Local Features, Image Alignment and Matching

Lecture 12

Slides from: N. Snavely, S. Lazebnik, S. Seitz, M. Pollefeys, A. Efros.

Motivating Problem

- How do we build panorama?
- Detection & Matching of local features in the two images

Local features: main components

1) Detection: Identify the interest points

2) Description: Extract vector feature descriptor surrounding $\mathbf{x}_1 =$ each interest point.

3) Matching: Determine correspondence between descriptors in two views

$$= [x_{1}^{(1)}, \dots, x_{d}^{(1)}]$$

$$\mathbf{x}_{2} = [x_{1}^{(2)}, \dots, x_{d}^{(2)}]$$

Image transformations

• Geometric

Rotation

Scale

Photometric
 Intensity change

Invariance and covariance

- We want interest points to be *invariant* to photometric transformations and *covariant* to geometric transformations
 - Invariance: image is transformed and corner locations do not change
 - Covariance: if we have two transformed versions of the same image, features should be detected in corresponding locations

Blob detection with scale selection

Achieving scale covariance

- Goal: independently detect corresponding regions in scaled versions of the same image
- Need scale selection mechanism for finding characteristic region size that is covariant with the image transformation

Edge detection

Edge detection, Take 2

Source: S. Seitz

From Edges to Blobs

- Edge = ripple
- Blob = superposition of two ripples

maximum

Spatial selection: the magnitude of the Laplacian response will achieve a maximum at the center of the blob, provided the scale of the Laplacian is "matched" to the scale of the blob

Laplacian of Gaussian (LoG)

$$\nabla^2 g = \frac{\partial^2 g}{\partial x^2} + \frac{\partial^2 g}{\partial y^2}$$

Laplacian of Gaussian

• "Blob" detector

minima

maximum

Find maxima and minima of LoG operator in space and scale

Scale selection

 At what scale does the Laplacian achieve a maximum response for a binary circle of radius r?

image

Laplacian

Characteristic scale

• We define the characteristic scale as the scale that produces peak of Laplacian response

T. Lindeberg (1998). <u>"Feature detection with automatic scale selection."</u> International Journal of Computer Vision **30** (2): pp 77--116.

Lindeberg et al., 1996

Slide from Tinne Tuytelaars

 $f(I_{i_1...i_m}(x',\sigma'))$

Normalize: rescale to fixed size

Find local maxima in position-scale space

Scale-space blob detector: Example

Scale-space blob detector: Example

sigma = 11.9912

Scale-space blob detector: Example

Scale Invariant Detection

Functions for determining scale

$$f = \text{Kernel} * \text{Image}$$

Kernels:

$$\nabla^2 g = \frac{\partial^2 g}{\partial x^2} + \frac{\partial^2 g}{\partial y^2}$$

(Laplacian)

$$DoG = G(x, y, k\sigma) - G(x, y, \sigma)$$

(Difference of Gaussians)

where Gaussian

$$G(x, y, \sigma) = \frac{1}{\sqrt{2\pi}\sigma} e^{-\frac{x^2 + y^2}{2\sigma^2}}$$

Note: both kernels are invariant to *scale* and *rotation*

Feature descriptors

We know how to detect good points Next question: **How to match them?**

Answer: Come up with a *descriptor* for each point, find similar descriptors between the two images

Feature descriptors

We know how to detect good points Next question: **How to match them?**

Lots of possibilities (this is a popular research area)

- Simple option: match square windows around the point
- State of the art approach: SIFT
 - David Lowe, UBC <u>http://www.cs.ubc.ca/~lowe/keypoints/</u>

Invariance vs. discriminability

- Invariance:
 - Descriptor shouldn't change even if image is transformed
- Discriminability:
 - Descriptor should be highly unique for each point

Image transformations

• Geometric

Rotation

Scale

Photometric
 Intensity change

Invariance

Most feature descriptors are designed to be invariant to

- Translation, 2D rotation, scale

- They can usually also handle
 - Limited 3D rotations (SIFT works up to about 60 degrees)
 - Limited affine transformations (some are fully affine invariant)
 - Limited illumination/contrast changes

