
Lecture 13
Stereo Reconstruction

Slides from A. Zisserman & S. Lazebnik



Overview

• Single camera geometry
• Recap of Homogenous coordinates
• Perspective projection model
• Camera calibration

• Stereo Reconstruction
• Epipolar geometry
• Stereo correspondence 
• Triangulation



Single camera geometry



Projection



Projection



Projective Geometry

• Recovery of structure from one image is inherently 
ambiguous

• Today focus on geometry that maps world to camera 
image

x

X? X? X?



Recall: Pinhole camera model

• Principal axis: line from the camera center 
perpendicular to the image plane

• Normalized (camera) coordinate system: camera 
center is at the origin and the principal axis is the z-axis
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Recall: Pinhole camera model

PXx =



Recap: Homogeneous coordinates

• Is this a linear transformation?

Trick:  add one more coordinate:

homogeneous image 
coordinates

homogeneous scene 
coordinates

Converting from homogeneous coordinates

• no—division by z is nonlinear

Slide by Steve Seitz
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Principal point

• Principal point (p): point where principal axis intersects the 
image plane (origin of normalized coordinate system)

• Normalized coordinate system: origin is at the principal point
• Image coordinate system: origin is in the corner
• How to go from normalized coordinate system to image 

coordinate system?
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Principal point offset

principal point: ),( yx pp
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Pixel coordinates

• mx pixels per meter in horizontal direction, 
my pixels per meter in vertical direction

Pixel size: 
yx mm
11

´

pixels/m m pixels



( )C~-X~RX~ cam =

Camera rotation and translation

• In general, the camera 
coordinate frame will 
be related to the world 
coordinate frame by a 
rotation and a 
translation

coords. of point 
in camera frame

coords. of camera center 
in world frame

coords. of a point
in world frame (nonhomogeneous)
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Camera rotation and translation

In non-homogeneous
coordinates:

Note: C is the null space of the camera projection matrix (PC=0)



Camera parameters
• Intrinsic parameters

• Principal point coordinates
• Focal length
• Pixel magnification factors
• Skew (non-rectangular pixels)
• Radial distortion
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Camera parameters
• Intrinsic parameters

• Principal point coordinates
• Focal length
• Pixel magnification factors
• Skew (non-rectangular pixels)
• Radial distortion

• Extrinsic parameters
• Rotation and translation relative to world coordinate 

system



Camera calibration

• Given n points with known 3D coordinates Xi and known 
image projections xi, estimate the camera parameters

? P

Xi

xi
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Camera calibration
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Camera calibration

• P has 11 degrees of freedom (12 parameters, but 
scale is arbitrary)

• One 2D/3D correspondence gives us two linearly 
independent equations

• Homogeneous least squares
• 6 correspondences needed for a minimal solution
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Camera calibration

• Note: for coplanar points that satisfy ΠTX=0,
we will get degenerate solutions (Π,0,0), (0,Π,0), or 
(0,0,Π)
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Camera calibration

• Once we’ve recovered the numerical form of the camera 
matrix, we still have to figure out the intrinsic and 
extrinsic parameters

• This is a matrix decomposition problem, not an 
estimation problem (see F&P sec. 3.2, 3.3) 



CSE 576, Spring 2008 Projective Geometry 23

Alternative:  multi-plane calibration  

Images courtesy Jean-Yves Bouguet, Intel Corp.

Advantage
• Only requires a plane
• Don’t have to know positions/orientations
• Good code available online!

– Intel’s OpenCV library: http://www.intel.com/research/mrl/research/opencv/

– Matlab version by Jean-Yves Bouget:  
http://www.vision.caltech.edu/bouguetj/calib_doc/index.html

– Zhengyou Zhang’s web site:  http://research.microsoft.com/~zhang/Calib/

http://www.intel.com/research/mrl/research/opencv/
http://www.vision.caltech.edu/bouguetj/calib_doc/index.html
http://research.microsoft.com/~zhang/Calib/


Stereo Reconstruction

known
camera

viewpoints

Shape (3D) from two (or more) images



Example
images

shape

surface 
reflectance



Scenarios

The two images can arise from

• A stereo rig consisting of two cameras
• the two images are acquired simultaneously

or 

• A single moving camera (static scene)
• the two images are acquired sequentially

The two scenarios are geometrically equivalent



Stereo head

Camera on a mobile vehicle 



The objective 

Given two images of a scene acquired by known cameras compute the 
3D position of the scene (structure recovery)

Basic principle: triangulate from corresponding  image points

• Determine 3D  point at intersection of two back-projected rays



Corresponding points are images of the same scene point

Triangulation

C C /

The back-projected points generate rays which intersect at the
3D scene point



An algorithm for stereo reconstruction

1. For each point in the first image determine the 
corresponding point in the second image

(this is a search problem)

2. For each pair of matched points determine the 3D 
point by triangulation

(this is an estimation problem)



The correspondence problem

Given a point x in one image find the corresponding point in the other 
image

This appears to be a 2D search problem, but it is reduced to a 1D search 
by the epipolar constraint



1. Epipolar geometry

• the geometry of two cameras
• reduces the correspondence problem to a line search

2. Stereo correspondence algorithms

3. Triangulation

Outline



Notation

x x /

X

C C /

The two cameras are P and P/, and a 3D point X is imaged as 

for equations involving homogeneous quantities ‘=’ means ‘equal up to 
scale’

