compute full objective, i.e. loss on all examples

• Use 1st order methods and update using subset of examples
• Pick random batch at each iteration

Stochastic Gradient Descent (SGD)

• Fixed learning rate
• Large as possible without being unstable, e.g. 0.01

• Momentum term
• Typically ~0.9
• Smooths updates à helps convergence
• Also Nesterov version: apply momentum before gradient

Setting the Learning Rate

Learning rate ⌘ has dramatic
e↵ect on resulting model.

Pretend energy surface is
quadratic bowl (in reality,
much more complex).

Gradient descent direction is
just local, so if surface is highly
elipitical then easy to have
learning rate too large and
oscillate.

Di�cult to have single learning
rate that works for all
dimensions.

Reminder:!The!error!surface!for!a!linear!neuron!

•  The!error!surface!lies!in!a!space!with!a!
horizontal!axis!for!each!weight!and!one!ver@cal!
axis!for!the!error.!!
–  For!a!linear!neuron!with!a!squared!error,!it!is!

a!quadra@c!bowl.!!
–  Ver@cal!cross9sec@ons!are!parabolas.!!
–  Horizontal!cross9sec@ons!are!ellipses.!

•  For!mul@9layer,!non9linear!nets!the!error!surface!
is!much!more!complicated.!
–  But!locally,!a!piece!of!a!quadra@c!bowl!is!

usually!a!very!good!approxima@on.!

E!

w1!

w2!

How!the!learning!goes!wrong!

•  If!the!learning!rate!is!big,!the!weights!slosh!to!
and!fro!across!the!ravine.!!
–  If!the!learning!rate!is!too!big,!this!

oscilla@on!diverges.!
•  What!we!would!like!to!achieve:!

–  Move!quickly!in!direc@ons!with!small!but!
consistent!gradients.!

–  Move!slowly!in!direc@ons!with!big!but!
inconsistent!gradients.!

E!

w!

[Figures: G. Hinton]

Fergus, Miller, Puhrsch Introduction to Deep Learning

Annealing of Learning Rate

Constant learning rate ⌘ typically not optimal.

Start with largest value that for which training loss decreases, e.g.
0.1.

Then train until validation error flatens out.

Divide ⌘ by, say, 0.3.

Repeat.

Fergus, Miller, Puhrsch Introduction to Deep Learning

AdaGrad

• Learning rate now scaled per-dimension
• Decreased for dimensions with high variance
• Issue: learning rate monotonically decreases
• Stop making progress after while

[Adaptive Subgradient Methods for Online Learning and Stochastic Optimization, Duchi et
al., JMLR 2011]

RMSProp

• Similar to AdaGrad, but now with moving average
• Small emphasizes recent gradients

ADAM
• ADApative Moment Estimation
• Combines AdaGrad and RMSProp

• Idea: maintain moving averages of gradient and
gradient2

• Update

For more details, see:
https://moodle2.cs.huji.ac.il/nu15/pluginfile.php/316969/mod_resour
ce/content/1/adam_pres.pdf

[Adam: A Method for Stochastic Optimization, Kingma & Ba, arXiv:1412.6980]

https://moodle2.cs.huji.ac.il/nu15/pluginfile.php/316969/mod_resource/content/1/adam_pres.pdf

Batch-size
• [Accurate, Large Minibatch SGD: Training ImageNet in

1 Hour, Goyal et al., arXiv 1706.02677, 2017]

• Scale learning rate with batch-size

• Large-batch size efficiently implemented via
synchronous parallel training

Accurate, Large Minibatch SGD:
Training ImageNet in 1 Hour

Priya Goyal Piotr Dollár Ross Girshick Pieter Noordhuis
Lukasz Wesolowski Aapo Kyrola Andrew Tulloch Yangqing Jia Kaiming He

Facebook

Abstract

Deep learning thrives with large neural networks and
large datasets. However, larger networks and larger
datasets result in longer training times that impede re-
search and development progress. Distributed synchronous
SGD offers a potential solution to this problem by dividing
SGD minibatches over a pool of parallel workers. Yet to
make this scheme efficient, the per-worker workload must
be large, which implies nontrivial growth in the SGD mini-
batch size. In this paper, we empirically show that on the
ImageNet dataset large minibatches cause optimization dif-
ficulties, but when these are addressed the trained networks
exhibit good generalization. Specifically, we show no loss
of accuracy when training with large minibatch sizes up to
8192 images. To achieve this result, we adopt a hyper-
parameter-free linear scaling rule for adjusting learning
rates as a function of minibatch size and develop a new
warmup scheme that overcomes optimization challenges
early in training. With these simple techniques, our Caffe2-
based system trains ResNet-50 with a minibatch size of 8192
on 256 GPUs in one hour, while matching small minibatch
accuracy. Using commodity hardware, our implementation
achieves ⇠90% scaling efficiency when moving from 8 to
256 GPUs. Our findings enable training visual recognition
models on internet-scale data with high efficiency.