Rotation invariance for feature descriptors

- Find dominant orientation of the image patch
 - This is given by \mathbf{x}_{max} , the eigenvector of **H** (2nd moment matrix) corresponding to λ_{max} (the *larger* eigenvalue)
 - Rotate the patch according to this angle

Figure by Matthew Brown

Scale Invariant Feature Transform

Basic idea:

- Take 16x16 square window around detected feature
- Compute edge orientation (angle of the gradient 90°) for each pixel
- Throw out weak edges (threshold gradient magnitude)
- Create histogram of surviving edge orientations

SIFT descriptor

Full version

- Divide the 16x16 window into a 4x4 grid of cells (2x2 case shown below)
- Compute an orientation histogram for each cell
- 16 cells * 8 orientations = 128 dimensional descriptor

Properties of SIFT

Extraordinarily robust matching technique

- Can handle changes in viewpoint
 - Up to about 60 degree out of plane rotation
- Can handle significant changes in illumination
 - Sometimes even day vs. night (below)
- Fast and efficient—can run in real time
- Lots of code available
 - <u>http://people.csail.mit.edu/albert/ladypack/wiki/index.php/Known_implementations_of_SIFT</u>

Other descriptors

- HOG: Histogram of Gradients (HOG)
 - Dalal/Triggs
 - Sliding window, pedestrian detection
- FREAK: Fast Retina Keypoint
 Perceptually motivated

LIFT: Learned Invariant Feature Transform

 Learned via deep learning

 https://arxiv.org/abs/1603.09114

Summary

- Keypoint detection: repeatable and distinctive
 - Blobs via Difference-of-Gaussians
- Descriptors: robust and selective
 - spatial histograms of orientation
 - SIFT and variants are typically good for stitching and recognition
 - But, need not stick to one

Keypoint descriptor

SIFT Example

sift

868 SIFT features

Which features match?

Feature matching

Given a feature in I_1 , how to find the best match in I_2 ?

- Define distance function that compares two descriptors
- 2. Test all the features in I_2 , find the one with min distance

Feature distance

How to define the difference between two features f_1, f_2 ?

- Simple approach: L₂ distance, ||f₁ f₂ || (aka SSD)
- can give good scores to ambiguous (incorrect) matches

Feature distance

How to define the difference between two features f_1, f_2 ?

- Better approach: ratio distance = $||f_1 f_2|| / ||f_1 f_2'||$
 - f_2 is best SSD match to f_1 in I_2
 - f_2' is 2nd best SSD match to f_1 in I_2
 - gives large values for ambiguous matches

 I_2

Feature distance

• Does the SSD vs "ratio distance" change the best match to a given feature in image 1?

Feature matching example

51 matches (thresholded by ratio score)

Feature matching example

58 matches (thresholded by ratio score)

Evaluating the results

How can we measure the performance of a feature matcher?

feature distance

Available at a web site near you...

- For most local feature detectors, executables are available online:
 - <u>http://www.robots.ox.ac.uk/~vgg/research/affine</u>
 - <u>http://www.cs.ubc.ca/~lowe/keypoints/</u>
 - <u>http://www.vision.ee.ethz.ch/~surf</u>

Image alignment

Why don't these image line up exactly?

What is the geometric relationship between these two images?

Answer: Similarity transformation (translation, rotation, uniform scale)

What is the geometric relationship between these two images?

What is the geometric relationship between these two images?

Very important for creating mosaics!

