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In this note we revisit the famous result of Shannon [Sha49] stating that any encryption scheme
with perfect security against computationally unbounded attackers must have a secret key as long
as the message. This result motivated the introduction of modern encryption schemes, which
are secure only against a computationally bounded attacker, and allow some small (negligible)
advantage to such an attacker. It is a well known folklore that both such relaxations — limiting
the power of the attacker and allowing for some small advantage — are necessary to overcome
Shannon’s result. To our surprise, we could not find a clean and well documented proof of this
folklore belief. (In fact, two proofs are required, each showing that only one of the two relaxations
above is not sufficient.) Most proofs we saw either made some limiting assumptions (e.g., encryption
is deterministic), or proved a much more complicated statement (e.g., beating Shannon’s bound
implies the existence of one-way functions [IL89].)

In this note we rectify this situation, by presenting two clean, elementary extensions of Shannon’s
impossibility result, showing that, in order to beat the famous Shannon lower bound [Sha49] on key
length for one-time-secure encryption, one must simultaneously restrict the attacker to be efficient,
and also allow the attacker to break the system with some non-zero (i.e., negligible) probability.
Unlike most prior proofs we have seen, our proof seamlessly handles probabilistic encryption, small
decryption error, and can be taught without any extra background (e.g., notions of entropy, etc.)
in a first lecture of an introductory cryptography class.

For intellectual curiosity, we also discuss some “entropy extensions” of our proof, and the relation
between our “indistinguishability-based” proof and Shannon’s original “mutual-information-based”
proof.

Organization. The main results are presented in Sections 1 and 2, giving the main definitions and
impossibility results. These are presented in a completely elementary way (e.g., no notion of entropy
is used). In Section 3 we give some simple “entropy-based” extensions of our “indistinguishability-
based” definition, and in Section 4 we also present the “mutual-information-based” definitions, and
discuss their relation to “indistinguishability-based” notions.
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1 Definitions

Some Notation. In general, we use capital letters for random variables, and lower case letters for
specific values; e.g., M, C, S denote appropriately defined random messages, ciphertexts and keys,
while m, c, s denote some specific value of those. When A is a probabilistic algorithm taking input
x, we write Y ← A(x) to denote the random variable A(x; R) for uniformly random R. When X
itself it a random variable, we write Y ← A(X). Finally, we use calligraphic letters for message
spaces; e.g., key space S and message space M.

Encryption. Let (Gen, Enc, Dec) be any encryption scheme with key space S and message space
M. The key generation algorithm Gen outputs a secret key s chosen according to some key distri-
bution S over S. In most common schemes S is simply uniform over S, but our results hold for
any key distribution S, so we will not assume that S must be uniform.

The encryption algorithm Enc takes a key s ∈ S, a message m ∈ M, and outputs ciphertext
C ← Encs(m). We stress that we allow the encryption algorithm Enc to be probabilistic, so C is
really Encs(m; R) for random coins R. Luckily, we structure our proofs in a way which will easily
handle this case, without explicitly talking about the random coins R. In particular, to simplify
the notation, when some encryption is computed inside some probability, we do not explicitly put
the choice or R under Pr; for example, PrS [EncS(m) = c] really means PrS,R[EncS(m; R) = c]. We
will assume that the message m is chosen from some distribution M overM which is independent
of the key distribution S ← Gen().

The (possibly probabilistic) decryption algorithm Dec takes a ciphertext c and a key s and
outputs the decryption M̃ ← Decs(c). Ordinarily, we require perfect correctness stating that for
any m ∈M and s ∈ S we have Decs(Encs(m)) = m. However, since we are proving a lower bound,
we relax the correctness guarantee to allow for some small decryption error γ.

Definition 1 An encryption scheme (Gen, Enc, Dec) is called (1− γ)-correct on M if

Pr
S,M

[DecS(EncS(M)) = M ] ≥ 1− γ (1)

We say that (Gen, Enc, Dec) is (1− γ)-correct (in general) if it is (1− γ)-correct on every message
distribution M ; equivalently, for any m ∈M, PrS [DecS(EncS(m)) = m] ≥ 1− γ. ♦

Security. There are many equivalent formulations of “perfect” Shannon’s security, when the
attacker Eve is allowed to be computationally unbounded, and the “advantage” of any such Eve
must be 0. Roughly, these definitions can be partitioned into two types. Some, including Shan-
non’s original notion [Sha49], use the notions of Shannon’s entropy and mutual information (see
Section 4). While elegant and easy to state, it is not obvious how to relax such notions to computa-
tionally bounded attackers.1 Other definitions, inspired by the Goldwasser-Micali [GM84] notions of
semantic security and indistinguishability, are based on statistical distance. Such definitions have a
clean and natural extensions to both computationally bounded attackers and non-zero advantage.
Therefore, our definition below will be of this type. Since we are proving a lower bound, we will
state what we feel is the weakest such definition. Of course, since our lower bound will be so strong
even for such “weak-looking” definition, it will imply lower bounds for other, stronger definitions.