P P/

Warning



Epipolar geometry



Epipolar geometry

Given an image point in one view, where is the corresponding point 
in the other view?

epipolar line

?

baseline

• A point in one view  “generates” an epipolar line in the other view
• The corresponding point lies on this line

epipole C /C



Epipolar line

Epipolar constraint
• Reduces correspondence problem to 1D search along an 

epipolar line



Epipolar geometry continued

Epipolar geometry is a consequence of the coplanarity of the camera 
centres and scene point

x x /

X

C C /

The camera centres, corresponding points and scene point lie 
in a single plane, known as the epipolar plane



Nomenclature

• The epipolar line l/ is the image of the ray through x

• The epipole e is the point of intersection of the line joining the camera centres 
with the image plane

this line is the baseline for a stereo rig, and

the translation vector for a moving camera

• The epipole is the image of the centre of the other camera: e = PC/ ,  e/ = P/C

x x /

X

C C /

e

left epipolar line
right epipolar line

e
/

l/



The epipolar pencil

e e /

baseline

X

As the position of the 3D point X varies, the epipolar planes “rotate” about 
the baseline. This family of planes is known as an epipolar pencil. All 
epipolar lines intersect at the epipole.

(a pencil is a one parameter family)



The epipolar pencil

e e /

baseline

X

As the position of the 3D point X varies, the epipolar planes “rotate” about 
the baseline. This family of planes is known as an epipolar pencil. All 
epipolar lines intersect at the epipole.

(a pencil is a one parameter family)



Epipolar geometry example I: parallel cameras

Epipolar geometry depends only on the relative pose (position and 
orientation) and internal parameters of the two cameras, i.e. the position of 
the camera centres and image planes. It does not depend on the scene 
structure (3D points external to the camera).



Epipolar geometry example II: converging cameras

Note, epipolar lines are in general not parallel

e e /



Homogeneous notation for lines



• The line l through the two points p and q is  l = p x q

Example: compute the point of intersection of the two lines l and m       
in the figure below

Proof

y

x

1

2

• The intersection of two lines l and m is the point x = l x m

l

m

which is the point (2,1)



Matrix representation of the vector cross product



Example: compute the cross product of l and m



Algebraic representation of epipolar geometry

We know that the epipolar geometry defines a mapping

x                       l/

point in first 
image

epipolar line in 
second image



P

Derivation of the algebraic expression

Outline

Step 1: for a point x in the first image 
back project a ray with camera P

Step 2: choose two points on the ray and 
project into the second image with camera P/

Step 3: compute the line through the two 
image points using the relation l/ = p x q

P/



• choose camera matrices

internal 
calibration rotation translation

from world to camera 
coordinate frame

• first camera

world coordinate frame aligned with first camera

• second camera



Step 1: for a point x in the first image 
back project a ray with camera

P

A point x back projects to a ray

where Z is the point’s depth, since

satisfies



Step 2: choose two points on the ray and 
project into the second image with camera P/

P/

Consider two points on the ray

• Z = 0 is the camera centre

• Z = is the point at infinity

Project these two points into the second view



Using the identity

Compute the line through the points

F

F is the fundamental matrix

Step 3: compute the line through the two 
image points using the relation l/ = p x q



Example I: compute the fundamental matrix for a parallel camera stereo rig

• reduces to y = y/ , i.e. raster correspondence (horizontal scan-lines)

f

f

X Y
Z



f

f

X Y
Z

Geometric interpretation ?



Example II: compute F for a forward translating camera

f

f

X Y
Z



f

f

X Y
Z

first image second image







Summary: Properties of the Fundamental matrix



Admin Interlude

Class Project details

On Thurs Dec 16th:

1. Presentation session (7.10pm)
2 Slides / 2 mins per team
Google slide deck
Upload to Google folder here

2. Project report (5-8 pages)
I will be grading, not TAs
Upload to Google folder here
One upload per team

https://drive.google.com/drive/folders/1o-PvKey3SoY6JK3oMlzCw0EtI6Z26J1F?usp=sharing
https://drive.google.com/drive/folders/1o-PvKey3SoY6JK3oMlzCw0EtI6Z26J1F?usp=sharing


Stereo correspondence 
algorithms



Problem statement

Given: two images and their associated cameras compute
corresponding image points.

Algorithms may be classified into two types:
1. Dense: compute a correspondence at every pixel
2. Sparse: compute correspondences only for features

The methods may be top down or bottom up



Top down matching 

1. Group model (house, windows, etc) independently in 
each image

2. Match points (vertices) between images



Bottom up matching
• epipolar geometry reduces the correspondence search from 2D 
to a 1D search on corresponding epipolar lines

• 1D correspondence problem

b/
a/

b
ca

CBA

c/



Correspondence algorithms 

Algorithms may be top down or bottom up – random dot stereograms 
are an existence proof that bottom up algorithms are possible

From here on only consider bottom up algorithms

Algorithms may be classified into two types:
1. Dense: compute a correspondence at every pixel
2. Sparse: compute correspondences only for features



Example image pair – parallel cameras



First image



Second image



Dense correspondence algorithm

Search problem (geometric constraint): for each point in the left image, the 
corresponding point in the right image lies on the epipolar line (1D ambiguity)

Disambiguating assumption (photometric constraint): the intensity 
neighbourhood of corresponding points are similar across images

