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Abstract
We present a hierarchical model that learns image de-

compositions via alternating layers of convolutional sparse
coding and max pooling. When trained on natural images,
the layers of our model capture image information in a va-
riety of forms: low-level edges, mid-level edge junctions,
high-level object parts and complete objects. To build our
model we rely on a novel inference scheme that ensures each
layer reconstructs the input, rather than just the output of
the layer directly beneath, as is common with existing hier-
archical approaches. This makes it possible to learn mul-
tiple layers of representation and we show models with 4
layers, trained on images from the Caltech-101 and 256
datasets. Features extracted from these models, in combi-
nation with a standard classifier, outperform SIFT and rep-
resentations from other feature learning approaches.

1. Introduction
For many tasks in vision, the critical problem is discov-

ering good image representations. For example, the advent
of local image descriptors such as SIFT and HOG has pre-
cipitated dramatic progress in matching and object recogni-
tion. Interestingly, many of the successful representations
are quite similar [16], essentially involving the calculation
of edge gradients, followed by some histogram or pooling
operation. While this is effective at capturing low-level im-
age structure, the challenge is to find representations appro-
priate for mid and high-level structures, i.e. corners, junc-
tions, and object parts, which are surely important for un-
derstanding images.

In this paper we propose a way of learning image repre-
sentations that capture structure at all scales, from low-level
edges to high-level object parts, in an unsupervised manner.
In building our model, we propose novel solutions to two
fundamental problems associated with feature hierarchies.
The first relates to invariance: while edges only vary in ori-
entation and scale, larger-scale structures are more variable.
Trying to explicitly record all possible shapes of t-junction
or corners, for example, would lead to a model that is ex-
ponential in the number of primitives. Hence invariance is
crucial for modeling mid and high-level structure.
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Figure 1. Top-down parts-based image decomposition with an
adaptive deconvolutional network. Each column corresponds to
a different input image under the same model. Row 1 shows a
single activation of a 4th layer feature map projected into image
space. Conditional on the activations in the layer above, we also
take a subset of 5, 25 and 125 active features in layers 3, 2 and 1 re-
spectively and visualize them in image space (rows 2-4). The acti-
vations reveal mid and high level primitives learned by our model.
In practice there are many more activations such that the complete
set sharply reconstructs the entire image from each layer.

The second problem relates to the layer-by-layer train-
ing scheme employed in hierarchical models, such as deep
belief networks [6, 11] and convolutional sparse coding
[3, 8, 18]. Lacking a method to efficiently train all layers
with respect to the input, these models are trained greedily
from the bottom up, using the output of the previous layer
as input for the next. The major drawback to this paradigm
is that the image pixels are discarded after the first layer,
thus higher layers of the model have an increasingly diluted
connection to the input. This makes learning fragile and
impractical for models beyond a few layers.

Our solution to both these issues is to introduce a set of
latent switch variables, computed for each image, that lo-
cally adapt the model’s filters to the observed data. Hence,
a relatively simple model can capture wide variability in im-
age structure. The switches also provide a direct path to the
input, even from high layers in the model, allowing each
layer is trained with respect to the image, rather than the
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output of the previous layer. As we demonstrate, this makes
learning far more robust. Additionally, the switches enable
the use of an efficient training method, allowing us to learn
models with many layers and hundreds of feature maps on
thousands of images.

1.1. Related Work
Convolutional Networks (ConvNets) [10], like our ap-

proach, produce a hierarchy of latent feature maps via
learned filters. However, they process images bottom-
up and are trained discriminatively and purely supervised,
while our approach is top-down (generative) and unsuper-
vised. Predictive Sparse Decomposition (PSD) [7] adds a
sparse coding component to ConvNets that allows unsuper-
vised training. In contrast to our model, each layer only
reconstructs the layer below.

This limitation is shared by Deep Belief Networks
(DBNs) [6, 11] which are comprised of layers of Restricted
Boltzmann Machines. Each RBM layer, conditional on its
input, has a factored representation that does not directly
perform explaining away. Also, training is relatively slow.