Definition 2 An encryption scheme (Gen, Enc, Dec) is called (t, ε)-secure on message distribu-
tion M if for there exists a random variable Y (independent of M) such that for any (possibly

1However, in Section 4 we will propose a natural relaxation to small non-zero advantage.
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probabilistic) adversary Eve running in time at most t, it holds

| Pr
S,M

[Eve(M, EncS(M)) = 1]− Pr
S,Y

[Eve(M, Y ) = 1] | ≤ ε (2)

An encryption scheme (Gen, Enc, Dec) is called (t, ε)-secure if it is (t, ε)-secure on all message dis-
tributions M . When Eve is allowed to be computationally unbounded (e.g., t = ∞), we say that
(Gen, Enc, Dec) is ε-secure. ♦

1.1 Few Remarks on the Definition

We make a few remarks on our definition. These remarks can be skipped by readers who already
find the definition to be natural (and such readers can directly move to Section 2).

Intuitively, our definition states that whatever bit of information about M Eve could derive
from the actual ciphertext C, she could have also derived from some random variable Y which is
independent of M . Thus, Eve did not learn any new information from the ciphertext which she
could not have learned from simply knowing the a-priori message distribution M (and some side
information Y independent of M). However, while restricting Eve to run in time at most t, we do
not make any restrictions on the complexity of sampling this independent distribution Y , and do
not “charge” Eve for sampling Y . In particular, we do not insist on setting Y ← EncS(M ′), where
M ′ is a fresh independent sample of M . Similarly, for general (t, ε)-security, we allow different Y ’s
for different M ’s. Once again, such relaxations are done to make our lower bound stronger.

Also notice that the above definition is trivially true for any “singleton” distribution M ← m,
for any m ∈M, and seems getting harder and harder as M becomes more and more “well-spread”
(see Theorem 2 how this intuition translates to our lower bound). Still, even for the most “well-
spread” uniform distribution M over M, although we will see that our definition implies a strong
bound on the size of the key space (Theorem 1), the definition is still noticeably weaker than general
(t, ε)-security for all message distributions. For example, modifying a secure encryption (such as
one-time pad) to be identity on some fixed m ∈ M, still leaves the encryption very secure on the
uniform distribution, while making the encryption of m easily distinguishable from encryptions of
all other messages m′. In contrast, the general definition of security against all distributions is
easily seen to be equivalent (ignoring factor of 2 in ε) to security against all distributions Mm,m′ ,
for all m, m′ ∈M, where each Mm,m′ is uniform over a pair of messages {m, m′}. In turn, the latter
definition is simply the classical definition of (t, ε)-indistinguishability of Goldwasser-Micali [GM84],
which states that for any messages m, m′ ∈M, and any adversary Eve running in time at most t,
it holds

|Pr
S

[Eve(EncS(m)) = 1]− Pr
S

[Eve(EncS(m′)) = 1]| ≤ ε (3)

We refer to [IO11] for discussions of several other nearly equivalent forms of “indistinguishability-
based” security (such as semantic security) for one-time symmetric-key encryption, and stress that
our lower bound easily holds for all such notions. We also discuss a natural “mutual-information-
based” definition in Section 4.

2 Main Result

Recall the classical Shannon lower bound [Sha49] states that (∞, 0)-security implies |S| ≥ |M|. In
fact, this conclusion holds even if M is restricted to be the uniform distribution over M. Here we
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show an elegant extension of this result confirming that, in order to beat the Shannon bound in
a non-trivial way, one must simultaneously restrict Eve to be efficient, as well as allow for some
non-zero (but possibly negligible) probability ε of security failure. Just like the Shannon’s original
bound, our bounds will already follow by restricting M to be the uniform distribution. Our proof
also handles decryption error γ.

Theorem 1 Let M be the uniform distribution over M, and assume (Gen, Enc, Dec) is (1 − γ)-
correct on M . Then:

• Small error needed. Let v denote maximum bit length of a plaintext plus ciphertext.
If (Gen, Enc, Dec) is (v, 0)-secure on M , then |S| ≥ |M|(1− γ).

• Small time needed. Let d denote maximum decryption time.
If (Gen, Enc, Dec) is (|S|d, ε)-secure on M , then |S| ≥ |M|(1− ε− γ).