Measure similarity of neighbourhood intensity by cross-correlation 

Parallel camera example – epipolar lines are corresponding rasters 

epipolar 
line



Intensity profiles

• Clear correspondence between intensities, but also noise and ambiguity



Cross-correlation of neighbourhood regions

epipolar 
line

translate so that mean is zero 

(exercise)



left image band

right image band

cross 
correlation

1

0

0.5

x



left image band

right image band

cross 
correlation

1

0

x

0.5

target region



Why is cross-correlation such a poor measure in the second case?
1. The neighbourhood region does not have a “distinctive” spatial intensity 

distribution

2. Foreshortening effects

fronto-parallel surface
imaged length the same

slanting surface
imaged lengths differ



Limitations of similarity constraint

Textureless surfaces Occlusions, repetition

Non-Lambertian surfaces, specularities



Results with window search

Window-based matching Ground truth

Data



Sketch of a dense correspondence algorithm

For each pixel in the left image
• compute the neighbourhood cross correlation along the 

corresponding epipolar line in the right image
• the corresponding pixel is the one with the highest cross 

correlation
Parameters

• size (scale) of neighbourhood
• search disparity 

Other constraints
• uniqueness
• ordering
• smoothness of disparity field

Applicability
• textured scene, largely fronto-parallel



Stereo matching as energy minimization

MAP estimate of disparity image D: )()|,(),|( 2121 DPDIIPIIDP µ

I1 I2 D

W1(i) W2(i+D(i)) D(i)

)(),,( smooth21data DEDIIEE ba +=

)(log)|,(log),|(log 2121 DPDIIPIIDP --µ-
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Stereo matching as energy minimization

I1 I2 D

• Energy functions of this form can be minimized using 
graph cuts

Y. Boykov, O. Veksler, and R. Zabih, Fast Approximate Energy Minimization 
via Graph Cuts,  PAMI 2001

W1(i) W2(i+D(i)) D(i)

)(),,( smooth21data DEDIIEE ba +=

( )å -=
ji

jDiDE
,neighbors

smooth )()(r( )221data ))(()(å +-=
i

iDiWiWE

http://www.csd.uwo.ca/~yuri/Papers/pami01.pdf


Graph cuts solution

Graph cuts Ground truth

For the latest and greatest:  http://www.middlebury.edu/stereo/

Y. Boykov, O. Veksler, and R. Zabih, Fast Approximate Energy 
Minimization via Graph Cuts,  PAMI 2001

http://www.middlebury.edu/stereo/
http://www.csd.uwo.ca/~yuri/Papers/pami01.pdf


Example dense correspondence algorithm

left image right image



right image depth map

3D reconstruction

intensity = depth

anim%5Cfountain.bak.wrl


Texture mapped 3D triangulation



range map

Pentagon example
left image right image



Rectification

e e /

For converging cameras
• epipolar lines are not parallel



Project images onto plane parallel to baseline

epipolar plane



Rectification continued

Convert converging cameras to parallel camera 
geometry by an image mapping

Image mapping is a 2D homography (projective transformation)

(exercise)



Rectification continued

Convert converging cameras to parallel camera 
geometry by an image mapping

Image mapping is a 2D homography (projective transformation)

(exercise)



Example original stereo pair

rectified stereo pair



Note
• image movement (disparity) is inversely proportional to depth Z

• depth is inversely proportional to disparity

Example: depth and disparity for a parallel camera stereo rig

Then, y/= y, and the disparity

Derivation

x

x/
d



Depth from disparity

f

x x’

baseline

z

C C’

X

f



Triangulation



1. Vector solution

C C /

Compute the mid-point of the shortest line between the 
two rays



2. Linear triangulation (algebraic solution)



Problem: does not minimize anything meaningful

Advantage: extends to more than two views



3. Minimizing a geometric/statistical error



• It can be shown that if the measurement noise is 
Gaussian mean zero,                  , then minimizing 
geometric error is the Maximum Likelihood Estimate of X

• The minimization appears to be over three parameters 
(the position X), but the problem can be reduced to a 
minimization over one parameter



Different formulation of the problem



Minimization method
• Parametrize the pencil of epipolar lines in the first image by t, 
such that the epipolar line is l(t)
• Using F compute the corresponding epipolar line in the second 
image l/ (t)

• Express the distance function                                 explicitly as a 
function of t

• Find the value of t that minimizes the distance function

• Solution is a 6th degree polynomial in t

java%5CApplets%5CTriangulation.html


Typical Stereo Algorithm

I Define a matching cost function.
I Sum of absolute differences.

I The census transform.

I For each patch in the left image, search, along the epipolar
line, for the patch in the right image with the smallest
matching cost.

I Left image:

I Right image:



Our Approach

I Learn the matching cost function.
I Construct a binary classification dataset.

I Use supervised learning.

Left patch Right patch Label

Good match

Bad match

...
...

Zbontar & LeCun, Computing the Stereo Matching Cost with a 
Convolutional Neural Network, CVPR 2015.  



Constructing the Dataset

I One training example comprises two patches, one from the left
and one from the right image:

< PL
n⇥n(p),PR

n⇥n(q) >

I PL
n⇥n(p) is a n ⇥ n patch from the left image,

centered at p = (x , y)

I The true disparity d is obtained from stereo datasets (KITTI
and Middlebury).