Parametric (global) warping

• Examples of parametric warps:

translation

rotation

aspect

affine

perspective

cylindrical

Parametric (global) warping

p = (x,y)

• Transformation T is a coordinate-changing machine:

$$p' = T(p)$$

- What does it mean that *T* is global?
 - Is the same for any point p
 - can be described by just a few numbers (parameters)
- Let's consider *linear* forms (can be represented by a 2D matrix):

$$\mathbf{p}' = \mathbf{T}\mathbf{p} \qquad \left[\begin{array}{c} x' \\ y' \end{array}
ight] = \mathbf{T} \left[\begin{array}{c} x \\ y \end{array}
ight]$$

Common linear transformations

• Uniform scaling by s:

$$\mathbf{S} = \left[\begin{array}{cc} s & 0 \\ 0 & s \end{array} \right]$$

What is the inverse?

Common linear transformations

• Rotation by angle θ (about the origin)

 θ

 $\mathbf{R} = \begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix}$ What is the inverse? For rotations: $\mathbf{R}^{-1} = \mathbf{R}^{T}$

2x2 Matrices

• What types of transformations can be represented with a 2x2 matrix?

2D mirror about Y axis?

$$\begin{array}{cccc} x' &=& -x \\ y' &=& y \end{array} \qquad \mathbf{T} = \begin{bmatrix} -1 & 0 \\ 0 & 1 \end{bmatrix}$$

2D mirror across line y = x?

2x2 Matrices

• What types of transformations can be represented with a 2x2 matrix?

 $\begin{array}{rcl} x' &=& x+t_x & \ y' &=& y+t_y \end{array}$ NO!

2D Translation?

Translation is not a linear operation on 2D coordinates

All 2D Linear Transformations

- Linear transformations are combinations of ...
 - Scale,
 - Rotation,
 - Shear, and
 - Mirror
- Properties of linear transformations:
 - Origin maps to origin
 - Lines map to lines
 - Parallel lines remain parallel
 - Ratios are preserved
 - Closed under composition

$$\begin{bmatrix} x'\\y'\end{bmatrix} = \begin{bmatrix} a & b\\c & d\end{bmatrix} \begin{bmatrix} e & f\\g & h\end{bmatrix} \begin{bmatrix} i & j\\k & l\end{bmatrix} \begin{bmatrix} x\\y\end{bmatrix}$$

$$\begin{bmatrix} x' \\ y' \end{bmatrix} = \begin{bmatrix} a & b \\ c & d \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}$$

Converting from homogeneous coordinates

$$\begin{bmatrix} x \\ y \\ w \end{bmatrix} \Rightarrow (x/w, y/w)$$

Translation

Solution: homogeneous coordinates to the rescue

Affine transformations

any transformation with last row [001] we call an *affine* transformation

 $\left[\begin{array}{cccc} a & b & c \\ d & e & f \\ 0 & 0 & 1 \end{array}\right]$

Basic affine transformations

$$\begin{bmatrix} x'\\y'\\1\end{bmatrix} = \begin{bmatrix} 1 & 0 & t_x\\0 & 1 & t_y\\0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x\\y\\1\end{bmatrix} = \begin{bmatrix} s_x & 0 & 0\\0 & s_y & 0\\0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x\\y\\1\end{bmatrix}$$
Translate
$$\begin{bmatrix} x'\\y'\\1\end{bmatrix} = \begin{bmatrix} \cos\theta & -\sin\theta & 0\\\sin\theta & \cos\theta & 0\\0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x\\y\\1\end{bmatrix}$$

$$\begin{bmatrix} x'\\y'\\1\end{bmatrix} = \begin{bmatrix} 1 & sh_x & 0\\sh_y & 1 & 0\\0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x\\y\\1\end{bmatrix}$$
2D *in-plane* rotation
$$\begin{bmatrix} x\\y\\1\end{bmatrix}$$

Affine Transformations

- Affine transformations are combinations of ...
 - Linear transformations, and
 - Translations

$$\begin{bmatrix} x' \\ y' \\ w \end{bmatrix} = \begin{bmatrix} a & b & c \\ d & e & f \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ w \end{bmatrix}$$

- Properties of affine transformations:
 - Origin does not necessarily map to origin
 - Lines map to lines
 - Parallel lines remain parallel
 - Ratios are preserved
 - Closed under composition

Is this an affine transformation?