The closest approaches to ours are those based on convo-
lutional sparse coding [3, 8, 18]. Like PSD and DBNs, each
layer only attempts to reconstruct the output of the layer
below. Additionally, they manually impose sparse connec-
tivity between the feature maps of different layers, thus lim-
iting the complexity of the learned representation. In con-
trast, our model has full connectivity between layers, which
allows us to learn more complex structures. Additional dif-
ferences include: the lack of pooling layers [18] and ineffi-
cient inference schemes [3, 18] that do not scale.

Our model performs a decomposition of the full image,
in the spirit of Zhu and Mumford [20] and Tu and Zhu [15].
This differs from other hierarchical models, such as Fidler
and Leonardis [4] and Zhu et al. [19], that only model a
stable sub-set of image structures at each level rather than
all pixels. Another key aspect of our approach is that we
learn the decomposition from natural images. Several other
hierarchical models such as Serre et al.’s HMax [12, 14] and
Guo et al. [5] use hand-crafted features at each layer.

2. Approach
Our model produces an over-complete image representa-

tion that can be used as input to standard object classifiers.
Unlike many image representations, ours is learned from
natural images and, given a new image, requires inference
to compute. The model decomposes an image in a hierar-
chical fashion using multiple alternating layers of convolu-
tional sparse coding (deconvolution [18]) and max-pooling.
Each of the deconvolution layers attempts to directly min-
imize the reconstruction error of the input image under a
sparsity constraint on an over-complete set of feature maps.
The cost function Cl(y) for layer l comprises two terms:
(i) a likelihood term that keeps the reconstruction of the in-

put ŷl close to the original input image y; (ii) a regulariza-
tion term that penalizes the `1 norm of the 2D feature maps
zk,l on which the reconstruction ŷl depends. The relative
weighting of the two terms is controlled by λl:

Cl(y) =
λl

2
‖ŷl − y‖2

2 +
Kl∑

k=1

|zk,l|1 (1)

Unlike existing approaches [3, 8, 18], our convolutional
sparse coding layers attempt to directly minimize the re-
construction error of the input image, rather than the output
of the layer below.

Deconvolution: Consider the first layer of the model, as
shown in Fig. 2(a). The reconstruction ŷ1 (comprised of
c color channels) is formed by convolving each of the 2D
feature maps zk,1 with filters fc

k,1 and summing them:

ŷc
1 =

K1∑
k=1

zk,1 ∗ fc
k,1 (2)

where ∗ is the 2D convolution operator. The filters f are the
parameters of the model common to all images. The feature
maps z are latent variables, specific to each image. Since
K1 > 1 the model is over-complete, but the regularization
term in Eqn. 1 above ensures that there is a unique solu-
tion. We describe the inference scheme used to discover
an optimal z1 and the closely related learning approach for
estimating f1 in Sections 2.1 and 2.2 respectively. For no-
tational brevity, we combine the convolution and summing
operations of layer l into a single convolution matrix Fl and
convert the multiple 2D maps zk,l into a single vector zl:

ŷ1 = F1z1 (3)
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Figure 3. An example of 3D max pooling using a neighborhood of
size 2 × 2 × 2, as indicated by the colors. The pooling operation
P is applied to the feature maps z, yielding pooled maps p and
switches s that record the location of the maximum (irrespective
of sign). Given the pooled maps and switches, we can also per-
form an unpooling operation Us which inserts the pooled values
in the appropriate locations in the feature maps, with the remain-
ing elements being set to zero.

Pooling: On top of each deconvolutional layer, we per-
form a 3D max-pooling operation on the feature maps z.
This allows the feature maps of the layer above to capture
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Figure 2. (a): A visualization of two layers of our model. Each layer consists of a deconvolution and a max-pooling. The deconvolution
layer is a convolutional form of sparse coding that decomposes input image y into feature maps z1 (green) and learned filters f1 (red),
which convolve together and sum to reconstruct y. The filters have c planes, each used to reconstruct a different channel of the input
image. Each z map is penalized by a per-element `1 sparsity term (purple). The max-pooling layer pools within and between feature maps,
reducing them in size and number to give pooled maps p (blue). The locations of the maxima in each pooling region are recorded in
switches s (yellow). The second deconvolution/pooling layer is conceptually identical to the first, but now has two input channels rather
than three. In practice, we have many more feature maps per layer and have up to 4 layers in total. (b): A block diagram view of the
inference operations within the model for layer 2. See Section 2.1 for an explanation. (c): A toy instantiation of the model on the left,
trained using a single input image of a (contrast-normalized) circle. The switches and sparsity terms are not shown. Note the sparse feature
maps (green) and the effect of the pooling operations (blue). Since the input is grayscale, the planes of the 1st layer filters are identical.