I Positive example: q = (x � d , y)

I Negative example: q = (x � d + oneg, y)
I oneg chosen randomly from [�Nhi,�Nlo] [ [Nlo,Nhi].

I Nlo, Nhi, and n are hyperparameters of the method.



The Accurate Architecture

Concatenate

Fully-connected, ReLU

Fully-connected, ReLU

Fully-connected, ReLU

Fully-connected, Sigmoid

Righ input patch

Convolution, ReLU

Convolution, ReLU

Convolution, ReLU

Left input patch

Convolution, ReLU

Convolution, ReLU

Convolution, ReLU

Similarity score



The KITTI Stereo Dataset

I Geiger et al. (2012). Vision meets Robotics: The KITTI Dataset.
I Menze, Geiger (2015). Object Scene Flow for Autonomous Vehicles.

I Ground truth is obtained by a LIDAR sensor.
I ⇠200 training and ⇠200 test image pairs at 1240 ⇥ 376.



Cross-Based Cost Aggregation

I Left input image:

I Before:

I After:

Raw output from CNN

After post-processing



The Middlebury Stereo Dataset

I Scharstein et al. (2014). High-resolution stereo datasets with
subpixel-accurate ground truth.

I Ground truth is obtained by structured light.
I 60 training and 15 test image pairs at up to 3000 ⇥ 2000.



Results on the Middlebury stereo dataset ~2017



Results on the Middlebury stereo dataset ~2017
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Figure 1. Examples of our predictions on images from Holopix50K [16] dataset. We show left images of the stereo pairs and their
corresponding predicted disparities. Our results achieve high accuracy and exhibit high-quality details for fine-structured objects.

Abstract

With the advent of convolutional neural networks, stereo
matching algorithms have recently gained tremendous
progress. However, it remains a great challenge to accu-
rately extract disparities from real-world image pairs taken
by consumer-level devices like smartphones, due to practi-
cal complicating factors such as thin structures, non-ideal
rectification, camera module inconsistencies and various
hard-case scenes. In this paper, we propose a set of in-
novative designs to tackle the problem of practical stereo
matching: 1) to better recover fine depth details, we design
a hierarchical network with recurrent refinement to update
disparities in a coarse-to-fine manner, as well as a stacked
cascaded architecture for inference; 2) we propose an adap-
tive group correlation layer to mitigate the impact of erro-
neous rectification; 3) we introduce a new synthetic dataset
with special attention to difficult cases for better generaliz-
ing to real-world scenes. Our results not only rank 1st on
both Middlebury and ETH3D benchmarks, outperforming
existing state-of-the-art methods by a notable margin, but
also exhibit high-quality details for real-life photos, which
clearly demonstrates the efficacy of our contributions.

*Equal contribution. † Corresponding author.

1. Introduction

Stereo matching is a classical research topic of computer
vision, the goal of which, given a pair of rectified images,
is to compute the displacement between two corresponding
pixels, namely “disparity” [34]. It plays an important role
in many applications, including autonomous driving, aug-
mented reality, simulated bokeh rendering and so forth.

Recently, with the support of large synthetic datasets
[5, 27, 46], convolutional neural network (CNN) based
stereo matching methods have taken the accuracy of dis-
parity estimation to a new height [8, 23, 44]. However, to
make the algorithm truly practical in the scenario of every-
day consumer photography, we are still faced with three ma-
jor obstacles.

Firstly, it remains a complicated issue for most existing
algorithms to precisely recover the disparity of fine image
details, or thin structures such as nets and wire frames. The
fact that consumer photos are being produced in higher res-
olutions only serves to worsen the problem. In computa-
tional bokeh, for instance, disparity error around fine details
would result in degraded rendering results that are unpleas-
ing to human perception [32]. Secondly, perfect rectifica-
tion [24, 56] is hard to obtain for real-world stereo image
pairs, as they are often produced by camera modules with
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is to compute the displacement between two corresponding
pixels, namely “disparity” [34]. It plays an important role
in many applications, including autonomous driving, aug-
mented reality, simulated bokeh rendering and so forth.

Recently, with the support of large synthetic datasets
[5, 27, 46], convolutional neural network (CNN) based
stereo matching methods have taken the accuracy of dis-
parity estimation to a new height [8, 23, 44]. However, to
make the algorithm truly practical in the scenario of every-
day consumer photography, we are still faced with three ma-
jor obstacles.

Firstly, it remains a complicated issue for most existing
algorithms to precisely recover the disparity of fine image
details, or thin structures such as nets and wire frames. The
fact that consumer photos are being produced in higher res-
olutions only serves to worsen the problem. In computa-
tional bokeh, for instance, disparity error around fine details
would result in degraded rendering results that are unpleas-
ing to human perception [32]. Secondly, perfect rectifica-
tion [24, 56] is hard to obtain for real-world stereo image
pairs, as they are often produced by camera modules with
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Figure 2. An overview of our proposed network. Left: A pair of stereo images I1 and I2 are fed into two shared-weight feature extraction
networks to produce a 3-level feature pyramid, which is used to compute different scales of correlations in the 3 stages of cascaded recurrent
networks. The feature pyramid of I1 also provides context information for latter update blocks and offsets computation. In each stage of
the cascades, the features and the predicted disparities are refined iteratively using the Recurrent Update Module (RUM, Sec. 3.2), and
the final output disparity of the former stage is fed to the next as an initialization. For each iteration in RUM, we apply Adaptive Group
Correlation Layer (AGCL, Sec. 3.1) to compute the correlation. Right: Our proposed stacked cascaded architecture in inference phase,
which takes an image pyramid as input, taking advantage of multi-level context, as detailed in Sec. 3.3 .