Proof of First Part. Let Y be the distribution on ciphertexts guaranteed by Definition 2, so
that Equation (2) holds with ε = 0 for any Eve running in time at most v. We claim that this
implies that the joint distribution (M, EncS(M)) is identical to (M, Y ), where Y is independent
from M :

(M, EncS(M)) ≡ (M, Y ) (4)

To show this formally, for any fixed message m ∈ M and ciphertext c, consider the following
Evem,c(m

′, c′) running in time t = v:

Evem,c(m
′, c′): output 1 if and only if m′ = m and c′ = c.

Applying Equation (2) with ε = 0 to Evem,c, we get

Pr
S,M

[M = m and EncS(M)) = c] = Pr
M,Y

[M = m and Y = c]

Using the fact that M is uniform and independent from Y , the above is equivalent to

Pr
S

[EncS(m)) = c] = Pr
Y

[Y = c]

Since the above holds for all m and c, the distribution EncS(m) ≡ Y for all m ∈ M, which
means that the ciphertext distribution is the same for all messages. In particular, going back to
the uniform distribution M , we have (M, EncS(M)) ≡ (M, Y ), as claimed in Equation (4).2

Now, pick a fresh uniformly random key S′ and look at3

∆
def

= Pr
M,S′,Y

[DecS′(Y ) = M ] (5)

On the one hand, it is clear that

∆ ≤ 1

|M| (6)

2In essence, we showed a more general fact: to conclude that two distributions A and B are identical, it is sufficient
to show that they are (t, 0)-indistinguishable, for t equal to the maximum description length of any element in the
support of A and B.

3Note, if S ← Gen() is not uniform, S′ has a different distribution than S.
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since M is uniform and DecS′(Y ) is independent of M . On the other hand, we know that the
distribution (M, Y ) is identical to (M, EncS(M)). Hence, we can rewrite Equation (5) as

∆ = Pr
S,M,S′

[DecS′(EncS(M)) = M ]

≥ Pr[S = S′] · Pr
M,S

[DecS(EncS(M)) = M ] (7)

≥ 1

|S| · (1− γ) (8)

Here Equation (7) followed from the fact that the distribution of S conditioned on the event S =
S′ is the same as the original distribution S, since S′ is uniform. On the other hand, Equation (8)
followed from Equation (1) and, again, the fact that S′ is uniform, so Pr[S = S′] = 1/|S|.

Comparing the resulting inequality above with Equation (6), we get 1
|S| · (1 − γ) ≤ ∆ ≤ 1

|M| ,

which implies |S| ≥ (1− γ)|M|.

Proof of Second Part. We show that (|S|d, ε)-security implies |S| ≥ |M|(1− ε− γ). As before,
let Y be the ciphertext distribution guaranteed by Definition 2. Consider the following attacker
Eve of complexity t = |S|d:

Eve(m, c): Run Decs(c) for all s ∈ S. Output 1 if and only if at least one answer was m.

Now, let us compute both probabilities when we apply Equation (2) to this Eve. First,

Pr
S,M

[Eve(M, EncS(M)) = 1] = Pr
S,M

[∃s s.t. Decs(EncS(M)) = M ]

≥ Pr
S,M

[DecS(EncS(M)) = M ]

≥ 1− γ

where the last inequality used Equation (1). By Equation (2), we get

Pr
M,Y

[Eve(M, Y ) = 1] ≥ Pr
S,M

[Eve(M, EncS(M)) = 1]− ε ≥ 1− ε− γ (9)

On the other hand,

Pr
M,Y

[Eve(M, Y ) = 1] = Pr
M,Y

[∃s s.t. Decs(Y ) = M ]

≤
∑

s

Pr
M,Y

[Decs(Y ) = M ]

However, M is uniform over M and, for any s ∈ S, Decs(Y ) is independent of M . Thus, Pr[M =
Decs(Y )] ≤ 1

|M| , which means that

Pr
M,Y

[Eve(M, Y )) = 1] ≤
∑

s

1

|M| =
|S|
|M| (10)

Combining Equation (9) and Equation (10), we get 1− ε− γ ≤ |S|
|M| or |S| ≥ |M|(1− ε− γ).

5



Tightness. Both bounds are nearly tight, which can be shown by tweaking the generalization of
the one-time pad (OTP) encryption for general cardinality N message spaces (not just the power of
2, which can be accomplished by addition modulo N). For simplicity, we only do it for two special
cases ε = 0 and γ = 0, leaving the common generalization as a (tedious) exercise. For both cases
we will actually satisfy the stronger (t, ε)-indistinguishability given by Equation (3).