Where do we go from here?

Projective Transformations aka Homographies aka Planar Perspective Maps

$$\mathbf{H} = \left[\begin{array}{rrrr} a & b & c \\ d & e & f \\ g & h & 1 \end{array} \right]$$

Called a *homography* (or *planar perspective map*)

Homographies

Points at infinity

Image warping with homographies

Homographies

Homographies

- Homographies ...

 - Projective warps
- Homographies ...x'=abcx- Affine transformations, andy'=abcyw'w'w'w'w'w'w'

- Properties of projective transformations:
 - Origin does not necessarily map to origin
 - Lines map to lines
 - Parallel lines do not necessarily remain parallel
 - Ratios are not preserved
 - Closed under composition
Affine Transformations

- Affine transformations are combinations of ...
 - Linear transformations, and
 - Translations

$$\begin{bmatrix} x' \\ y' \\ w \end{bmatrix} = \begin{bmatrix} a & b & c \\ d & e & f \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ w \end{bmatrix}$$

- Properties of affine transformations:
 - Origin does not necessarily map to origin
 - Lines map to lines
 - Parallel lines remain parallel
 - Ratios are preserved
 - Closed under composition

2D image transformations

Name	Matrix	# D.O.F.	Preserves:	Icon
translation	$igg[egin{array}{c c c c c c c c c c c c c c c c c c c $	2	orientation $+\cdots$	
rigid (Euclidean)	$\left[egin{array}{c c} m{R} & t \end{array} ight]_{2 imes 3}$	3	lengths $+\cdots$	\bigcirc
similarity	$\left[\left. s oldsymbol{R} \right oldsymbol{t} ight]_{2 imes 3}$	4	angles $+ \cdots$	\bigcirc
affine	$\left[egin{array}{c} m{A} \end{array} ight]_{2 imes 3}$	6	parallelism $+\cdots$	
projective	$\left[egin{array}{c} ilde{m{H}} \end{array} ight]_{3 imes 3}$	8	straight lines	

These transformations are a nested set of groups

• Closed under composition and inverse is a member

Homographies

Image Warping

Given a coordinate xform (x',y') = T(x,y) and a source image f(x,y), how do we compute an xformed image g(x',y') = f(T(x,y))?

Forward Warping

- Send each pixel f(x) to its corresponding location (x',y') = T(x,y) in g(x',y')
 - What if pixel lands "between" two pixels?

Forward Warping

- Send each pixel *f*(*x*,*y*) to its corresponding location *x*' = *h*(*x*,*y*) in *g*(*x*',*y*')
 - What if pixel lands "between" two pixels?
 - Answer: add "contribution" to several pixels, normalize later (*splatting*)
 - Can still result in holes

Inverse Warping

- Get each pixel g(x',y') from its corresponding location (x,y) = T⁻¹(x,y) in f(x,y)
 - Requires taking the inverse of the transform
 - What if pixel comes from "between" two pixels?

Inverse Warping

- Get each pixel g(x') from its corresponding location x' = h(x) in f(x)
 - What if pixel comes from "between" two pixels?
 - Answer: *resample* color value from *interpolated* (*prefiltered*) source image

Interpolation

- Possible interpolation filters:
 - nearest neighbor
 - bilinear
 - bicubic (interpolating)
 - sinc
- Needed to prevent "jaggies" and "texture crawl"

(with prefiltering)

Computing transformations

- Given a set of matches between images A and B
 - How can we compute the transform T from A to B?

- Find transform T that best "agrees" with the matches

Computing transformations

Simple case: translations

 $(\mathbf{x}_t, \mathbf{y}_t)$?