3. Methods

In this section we present the key components of the
proposed Cascaded REcurrent Stereo matching network
(CREStereo) and our new synthetic dataset.

3.1. Adaptive Group Correlation Layer

We observe that it is difficult to implement perfect cali-
bration for real-world stereo cameras. For instance, the two
cameras may not be strictly placed on the horizontal epipo-
lar line, resulting in slight rotations in 3D space; or images
from camera lenses usually have residual distortion even af-
ter they are rectified. As a result, for a stereo image pair,
the corresponding points may not locate on the same scan-
line. We thus propose an Adaptive Group Correlation Layer
(AGCL) to reduce the matching ambiguity in this situation,
achieving better performance compared to all-pairs match-
ing [23, 45] while only local correlation is computed.

Local Feature Attention. Instead of computing global
correlation for every pair of pixels, we only match points
in a local window to avoid large memory consumption and
computation cost. In light of LoFTR [41] for sparse feature
matching, we add an attention module before correlation
computation in the first stage of cascades in order to ag-
gregate global context information in single or cross feature
maps. Following [41], we add positional encoding to the
backbone output, which enhances positional dependence of
the feature maps. The self and cross attention is computed
alternately, where a linear attention layer is used to reduce
computation complexity.

2D-1D Alternate Local Search. Different from the
flow estimation network RAFT [45] and its stereo version
[23] where all-pairs correlation is computed by a matrix
multiplication of two C⇥H ⇥W feature maps, which out-
puts a 4D H⇥W⇥H⇥W or 3D H⇥W⇥W cost volume,

we only compute correlation in a local search window that
outputs a much smaller volume of H ⇥ W ⇥ D to save
the memory and computation cost. H and W denote the
height and width of the feature maps, and D is the number
of correlation pairs much smaller than W . Our correlation
computation is also distinct from cost volume based stereo
networks like [7,18,49,51] where the search range is related
to the maximum displacement of foreground objects. This
fixed range is much larger than the number of local corre-
lation pairs we use, which leads to more noisy interference.
Furthermore, we don’t need to preset the range when the
model generalizes to stereo pairs with different baselines.

Given two resampled and attended feature maps F1 and
F2, the local correlation at position (x, y) can be denoted as

Corr(x, y, d) =
1

C

CX

i=1

F1(i, x, y)F2(i, x
0
, y

0), (1)

where x
0 = x + f(d), y0 = y + g(d), Corr(x, y, d) 2

RH⇥W⇥D is the matching cost of d-th (d 2 [0, D�1]) cor-
relation pair, C is the number of feature channels, f(d) and
g(d) denote the fixed offset of current pixels in horizontal
and vertical directions.

Traditionally, search direction between two rectified im-
ages only lies on the epipolar line in stereo matching. To
deal with non-ideal stereo rectification cases, we adopt a
2D-1D alternate local search strategy to improve the match-
ing accuracy. In 1D search mode, we set g(d) = 0 and
f(d) 2 [�r, r], where r = 4. Positive displacement value
of f(d) is reserved to adjust inaccurate results after every it-
erative sampling. The results computed by Eq. 1 are stacked
and concatenated at channel dimension for the final correla-
tion volume. In 2D search mode, a k ⇥ k grid with dilation
l similar to dilated convolution [53] is used for correlation
computation. We set k =

p
2r + 1 to make sure the out-
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Figure 3. The architecture of proposed modules. Left: Recurrent Update Module (RUM). Right: Adaptive Group Correlation Layer
(AGCL). Details are described in Sec. 3.2 and Sec. 3.1, respectively.

put features have the same number of channels so that they
can be fed to a shared-weight update block. Cooperating
with iterative resampling, alternate local search also acts as
a propagation module for recurrent refinement, where the
network learns to replace the biased prediction on current
location with its more accurate neighbors.

Deformable search window. Stereo matching often suf-
fers from ambiguity in occlusion or textureless areas. Cor-
relation computed in a fixed-shape local search window
tends to be vulnerable to those cases. Extending deformable
convolution [57] to correlation computation, we use a con-
tent adaptive search window for correlation pairs genera-
tion, which is different from AANet [49] where a simi-
lar strategy is adopted only in cost aggregation. With the
learned additional offset dx and dy, the new correlation can
be computed as

Corr(x, y, d) =
1

C

CX

i=1

F1(i, x, y)F2(i, x
00
, y

00) (2)

where x
00 = x + f(d) + dx, y00 = y + g(d) + dy. Fig. 4

shows how offsets change the formation of a conventional
search window.

Group-wise correlation. Inspired by [12] which intro-
duces the group-wise 4D cost volume, we split the fea-
ture map into G groups to compute local correlation indi-
vidually. Finally, we concatenate G correlation volumes of
D⇥H ⇥W in channel dimension to get the GD⇥H ⇥W

output volume. The procedure is shown in Fig. 3.