1. Introduction

Scale matters. We are in an unprecedented era in AI
research history in which the increasing data and model
scale is rapidly improving accuracy in computer vision
[22, 41, 34, 35, 36, 16], speech [17, 40], and natural lan-
guage processing [7, 38]. Take the profound impact in com-
puter vision as an example: visual representations learned
by deep convolutional neural networks [23, 22] show excel-
lent performance on previously challenging tasks like Ima-
geNet classification [33] and can be transferred to difficult
perception problems such as object detection and segmen-

64 128 256 512 1k 2k 4k 8k 16k 32k 64k

mini-batch size

20

25

30

35

40

Im
a

g
e

N
e

t
to

p
-1

 v
a

lid
a

tio
n

 e
rr

o
r

Figure 1. ImageNet top-1 validation error vs. minibatch size.
Error range of plus/minus two standard deviations is shown. We
present a simple and general technique for scaling distributed syn-
chronous SGD to minibatches of up to 8k images while maintain-
ing the top-1 error of small minibatch training. For all minibatch
sizes we set the learning rate as a linear function of the minibatch
size and apply a simple warmup phase for the first few epochs of
training. All other hyper-parameters are kept fixed. Using this
simple approach, accuracy of our models is invariant to minibatch
size (up to an 8k minibatch size). Our techniques enable a lin-
ear reduction in training time with ⇠90% efficiency as we scale
to large minibatch sizes, allowing us to train an accurate 8k mini-
batch ResNet-50 model in 1 hour on 256 GPUs.

tation [8, 10, 28]. Moreover, this pattern generalizes: larger
datasets and neural network architectures consistently yield
improved accuracy across all tasks that benefit from pre-
training [22, 41, 34, 35, 36, 16]. But as model and data
scale grow, so does training time; discovering the potential
and limits of large-scale deep learning requires developing
novel techniques to keep training time manageable.

The goal of this report is to demonstrate the feasibility of,
and to communicate a practical guide to, large-scale train-
ing with distributed synchronous stochastic gradient descent
(SGD). As an example, we scale ResNet-50 [16] training,
originally performed with a minibatch size of 256 images
(using 8 Tesla P100 GPUs, training time is 29 hours), to
larger minibatches (see Figure 1). In particular, we show
that with a large minibatch size of 8192, we can train
ResNet-50 in 1 hour using 256 GPUs while maintaining

1

ar
X

iv
:1

70
6.

02
67

7v
2

 [c
s.C

V
]

30
 A

pr
 2

01
8

Momentum
To speed convergence

Add momentum term to the weight update.

Encourages updates to keep following previous direction.

Damps oscillations in directions of high curvature.

Builds up speed in directions with gentle but consistent gradient.

Usually helps speed up convergence.

✓k+1 ✓k + ↵(�✓)k�1 � ⌘r✓
↵ typically around 0.9.

[Slide: G. Hinton]

Fergus, Miller, Puhrsch Introduction to Deep Learning

Nesterov Momentum

Simple idea.

Update weights with momentum vector.

Then measure gradient and take step.

This is opposite order to regular momentum.
A!picture!of!the!Nesterov!method!!

•  First!make!a!big!jump!in!the!direc@on!of!the!previous!accumulated!gradient.!
•  Then!measure!the!gradient!where!you!end!up!and!make!a!correc@on.!

!

brown!vector!=!jump,!!!!!!!red!vector!=!correc@on,!!!!!!!green!vector!=!accumulated!gradient!
!
blue!vectors!=!standard!momentum!

[Figure: G. Hinton]

Fergus, Miller, Puhrsch Introduction to Deep Learning

Batch Normalization

Batch Normalization: Accelerating Deep Network Training by
Reducing Internal Covariate Shift, Sergey Io↵e, Christian
Szegedy, arXiv:1502.03167

Fergus, Miller, Puhrsch Introduction to Deep Learning

Local Minima
Non-convexity of energy surface

Non-convexity means there are multiple minima.

Gradient descent is local method: minima you fall into
depends on your initial starting point.

Maybe some mimima have much lower energy than others?

The Loss Surfaces of Multilayer Networks Choromanska et al.
http://arxiv.org/pdf/1412.0233v3.pdf

Fergus, Miller, Puhrsch Introduction to Deep Learning

DropOut

G. E. Hinton, N. Srivastava, A.
Krizhevsky, I. Sutskever and R.
R. Salakhutdinov, Improving
neural networks by preventing
co-adaptation of feature
detectors, arXiv:1207.0580
2012

Fully connected layers only.

Randomly set activations in
layer to zero

Gives ensemble of models

Similar to bagging
[Breiman94], but di↵ers in that
parameters are shared

Fergus, Miller, Puhrsch Introduction to Deep Learning

Debugging Training
What to do when its not working

Training diverges:
Learning rate may be too large decrease learning rate
BPROP is buggy numerical gradient checking

Parameters collapse / loss is minimized but accuracy is low
Check loss function:
Is it appropriate for the task you want to solve?
Does it have degenerate solutions? Check pull-up term.

Network is underperforming
Compute flops and nr. params. if too small, make net larger
Visualize hidden units/params fix optmization

Network is too slow
Compute flops and nr. params. GPU,distrib. framework,
make net smaller

Fergus, Miller, Puhrsch Introduction to Deep Learning

Debugging Training (2)
What to do when its not working

Inspect hidden units.

Should be sparse across samples and features (left).

In bad training, strong correlations are seen (right), and also
units ignore input.

[Figures: M. Ranzato]

Fergus, Miller, Puhrsch Introduction to Deep Learning

Debugging Training (3)
What to do when its not working

Visualize weights

[Figure: M. Ranzato]

Fergus, Miller, Puhrsch Introduction to Deep Learning

Regularization
The Intuition

Better to have big model and regularize, than unfit with small
model.

Fergus, Miller, Puhrsch Introduction to Deep Learning

Regularizing the model
Help to prevent over-fitting

Weight sharing (greatly reduce the number of parameters)

Data augmentation (e.g., jittering, noise injection, etc.)

Dropout.

Weight decay (L2, L1).

Sparsity in the hidden units.

Multi-task learning.

Fergus, Miller, Puhrsch Introduction to Deep Learning