How do we solve for

 $\mathbf{x}_t, \mathbf{y}_t$

Displacement of match i =
$$(\mathbf{x}'_i - \mathbf{x}_i, \mathbf{y}'_i - \mathbf{y}_i)$$

$$(\mathbf{x}_t, \mathbf{y}_t) = \left(\frac{1}{n}\sum_{i=1}^n \mathbf{x}'_i - \mathbf{x}_i, \frac{1}{n}\sum_{i=1}^n \mathbf{y}'_i - \mathbf{y}_i\right)$$

Another view (x_1, y_1) (x_1, y_1) (x_2, y_2) (x_2, y_2) (x_2, y_2) (x_1, y_1) (x_1, y_1) (x_1, y_1) (x_1, y_1) (x_1, y_1) (x_2, y_2) (x_2, y_2) (x_1, y_1)

$$egin{array}{rcl} \mathbf{x}_i + \mathbf{x_t} &=& \mathbf{x}_i' \ \mathbf{y}_i + \mathbf{y_t} &=& \mathbf{y}_i' \end{array}$$

- System of linear equations
 - What are the knowns? Unknowns?
 - How many unknowns? How many equations (per match)?

Another view (x_1, y_1) (x_1, y_1) (x_2, y_2) (x_2, y_2) (x_2, y_2) (x_1, y_1) (x_1, y_1) (x_1, y_1) (x_1, y_1) (x_1, y_1) (x_2, y_2) (x_2, y_2) (x_1, y_1)

$$egin{array}{rll} \mathbf{x}_i + \mathbf{x_t} &=& \mathbf{x}'_i \ \mathbf{y}_i + \mathbf{y_t} &=& \mathbf{y}'_i \end{array}$$

- Problem: more equations than unknowns
 - "Overdetermined" system of equations
 - We will find the *least squares* solution

Least squares formulation

• For each point $(\mathbf{x}_i, \mathbf{y}_i)$

$$egin{array}{rcl} \mathbf{x}_i + \mathbf{x_t} &=& \mathbf{x}_i' \ \mathbf{y}_i + \mathbf{y_t} &=& \mathbf{y}_i' \end{array}$$

• we define the *residuals* as

$$r_{\mathbf{x}_i}(\mathbf{x}_t) = (\mathbf{x}_i + \mathbf{x}_t) - \mathbf{x}'_i$$
$$r_{\mathbf{y}_i}(\mathbf{y}_t) = (\mathbf{y}_i + \mathbf{y}_t) - \mathbf{y}'_i$$

Least squares formulation

• Goal: minimize sum of squared residuals

$$C(\mathbf{x}_t, \mathbf{y}_t) = \sum_{i=1}^n \left(r_{\mathbf{x}_i}(\mathbf{x}_t)^2 + r_{\mathbf{y}_i}(\mathbf{y}_t)^2 \right)$$

- "Least squares" solution
- For translations, is equal to mean (average) displacement

Least squares formulation

Can also write as a matrix equation

Least squares

At = b

• Find **t** that minimizes

$$||\mathbf{At} - \mathbf{b}||^2$$

• To solve, form the normal equations

$$\mathbf{A}^{\mathrm{T}}\mathbf{A}\mathbf{t} = \mathbf{A}^{\mathrm{T}}\mathbf{b}$$
$$\mathbf{t} = (\mathbf{A}^{\mathrm{T}}\mathbf{A})^{-1}\mathbf{A}^{\mathrm{T}}\mathbf{b}$$

Least squares: linear regression

Linear regression

Linear regression

Affine transformations

$$\begin{bmatrix} x'\\y'\\1 \end{bmatrix} = \begin{bmatrix} a & b & c\\d & e & f\\0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x\\y\\1 \end{bmatrix}$$

- How many unknowns?
- How many equations per match?
- How many matches do we need?