3.2. Cascaded Recurrent Network

For non-texture or repetitive-texture areas, matching is
more robust using low-res and high-level feature maps due
to large receptive field and sufficient semantic information.
However the details of fine structures may be lost in such
feature maps. In order to maintain robustness and preserve
the details in high-res input simultaneously, we propose cas-
caded recurrent refinement for correlation computing and
disparity updating.

Recurrent Update Module. We build a Recurrent Up-
date Module (RUM) based on GRU blocks and our Adap-
tive Group Correlation Layer (AGCL). Unlike in RAFT

offset

offset

2D

1D

Figure 4. Illustration of the adaptive local correlation. The top and
the bottom are 2D and 1D situations respectively, which share the
same number of searched neighbors to produce correlation maps
in the same shape.

[45] where the feature pyramid is constructed in a single
correlation layer with the output being merged into one vol-
ume, we compute correlations for every feature map respec-
tively in different cascade levels and refine the disparities
for several iterations independently. As is shown in Fig. 3,
the “sampler” samples locations of grouped feature taking
coordinate grid derived from fn as input. {f1, ..., fn} are
intermediate predictions of n iterations with initialization
f0. Current correlation volume is constructed with learned
offsets o 2 R2⇥(2r+1)⇥h⇥w. The GRU blocks update cur-
rent prediction and feed it to the AGCL in next iteration.

Cascaded Refinement. Except for the first level of
cascades, which starts at 1/16 of the input resolution with
disparity initialized to all zeros, other levels take the up-
sampled version of prediction from previous level as initial-
ization. Though handling different levels of refinement, all
RUMs share the same weights. After the last refinement
level, convex upsampling [45] is conducted to get the final
prediction at input resolution.

3.3. Stacked Cascades for Inference

As is discussed in previous sections, during training we
use a three-level feature pyramid at fixed resolutions to do
hierarchical refinement. However, for images of higher res-
olution as input, more downsampling should be done in or-
der to enlarge the receptive field for extracted features and
correlation computation. But for small objects with large
displacement in high resolution images, features in these
regions may suffer from deterioration with direct down-
sampling. To solve this problem, we designed a stacked
cascaded architecture with shortcuts for inference. Specifi-
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Figure 1. Examples of our predictions on images from Holopix50K [16] dataset. We show left images of the stereo pairs and their
corresponding predicted disparities. Our results achieve high accuracy and exhibit high-quality details for fine-structured objects.

Abstract

With the advent of convolutional neural networks, stereo
matching algorithms have recently gained tremendous
progress. However, it remains a great challenge to accu-
rately extract disparities from real-world image pairs taken
by consumer-level devices like smartphones, due to practi-
cal complicating factors such as thin structures, non-ideal
rectification, camera module inconsistencies and various
hard-case scenes. In this paper, we propose a set of in-
novative designs to tackle the problem of practical stereo
matching: 1) to better recover fine depth details, we design
a hierarchical network with recurrent refinement to update
disparities in a coarse-to-fine manner, as well as a stacked
cascaded architecture for inference; 2) we propose an adap-
tive group correlation layer to mitigate the impact of erro-
neous rectification; 3) we introduce a new synthetic dataset
with special attention to difficult cases for better generaliz-
ing to real-world scenes. Our results not only rank 1st on
both Middlebury and ETH3D benchmarks, outperforming
existing state-of-the-art methods by a notable margin, but
also exhibit high-quality details for real-life photos, which
clearly demonstrates the efficacy of our contributions.

*Equal contribution. † Corresponding author.

1. Introduction

Stereo matching is a classical research topic of computer
vision, the goal of which, given a pair of rectified images,
is to compute the displacement between two corresponding
pixels, namely “disparity” [34]. It plays an important role
in many applications, including autonomous driving, aug-
mented reality, simulated bokeh rendering and so forth.

Recently, with the support of large synthetic datasets
[5, 27, 46], convolutional neural network (CNN) based
stereo matching methods have taken the accuracy of dis-
parity estimation to a new height [8, 23, 44]. However, to
make the algorithm truly practical in the scenario of every-
day consumer photography, we are still faced with three ma-
jor obstacles.

Firstly, it remains a complicated issue for most existing
algorithms to precisely recover the disparity of fine image
details, or thin structures such as nets and wire frames. The
fact that consumer photos are being produced in higher res-
olutions only serves to worsen the problem. In computa-
tional bokeh, for instance, disparity error around fine details
would result in degraded rendering results that are unpleas-
ing to human perception [32]. Secondly, perfect rectifica-
tion [24, 56] is hard to obtain for real-world stereo image
pairs, as they are often produced by camera modules with
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Active stereo with structured light

• Project “structured” light patterns onto the object
• simplifies the correspondence problem
• Allows us to use only one camera

camera 

projector

L. Zhang, B. Curless, and S. M. Seitz. Rapid Shape Acquisition Using Color Structured 
Light and Multi-pass Dynamic Programming. 3DPVT 2002

http://grail.cs.washington.edu/projects/moscan/


Active stereo with structured light

L. Zhang, B. Curless, and S. M. Seitz. Rapid Shape Acquisition Using Color 
Structured Light and Multi-pass Dynamic Programming. 3DPVT 2002

http://grail.cs.washington.edu/projects/moscan/


Microsoft Kinect



Laser scanning

• Optical triangulation
• Project a single stripe of laser light
• Scan it across the surface of the object
• This is a very precise version of structured light scanning

Digital Michelangelo Project
http://graphics.stanford.edu/projects/mich/

Source: S. Seitz

http://graphics.stanford.edu/projects/mich/


Laser scanned models

The Digital Michelangelo Project, Levoy et al.