structure at a larger scale than the current layer. The pool-
ing is 3D in that it occurs both spatially (within each 2D
z map) and also between adjacent maps, as illustrated in
Fig. 3. Within each neighborhood of z we record both the
value and location of the maximum (irrespective of sign).
Pooled maps p store the values, while switches s record the
locations.

Our model uses two distinct forms of pooling operation
on the feature maps z. The first, shown in Fig. 3, treats the
switches s as an output: [p, s] = P (z). The second takes the
switches s as an input, where they specify which elements
in z are copied into p. If s is fixed, then this is a linear
operation which can be written as p = Psz, with Ps being
a binary selection matrix, set by switches s.

The corresponding unpooling operation Us, shown in
Fig. 3, takes the elements in p and places them in z at the
locations specified by s, the remaining elements being set
to zero: ẑ = Usp. Note that this is also a linear operation
for fixed s and that Us = PT

s .
Multiple Layers: The architecture remains the same for

higher layers in the model but the number of feature maps
Kl may vary. At each layer we reconstruct the input through
the filters and switches of the layers below. We define a
reconstruction operator Rl that takes feature maps zl from
layer l and alternately convolves (F ) and unpools them (Us)

down to the input:

ŷl = F1Us1F2Us2 . . . Flzl = Rlzl (4)

Note that ŷl depends on the feature maps zl from the current
layer but not those beneath1. However, the reconstruction
operator Rl does depend on the pooling switches in the in-
termediate layers (sl−1 . . . s1) since they determine the un-
pooling operations Usl−1 . . . Us1 . These switches are con-
figured by the values of zl−1 . . . z1 from previous iterations.

We also define a projection operator RT
l that takes a sig-

nal at the input and projects it back up to the feature maps
of layer l, given previously determined switches s1 . . . sl−1:

RT
l = FT

l Psl−1F
T
l−1Psl−2 . . . Ps1F

T
1 (5)

A crucial property of our model is that given the switches
s, both the reconstruction Rl and projection operators RT

l

are linear, thus allowing the gradients to be easily com-
puted, even in models with many layers, making inference
and learning straightforward. Fig. 2(a) illustrates two layers
of deconvolution and pooling within our model. Fig. 2(b)
shows how the reconstruction and projection operators are
made up of the filtering, pooling and unpooling operations.

1In other words, when we project down to the image, we do not impose
sparsity on any of the intermediate layer reconstructions ẑl−1, . . . , ẑ1



2.1. Inference
For a given layer l, inference involves finding the fea-

ture maps zl that minimize Cl(y), given an input image
y and filters f . For each layer we need to solve a large
`1 convolutional sparse coding problem and we adapt the
ISTA scheme of Beck and Teboulle [1]. This uses an itera-
tive framework of gradient and shrinkage steps.

Gradient step: This involves taking a step in the direc-
tion of the gradient gl of the reconstruction term of Eqn. 1,
with respect to zl: gl = RT

l (Rlzl − y).
To compute the gradient, we take feature maps zl and,

using the filters and switch settings of the layers below, re-
construct the input ŷ = Rlzl. We then compute the recon-
struction error ŷ − y. This is then propagated back up the
network using RT

l which alternately filters (FT ) and pools
it (Ps) up to layer l, yielding the gradient gl. This process is
visualized in Fig. 2(middle) for a two layer model.