Affine transformations

• Residuals:

$$r_{x_i}(a, b, c, d, e, f) = (ax_i + by_i + c) - x'_i$$

$$r_{y_i}(a, b, c, d, e, f) = (dx_i + ey_i + f) - y'_i$$

• Cost function:

$$C(a, b, c, d, e, f) = \sum_{i=1}^{n} \left(r_{x_i}(a, b, c, d, e, f)^2 + r_{y_i}(a, b, c, d, e, f)^2 \right)$$

Affine transformations

Matrix form

Optimization Problem to Find Transformation

Problem statement

minimize
$$\|\mathbf{A}\mathbf{x} - \mathbf{b}\|^2$$

least squares solution to Ax = b

Solution

$$\mathbf{x} = (\mathbf{A}^T \mathbf{A})^{-1} \mathbf{A}^T \mathbf{b}$$

$$\mathbf{x} = \mathbf{A} \setminus \mathbf{b} \quad (\text{matlab})$$

Image Alignment Algorithm

Given images A and B

- 1. Compute image features for A and B
- 2. Match features between A and B
- Compute homography (or affine transformation) between A and B using least squares on set of matches

What could go wrong?

Robustness

• Let's consider a simpler example... linear regression

Problem: Fit a line to these datapoints

• How can we fix this?

Idea

- Given a hypothesized line
- Count the number of points that "agree" with the line
 - "Agree" = within a small distance of the line
 - I.e., the **inliers** to that line
- For all possible lines, select the one with the largest number of inliers

Counting inliers

Counting inliers

Counting inliers

How do we find the best line?

 Unlike least-squares, no simple closed-form solution

- Hypothesize-and-test
 - Try out many lines, keep the best one
 - Which lines?

Translations

<u>RAndom SAmple Consensus</u>

Select one match at random, count inliers
<u>RAndom SAmple Consensus</u>

Select another match at random, count inliers

<u>RAndom SAmple Consensus</u>

Output the translation with the highest number of inliers

- Idea:
 - All the inliers will agree with each other on the translation vector; the (hopefully small) number of outliers will (hopefully) disagree with each other
 - RANSAC only has guarantees if there are < 50% outliers
 - "All good matches are alike; every bad match is bad in its own way."

– Tolstoy via Alyosha Efros

- Inlier threshold related to the amount of noise we expect in inliers
 - Often model noise as Gaussian with some standard deviation (e.g., 3 pixels)
- Number of rounds related to the percentage of outliers we expect, and the probability of success we'd like to guarantee
 - Suppose there are 20% outliers, and we want to find the correct answer with 99% probability
 - How many rounds do we need?

- Back to linear regression
- How do we generate a hypothesis?

- Back to linear regression
- How do we generate a hypothesis?

- General version:
 - 1. Randomly choose *s* samples
 - Typically s = minimum sample size that lets you fit a model
 - 2. Fit a model (e.g., line) to those samples
 - 3. Count the number of inliers that approximately fit the model
 - 4. Repeat *N* times
 - 5. Choose the model that has the largest set of inliers

How many rounds?

- If we have to choose *s* samples each time
 - with an outlier ratio e
 - and we want the right answer with probability p

	proportion of outliers <i>e</i>							
S	5%	10%	20%	25%	30%	40%	50%	
2	2	3	5	6	7	11	17	
3	3	4	7	9	11	19	35	
4	3	5	9	13	17	34	72	
5	4	6	12	17	26	57	146	
6	4	7	16	24	37	97	293	
7	4	8	20	33	54	163	588	
8	5	9	26	44	78	272	1177	

p = 0.99

How big is s?

- For alignment, depends on the motion model
 - Here, each sample is a correspondence (pair of matching points)

Name	Matrix	# D.O.F.	Preserves:	Icon
translation	$igg[egin{array}{c c c c c c c c c c c c c c c c c c c $	2	orientation $+\cdots$	
rigid (Euclidean)	$\left[egin{array}{c c c c c c c c c c c c c c c c c c c $	3	lengths $+\cdots$	\bigcirc
similarity	$\left[\left. s oldsymbol{R} \right oldsymbol{t} ight]_{2 imes 3}$	4	angles $+ \cdots$	\Diamond
affine	$\left[egin{array}{c} m{A} \end{array} ight]_{2 imes 3}$	6	parallelism $+\cdots$	
projective	$\left[egin{array}{c} ilde{H} \end{array} ight]_{3 imes 3}$	8	straight lines	

RANSAC pros and cons

• Pros

- Simple and general
- Applicable to many different problems
- Often works well in practice
- Cons
 - Parameters to tune
 - Sometimes too many iterations are required
 - Can fail for extremely low inlier ratios
 - We can often do better than brute-force sampling

Final step: least squares fit

- An example of a "voting"-based fitting scheme
- Each hypothesis gets voted on by each data point, best hypothesis wins

- There are many other types of voting schemes
 - E.g., Hough transforms...