Source: S. Seitz



Laser scanned models

The Digital Michelangelo Project, Levoy et al.

Source: S. Seitz



Laser scanned models

The Digital Michelangelo Project, Levoy et al.

Source: S. Seitz



Laser scanned models

The Digital Michelangelo Project, Levoy et al.

Source: S. Seitz



Laser scanned models

The Digital Michelangelo Project, Levoy et al.

Source: S. Seitz



Aligning range images

• A single range scan is not sufficient to describe a 
complex surface

• Need techniques to register multiple range images

B. Curless and M. Levoy, A Volumetric Method for Building Complex Models from 
Range Images, SIGGRAPH 1996

http://graphics.stanford.edu/papers/volrange/


Aligning range images

• A single range scan is not sufficient to describe a 
complex surface

• Need techniques to register multiple range images

• … which brings us to multi-view stereo



Structure from motion



Multiple-view geometry questions
• Scene geometry (structure): Given 2D point 

matches in two or more images, where are the 
corresponding points in 3D?

• Correspondence (stereo matching): Given a 
point in just one image, how does it constrain the 
position of the corresponding point in another 
image?

• Camera geometry (motion): Given a set of 
corresponding points in two or more images, what 
are the camera matrices for these views?

Slide: S. Lazebnik



Structure from motion
• Given: m images of n fixed 3D points 

xij = Pi Xj , i = 1, … , m,    j = 1, … , n  

• Problem: estimate m projection matrices Pi and 
n 3D points Xj from the mn correspondences xij

x1j

x2j

x3j

Xj

P1

P2

P3

Slide: S. Lazebnik



Structure from motion ambiguity
• If we scale the entire scene by some factor k and, at 

the same time, scale the camera matrices by the 
factor of 1/k, the projections of the scene points in the 
image remain exactly the same:

It is impossible to recover the absolute scale of the scene!

)(1 XPPXx k
k

÷
ø
ö

ç
è
æ==

Slide: S. Lazebnik



Structure from motion ambiguity
• If we scale the entire scene by some factor k and, at 

the same time, scale the camera matrices by the 
factor of 1/k, the projections of the scene points in the 
image remain exactly the same 

• More generally: if we transform the scene using a 
transformation Q and apply the inverse 
transformation to the camera matrices, then the 
images do not change

( )( )QXPQPXx -1==

Slide: S. Lazebnik



Types of ambiguity
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• With no constraints on the camera calibration matrix or on the 
scene, we get a projective reconstruction

• Need additional information to upgrade the reconstruction to 
affine, similarity, or Euclidean

Slide: S. Lazebnik



Projective ambiguity
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Projective ambiguity



Affine ambiguity
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Affine



Affine ambiguity



Similarity ambiguity
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Similarity ambiguity



Structure from motion
• Let’s start with affine cameras (the math is easier)

center at
infinity



Recall: Orthographic Projection
Special case of perspective projection

• Distance from center of projection to image plane is infinite

• Projection matrix:

Image World

Slide by Steve Seitz



Orthographic Projection

Parallel Projection

Affine cameras



Affine cameras
• A general affine camera combines the effects of an 

affine transformation of the 3D space, orthographic 
projection, and an affine transformation of the image:

• Affine projection is a linear mapping + translation in 
inhomogeneous coordinates
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Affine structure from motion
• Given: m images of n fixed 3D points:

xij = Ai Xj + bi ,     i = 1,… , m,  j = 1, … , n  

• Problem: use the mn correspondences xij  to estimate 
m projection matrices Ai and translation vectors bi, 
and n points Xj

• The reconstruction is defined up to an arbitrary affine 
transformation Q (12 degrees of freedom):

• We have 2mn knowns and 8m + 3n unknowns (minus 
12 dof for affine ambiguity)

• Thus, we must have 2mn >= 8m + 3n – 12
• For two views, we need four point correspondences
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Affine structure from motion
• Centering: subtract the centroid of the image points

• For simplicity, assume that the origin of the world 
coordinate system is at the centroid of the 3D points

• After centering, each normalized point xij is related to 
the 3D point Xi by

( )

ji

n

k
kji

n

k
ikiiji

n

k
ikijij

n

nn

XAXXA

bXAbXAxxx

ˆ1

11ˆ

1

11

=÷
ø

ö
ç
è

æ
-=

+-+=-=

å

åå

=

==

jiij XAx =ˆ



Affine structure from motion
• Let’s create a 2m× n data (measurement) matrix:
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C. Tomasi and T. Kanade. Shape and motion from image streams under orthography: 
A factorization method. IJCV, 9(2):137-154, November 1992. 

http://www.eecs.berkeley.edu/~yang/courses/cs294-6/papers/TomasiC_Shape%20and%20motion%20from%20image%20streams%20under%20orthography.pdf


Affine structure from motion
• Let’s create a 2m× n data (measurement) matrix:
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The measurement matrix D = MS must have rank 3!