Once we have the gradient gl, we then can update zl:
zl = zl − λlβlgl (6)

where the βl parameter sets the size of the gradient step.
Shrinkage step: Following the gradient step, we per-

form a per-element shrinkage operation that clamps small
elements in zl to zero, thus increasing its sparsity:

zl = max(|zl| − βl, 0)sign(zl) (7)
Pooling/unpooling: We then update the switches sl

of the current layer by performing a pooling operation2

[pl, sl] = P (zl), immediately followed by an unpooling op-
eration zl = Usl

pl. This fulfills two functions: (i) it en-
sures that we can accurately reconstruct the input through
the pooling operation, when building additional layers on
top and (ii) it updates the switches to reflect the revised val-
ues of the feature maps. Once inference has converged, the
switches will be fixed, ready for training the layer above.
Hence, a secondary goal of inference is to determine the
optimal switch settings in the current layer.

Overall iteration: A single ISTA iteration consists of
each of the three steps above: gradient, shrinkage and pool-
ing/unpooling. During inference we perform 10 ISTA iter-
ations per image for each layer.

Both the reconstruction R and propagation RT opera-
tions are very quick, just consisting of convolutions, sum-
mations, pooling and unpooling operations, all of which are
amenable to parallelization. This makes it possible to ef-
ficiently solve the system in Eqn. 1, even with massively
over-complete layers where zl may be up to 105 in length.

Note that while the gradient step is linear, the model as
a whole is not. The non-linearity arises from two sources:
(i) sparsity, as induced by the shrinkage Eqn. 7, and (ii) the
settings of the switches s which alter the pooling/unpooling
within Rl.

2This is the form of pooling shown in Fig. 3 that treats the switches
as an output. It is not the same as the form of pooling used in projection
operator RT , where they are an input

Algorithm 1 Adaptive Deconvolutional Networks
Require: Training set Y , # layers L, # epochs E, # ISTA steps T
Require: Regularization weights λl, # feature maps Kl

Require: Shrinkage parameters βl

1: for l = 1 : L do %% Loop over layers
2: Init. features/filters: zi

l ∼ N (0, ε), fl ∼ N (0, ε)
3: for epoch = 1 : E do %% Epoch iteration
4: for i = 1 : N do %% Loop over images
5: for t = 1 : T do %% ISTA iteration
6: Reconstruct input: ŷl

i = Rlz
i
l

7: Compute reconstruction error: e = ŷl
i − yi

8: Propagate error up to layer l: gl = RT
l e

9: Take gradient step: zi
l = zi

l − λlβlgl

10: Perform shrinkage: zi
l = max(|zi

l |−βl, 0)sign(zi
l )

11: Pool zi
l , updating the switches si

l : [pi
l, s

i
l] = P (zi

l )
12: Unpool pi

l , using si
l to give zi

l : zi
l = Usi

l
pi

l

13: end for
14: end for
15: Update fl by solving Eqn. 8 using CG
16: end for
17: end for
18: Output: filters f , feature maps z and switches s.

2.2. Learning
In learning the goal is to estimate the filters f in

the model, which are shared across all images Y =
{y1, . . . yi, . . . , yN}. For a given layer l, we perform in-
ference to compute zi

l . Taking derivatives of Eqn. 1 with
respect to fl and setting to zero, we obtain the following
linear system in fl:

N∑
i=1

(
zi
l

T
P i

sl−1
RiT

l−1

)
ŷi =

N∑
i=1

(
zi
l

T
P i

sl−1
RiT

l−1

)
yi (8)

where ŷi is the reconstruction of the input using the current
value of fl. We solve this system using linear conjugate
gradients (CG). The matrix-vector product of the left-hand
side is computed efficiently by mapping down to the input
and back up again using the Rl and RT

l operations. After
solving Eqn. 8, we normalize fl to have unit length.

The overall algorithm for learning all layers of the model
is given in Algorithm 1. We alternate small steps in zl and
fl, using a single ISTA step per epoch to infer zl and two CG
iterations for fl, repeated over 10 epochs. The procedure for
inference is identical, except the fl update on line 15 is not
performed and we use a single epoch with 10 ISTA steps.

3. Application to object recognition
Our model is purely unsupervised and so must be com-

bined with a classifier to perform object recognition. In
view of its simplicity and performance, we use the Spatial
Pyramid Matching (SPM) of Lazebnik et al. [9].