Panoramas

- Now we know how to create panoramas!
- Given two images:
 - Step 1: Detect features
 - Step 2: Match features
 - Step 3: Compute a homography using RANSAC
 - Step 4: Combine the images together (somehow)
- What if we have more than two images?

Can we use homographies to create a 360 panorama?

 In order to figure this out, we need to learn what a camera is

360 panorama

Homographies

To unwarp (rectify) an image

- solve for homography **H** given **p** and **p'**
- solve equations of the form: wp' = Hp
 - linear in unknowns: w and coefficients of H
 - H is defined up to an arbitrary scale factor
 - how many points are necessary to solve for H?

Solving for homographies

$$\begin{bmatrix} x'_i \\ y'_i \\ 1 \end{bmatrix} \cong \begin{bmatrix} h_{00} & h_{01} & h_{02} \\ h_{10} & h_{11} & h_{12} \\ h_{20} & h_{21} & h_{22} \end{bmatrix} \begin{bmatrix} x_i \\ y_i \\ 1 \end{bmatrix}$$

$$\begin{aligned} x'_i &= \frac{h_{00}x_i + h_{01}y_i + h_{02}}{h_{20}x_i + h_{21}y_i + h_{22}} \\ y'_i &= \frac{h_{10}x_i + h_{11}y_i + h_{12}}{h_{20}x_i + h_{21}y_i + h_{22}} \end{aligned} \text{ Not linear!}$$

 $\begin{aligned} x_i'(h_{20}x_i + h_{21}y_i + h_{22}) &= h_{00}x_i + h_{01}y_i + h_{02} \\ y_i'(h_{20}x_i + h_{21}y_i + h_{22}) &= h_{10}x_i + h_{11}y_i + h_{12} \end{aligned}$

Solving for homographies

 $\begin{aligned} x_i'(h_{20}x_i + h_{21}y_i + h_{22}) &= h_{00}x_i + h_{01}y_i + h_{02} \\ y_i'(h_{20}x_i + h_{21}y_i + h_{22}) &= h_{10}x_i + h_{11}y_i + h_{12} \end{aligned}$

Defines a least squares problem: minimize $\|Ah - 0\|^2$

- Since $\, h \,$ is only defined up to scale, solve for unit vector $\, \, \hat{h} \,$
- Solution: $\hat{\mathbf{h}}$ = eigenvector of $\mathbf{A}^T \mathbf{A}$ with smallest eigenvalue
- Works with 4 or more points

Recap: Two Common Optimization Problems

Problem statement

minimize
$$\|\mathbf{A}\mathbf{x} - \mathbf{b}\|^2$$

least squares solution to Ax = b

$$\mathbf{x} = \left(\mathbf{A}^T \mathbf{A}\right)^{-1} \mathbf{A}^T \mathbf{b}$$

Calution

 $\mathbf{x} = \mathbf{A} \setminus \mathbf{b}$ (matlab)

Problem statement

minimize $\mathbf{x}^T \mathbf{A}^T \mathbf{A} \mathbf{x}$ s.t. $\mathbf{x}^T \mathbf{x} = 1$

Solution

$$[\mathbf{v}, \lambda] = \operatorname{eig}(\mathbf{A}^T \mathbf{A})$$
$$\lambda_1 < \lambda_{2..n} : \mathbf{x} = \mathbf{v}_1$$

non - trivial lsq solution to Ax = 0