C. Tomasi and T. Kanade. Shape and motion from image streams under orthography: 
A factorization method. IJCV, 9(2):137-154, November 1992. 

http://www.eecs.berkeley.edu/~yang/courses/cs294-6/papers/TomasiC_Shape%20and%20motion%20from%20image%20streams%20under%20orthography.pdf


Factorizing the measurement matrix

Source: M. Hebert



Factorizing the measurement matrix
• Singular value decomposition of D:

Source: M. Hebert



Factorizing the measurement matrix
• Singular value decomposition of D:

Source: M. Hebert



Factorizing the measurement matrix
• Obtaining a factorization from SVD:

Source: M. Hebert



Factorizing the measurement matrix
• Obtaining a factorization from SVD:

Source: M. Hebert

This decomposition minimizes
|D-MS|2



Affine ambiguity

• The decomposition is not unique. We get the same D 
by using any 3×3 matrix C and applying the 
transformations M → MC, S →C-1S

• That is because we have only an affine transformation 
and we have not enforced any Euclidean constraints 
(like forcing the image axes to be perpendicular, for 
example)

Source: M. Hebert



• Orthographic: image axes are perpendicular 
and of unit length

Eliminating the affine ambiguity

x

Xa1

a2

a1 · a2 = 0

|a1|2 = |a2|2 = 1

Source: M. Hebert



Solve for orthographic constraints

• Solve for L = CCT

• Recover C from L by Cholesky decomposition: 
L = CCT

• Update A and X: A = AC, X = C-1X
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Algorithm summary
• Given: m images and n features xij

• For each image i, center the feature coordinates
• Construct a 2m × n measurement matrix D:

• Column j contains the projection of point j in all views
• Row i contains one coordinate of the projections of all the n 

points in image i
• Factorize D:

• Compute SVD: D = U W VT
• Create U3 by taking the first 3 columns of U
• Create V3 by taking the first 3 columns of V
• Create W3 by taking the upper left 3 × 3 block of W

• Create the motion and shape matrices:
• M = U3W3

½  and S = W3
½ V3

T (or M = U3 and S = W3V3
T)

• Eliminate affine ambiguity
Source: M. Hebert



Reconstruction results

C. Tomasi and T. Kanade. Shape and motion from image streams under orthography: 
A factorization method. IJCV, 9(2):137-154, November 1992. 

http://www.eecs.berkeley.edu/~yang/courses/cs294-6/papers/TomasiC_Shape%20and%20motion%20from%20image%20streams%20under%20orthography.pdf


Dealing with missing data
• So far, we have assumed that all points are visible in 

all views
• In reality, the measurement matrix typically looks 

something like this:

cameras

points



Dealing with missing data
• Possible solution: decompose matrix into dense sub-

blocks, factorize each sub-block, and fuse the results
• Finding dense maximal sub-blocks of the matrix is NP-

complete (equivalent to finding maximal cliques in a graph)
• Incremental bilinear refinement

(1) Perform 
factorization on a 
dense sub-block

(2) Solve for a new 
3D point visible by 
at least two known 
cameras (linear 
least squares)

(3) Solve for a new 
camera that sees at 
least three known 
3D points (linear 
least squares)

F. Rothganger, S. Lazebnik, C. Schmid, and J. Ponce. Segmenting, Modeling, and 
Matching Video Clips Containing Multiple Moving Objects. PAMI 2007.

http://www-cvr.ai.uiuc.edu/ponce_grp/publication/paper/pami06.pdf


Projective structure from motion
• Given: m images of n fixed 3D points 

• xij = Pi Xj , i = 1,… , m,    j = 1, … , n
• Problem: estimate m projection matrices Pi and n 3D points 

Xj from the mn corresponding points xij

x1j

x2j

x3j

Xj

P1

P2

P3

Slides from Lana Lazebnik 



Projective structure from motion
• Given: m images of n fixed 3D points 

• xij = Pi Xj , i = 1,… , m,    j = 1, … , n
• Problem: estimate m projection matrices Pi

and n 3D points Xj from the mn corresponding 
points xij

• With no calibration info, cameras and points 
can only be recovered up to a 4x4 projective 
transformation Q:

• X → QX, P → PQ-1

• We can solve for structure and motion when 
• 2mn >= 11m +3n – 15

• For two cameras, at least 7 points are needed



Bundle adjustment
• Non-linear method for refining structure and motion
• Minimizing reprojection error
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Self-calibration
• Self-calibration (auto-calibration) is the process of 

determining intrinsic camera parameters directly from 
uncalibrated images

• For example, when the images are acquired by a 
single moving camera, we can use the constraint that 
the intrinsic parameter matrix remains fixed for all the 
images
• Compute initial projective reconstruction and find 3D 

projective transformation matrix Q such that all camera 
matrices are in the form Pi = K [Ri | ti]

• Can use constraints on the form of the calibration 
matrix: zero skew



Review: Structure from motion
• Ambiguity
• Affine structure from motion

• Factorization
• Dealing with missing data

• Incremental structure from motion
• Projective structure from motion

• Bundle adjustment
• Self-calibration



Summary: 3D geometric vision
• Single-view geometry

• The pinhole camera model
– Variation: orthographic projection

• The perspective projection matrix
• Intrinsic parameters
• Extrinsic parameters
• Calibration

• Multiple-view geometry
• Triangulation
• The epipolar constraint

– Essential matrix and fundamental matrix
• Stereo 

– Binocular, multi-view
• Structure from motion

– Reconstruction ambiguity
– Affine SFM
– Projective SFM