Given a new image, performing inference with our
model decomposes it into multiple layers of feature maps
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Figure 4. Col 1–3: The largest 3 absolute activations in the 4th
layer projected down to pixel space for 2 different images. Note
how distinct structures are reconstructed, despite the model being
entirely unsupervised. See Section 3 for details on their use for
recognition. Col 4–5: sum of first 3 columns; original input image.

and switch configurations. We now describe a novel ap-
proach for using this decomposition in conjunction with the
SPM classifier.

While the filters are shared between images, the switch
settings are not, thus the feature maps of two images are not
directly comparable since they use different bases Rl. For
example, in Fig. 1 each 4th layer top-down decomposition
begins from the same feature map, yet gives quite different
reconstructions. This shows two key aspects of the model:
(i) within a class or between similar classes, the decompo-
sitions share similar parts and focus on particular regions
of the image; and (ii) the adaptability of the switch settings
allows the model to learn complex interactions with other
classes. However, this makes direct use of the higher-level
feature maps problematic for classification and we propose
a different approach.

For each image i, we take the set of the M largest abso-
lute activations from the top layer feature maps and project
each one separately down to the input to create M differ-
ent images (ŷi,1, . . . , ŷi,M ), each containing various image
parts generated by our model. This only makes sense for
high layers with large receptive fields. In Fig. 4 we show
the pixel space reconstructions of the top M = 3 4th layer
activations inferred for 2 different images. Note how they
contain good reconstructions of select image structures, as
extracted by the model, while neighboring content is sup-
pressed, providing a soft decomposition. For example, the
2nd max for the face reconstructs the left eye, mouth, and
left shoulder of the woman, but little else. Conversely, the
3rd max focuses on reconstructing the hair. The structures
within each max reconstruction consist of textured regions
(e.g. shading of the cougar), as well as edge structures.
They also tend to reconstruct the object better than the back-
ground.

Instead of directly inputting ŷi,1, . . . , ŷi,M to the SPM,
we instead use the corresponding reconstructions of the 1st
layer feature maps (i.e. ẑi,1

1 , . . . , ẑi,M
1 ), since activations at

this layer are roughly equivalent to unnormalized SIFT fea-
tures (the standard SPM input [9]). After computing sepa-
rate pyramids for each ẑi,m

1 , we average all M of them to

Property Layer 1 Layer 2 Layer 3 Layer 4
# Feature maps Kl 15 50 100 150

Pooling size 3x3x3 3x3x2 3x3x2 3x3x2
λl 2 0.1 0.005 0.001
βl 10−3 10−4 10−6 10−8

Inference time (s) 0.12 0.21 0.38 0.54
z pixel field 7x7 21x21 63x63 189x189

Feature map dims 156x156 58x58 26x26 15x15
# Filter Params 735 7,350 122,500 367,500
Total # z & s 378,560 178,200 71,650 37,500

Table 1. Parameter settings (top 4 rows) and statistics (lower 5
rows) of our model.

give a single pyramid for each image. We can also apply
SPM to the actual 1st layer feature maps zi

1, which are far
denser and have even coverage of the image3. The pyramids
of the two can be combined to boost performance.

4. Experiments
We train our model on the entire training set of 3060

images from the Caltech-101 dataset (30 images per class).
Pre-processing: Each image is converted to gray-scale

and resized to 150×150 (zero padding to preserve the aspect
ratio). Local subtractive and divisive normalization (i.e. the
patch around each pixel should have zero mean and unit
norm) is applied using a 13×13 Gaussian filter with σ = 5.

Model architecture: We use a 4 layer model, with 7×7
filters, and E = 10 epochs of training. Various parameters,
timings and statistics are shown in Table 1. Due to the effi-
cient inference scheme, we are able to train with many more
feature maps and more data than other approaches, such as
[3, 8, 11]. By the 4th layer, the receptive field of each fea-
ture map element (z pixel field) covers the entire image,
making it suitable for the novel feature extraction process
described in Section 3. At lower layers of the model, the
representation has many latent variables (i.e. z’s and s’s)
but as we ascend, the number drops. Counterbalancing this
trend, the number of filter parameters grows dramatically as
we ascend and the top layers of the model are able to learn
object specific structures.

Timings: With 3060 training images and E = 10
epochs, it takes around 6 hours to train the entire 4 layer
model. For inference, a single epoch suffices with 10 ISTA
iterations at each layer. The total inference time per image
is 1.25 secs (see Table 1 for per layer breakdown). Both
these timings are for a Matlab implementation on a single
six-core CPU. As previously discussed, the inference can
easily be parallelized, thus a dramatic speed improvement
could be expected from a GPU implementation.
4.1. Model visualization

The top-down nature of our model makes it easy to in-
spect what it has learned. In Fig. 5 we visualize the fil-
ters in the model by taking each feature map separately and

3Specific details: pixel spacing=2, patch size=16, codebook size=2000.
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Figure 5. a-d) Visualizations of the filters learned in each layer of our model with zoom-ins showing the variability of select features. e)
An illustration of the relative receptive field sizes. f) Image reconstructions for each layer. See Section 4.1 for explanation. This figure is
best viewed in electronic form.



Our model - layer 1 67.8± 1.2%
Our model - layer 4 69.8± 1.2%
Our model - layer 1 + 4 71.0± 1.0%
Chen et al. [3] layer-1+2 (ConvFA) 65.7± 0.7%
Kavukcuoglu et al. [8] (ConvSC) 65.7± 0.7%
Zeiler et al. [18] layer-1+2 (DN) 66.9± 1.1%
Boureau et al. [2] (Macrofeatures) 70.9± 1.0%
Jarrett et al. [7] (PSD) 65.6± 1.0%
Lazebnik et al. [9] (SPM) 64.6± 0.7%
Lee et al. [11] layer-1+2 (CDBN) 65.4± 0.5%
Our Caltech-256 Model - layer 1+4 70.5± 1.1%

Table 2. Recognition performance on Caltech-101 of our model
and other approaches grouped by similarity (from top). Group
1: our approach; Group 2: related convolutional sparse coding
methods with SPM classifier; Group 3: other methods using SPM
classifier; group 4: our model with filters trained on Caltech-256
images.

picking the single largest absolute activation over the entire
training set. Using the switch settings particular to that acti-
vation we project it down to the input pixel space. At layer
1 (Fig. 5(a)), we see a range of oriented Gabors of differ-
ing frequencies and some DC filters. In layer 2 (Fig. 5(b)),
a range of edge junctions and curves can be seen, built
from combinations of the 1st layer filters. For select filters
(highlighted in color), we expand to show the 25 strongest
activations across all images. Each group shows cluster-
ing with a certain degree of variation produced by the spe-
cific switch settings for that particular activation. See, for
example, the sliding configuration of the T-junction (blue
box). Reflecting their large receptive field, the filters in
layer 3 (Fig. 5(c)) show a range of complex compositions.
The highlighted boxes show that the model is able to clus-
ter quite complex structures. Note that the groupings pro-
duced are quite different to a pixel-space clustering of im-
age patches since they are: (i) far from rectangular in shape;
(ii) utilize the adaptable geometric transformations offered
by the switches below. The 4th layer filters (Fig. 5(d)) show
fairly complete reconstructions of entire objects with group-
ings amongst objects of the same class or of similar shape.

To understand the relative sizes of each projection we
also show the receptive fields for layers 1-4 in Fig. 5(e). Fi-
nally, reconstructions from each layer of the model of 4 ex-
ample input images are shown in Fig. 5(f). Note that unlike
related models, such as Lee et al. [11], sharp image edges
are preserved in the reconstructions, even from layer 4.

4.2. Evaluation on Caltech-101
We use M = 50 decompositions from our model to pro-

duce input for training the Spatial Pyramid Match (SPM)
classifier of Lazebnik et al. [9]. The classification results
on the Caltech-101 test set are shown in Table 2.4

4In Table 2 and Table 3, we only consider approaches based on a single
feature type. Approaches that combine hundreds of different features with

Our model - layer 1 31.2± 1.0%
Our model - layer 4 30.1± 0.9%
Our model - layer 1 + 4 33.2± 0.8%
Yang et al. [17] (SPM) 29.5± 0.5%
Our Caltech-101 Model - layer 1+4 33.9± 1.1%

Table 3. Caltech-256 recognition performance of our model and a
similar SPM method. Our Caltech-101 model was also evaluated.

Applying the SPM classifier to layer 1 features z1 from
our model produces similar results (67.8%) to many other
approaches, including those using convolutional sparse cod-
ing (2nd group in Table 2). However, using the 50 max
decompositions from layer 4 in the SPM classifier, as de-
tailed in Section 3, we obtain a significant performance im-
provement of 2%, surpassing the majority of hierarchical
and sparse coding approaches that also use the same SPM
classifier (middle two groups in Table 2). Summing the
SVM kernels resulting from the max activations from layer
4 and the layer 1 features, we achieve 71.0%. The only ap-
proach based on the SPM with comparable performance is
that of Boureau et al. [2], based on Macrofeatures. Current
state-of-the-art techniques [2, 17] use soft quantization of
the descriptors, in place of the hard k-means quantization
used in the SPM. We expect using Macrofeatures and soft
quantization would also boost our performance.

4.3. Evaluation on Caltech-256
Using the same training and evaluation parameters as for

Caltech-101, we evaluated our model on the more difficult
Caltech-256 dataset (see Table 3). By training our model
on 30 images in each of the 256 categories and using M =
50 decompositions as before, we show a gain of 3.7% over
SIFT features with the SPM classifier [17].

4.4. Transfer learning
By using filters trained on Caltech-101, then classifying

Caltech-256 and vice versa we can test how well our model
generalizes to new images. In both cases, classification per-
formance remains within errors of the original results (see
Table 2 and Table 3) showing the adaptability of our model
to generalize to new instances and entirely new classes.

4.5. Classification and reconstruction relationship

While we have shown sparsity to be useful for learning
high level features and decomposing images into a hierar-

multiple kernel learning methods outperform the methods listed in Table 2
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Figure 6. Relationship between reconstruction (solid line) and
classification rates (dotted line) for varied amounts of sparsity.



chy of parts, it is not necessarily a strong cue for classifi-
cation as Rigamonti et al. [13] note. By varying the λl pa-
rameter at each layer for inference, holding the filters fixed,
we analyzed the tradeoff of sparsity and classification per-
formance on Caltech-101 in Fig. 6. With higher λl values,
sparsity is reduced, reconstructions improve, and recogni-
tion rates increase. The optimum appears around 3× the
λl used for training, after which the increased λl results in
larger ISTA steps that introduce instability in optimization.5

4.6. Analysis of switch settings
Other deep models lack explicit pooling switches, thus

during reconstruction either place a single activation in the
center of each pool [3], or distribute it equally over all lo-
cations [11]. Fig. 7 demonstrates the utility of switches: we
(i) reconstruct using the top 25 activations in layers 2,3 and
4 for different forms of switch behavior; (ii) sum the result-
ing reconstructions and (iii) classify Caltech-101 using the
layer 1 features (as before).
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Figure 7. Switch importance for reconstruction and classification.

It is evident from the layer 3 reconstructions shown
in Fig. 7(a) that retaining all max locations allows for
sharp reconstructions while average unpooling Fig. 7(b,d)
causes blur and using the center indices in max unpooling
Fig. 7(c,e) causes jitter with corresponding drops in recog-
nition performance When reconstruction, maintaining the
proper k switches Fig. 7(b,c) is crucial for selecting the
proper feature maps in lower layers, so preventing extreme
deformations of the objects (see Fig. 7(d,e)) which leads to
severely reduced recognition performance.

5. Discussion
The novel methods introduced in this paper allow us to

reliably learn models with many layers. As we ascend the
layers, the switches in our model allow the filters to adapt
to increasingly variable input patterns. The model is thus
able to capture mid and high-level features that generalize
between classes. Using these features with standard clas-
sifiers gives highly competitive rates on Caltech-101 and
Caltech-256. The generality of our learned representation
is demonstrated by its ability to generalize to datasets on

5The results in Table 2 and Table 3 used 2× λl.

which it was not trained, while maintaining a comparable
performance. Matlab code for our algorithm is available at
www://xyz.abc.
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