First, assume ε = 0. Take any |M| of cardinality N , and any subset M0 ⊆ M of cardinality
N(1− γ). Start with the OTP scheme overM0 (so that |S| = N(1− γ) as well), and enlarge it to
all ofM by taking any fixed m0 ∈M0 and defining Encs(m1) = Encs(m0), for m1 ∈M\M0. The
addition of these γN messages (which decrypt incorrectly) to our OTP does not affect the security
of the scheme (since Enc(m0) is perfectly secure), but creates a decryption error with probability
γ, and with |S| = |M|(1− γ).

Second, assume γ = 0. Now, for any M of cardinality N , take the OTP for M (so that
|S| = N), and simply remove εN/2 keys from S, defining the actual set S0 of N(1 − ε/2) keys,
and sampling a random key s from S0. To argue the Ω(ε)-security of this scheme, one can imagine
sampling a key s← S0 by first sampling the key s← S and claiming that Eve unconditionally won
the game if s ∈ S\S0. Equivalently, we can always actually run Eve on a fully uniform key s from
S, but then declare Eve victorious anyway if s ∈ S\S0. Clearly, when s is fully uniform, Eve has
probability exactly 1/2 telling apart encryptions of m0 from m1, so now her probability is at most
1/2 + ε/2, creating distinguishing advantage at most ε with |S0| = |M|(1− ε/2).

3 Some Extensions

The result of the previous section was completely elementary, did not explicitly use any technical
notions such as entropy, statistical distance, etc., and could be easily taught in the first lecture of
an undergraduate class (especially for the case of perfect correctness γ = 0). In this section we
make several elementary “entropy-extensions” of our main result.

3.1 Extension to general M

We observe that Theorem 1 easily generalizes to arbitrary message distributions M (as opposed

to the uniform distribution), as follows. We define the min-entropy of M to be H∞(M)
def

=
− log(maxm Pr[M = m]). In particular, for any random variable M ′ independent of M , we have
Pr[M ′ = M ] ≤ 2−H∞(M). Examining now the proofs of both parts of Theorem 1, we see that the
only places where the uniformity of M was used were Equation (6) and Equation (10). In both
cases, we needed to upped bound Pr[M ′ = M ] for some probability distribution M ′ which was
independent of M (e.g., M ′ = DecS′(Y ) for Equation (6) and M ′ = Decs(Y ) for Equation (10)).
Hence, we get the following analog of Theorem 1 where |M| is replaced by 2H∞(M).

Theorem 2 Let M be the any distribution over M, and assume (Gen, Enc, Dec) is (1− γ)-correct
on M . Then:

• Small error needed. Let v denote maximum bit length of a plaintext plus ciphertext.
If (Gen, Enc, Dec) is (v, 0)-secure on M , then |S| ≥ 2H∞(M) · (1− γ).

• Small time needed. Let d denote maximum decryption time.
If (Gen, Enc, Dec) is (|S|d, ε)-secure on M , then |S| ≥ 2H∞(M) · (1− ε− γ).

6



Notice, this bound is tight, in general, by taking M to be uniform over some subset M′ of M
of cardinality 2H∞(M), and then doing the OTP scheme overM′.

3.2 Slightly Stronger Bound for Perfect Completeness and Perfect Security

Recall, the bounds of Theorem 1 (and more general Theorem 2) held for any key distribution
S ← Gen(), but only gave lower bounds of the cardinality of S (or, more generally, on cardinality of
the support set of S). In contrast, as we recap in Section 4 below, Shannon’s original bound [Sha49]
gave the lower bound on the Shannon entropy H1(S) of S, which could be stronger for sufficiently
non-uniform S. Here we observe that our proof for the first part of Theorem 1 can be strengthened
to give the lower bound on the min-entropy H∞(S) for the case of perfect correctness γ = 0. For
elegance, we right away state the improved bound for general message distribution M as well.

Theorem 3 Let M be the any distribution over M, and assume (Gen, Enc, Dec) is 1-correct on
M . Let v denote maximum bit length of a plaintext plus ciphertext. Then, if (Gen, Enc, Dec) is
(v, 0)-secure on M , then H∞(S) ≥ H∞(M). In particular, if (Gen, Enc, Dec) is (v, 0)-secure on
uniform M , we have H∞(S) ≥ log |M|.

Proof: We follow the same proof as in Theorem 1 (and its extension to general M in Theorem 2),
except we define the value S′ to be the most likely value s of the key S, instead of being uniform.
Namely, we set S′ = s satisfying Pr[S = s] = 2−H∞(S). Then, the value ∆ becomes

∆
def

= Pr
M,Y

[Decs(Y ) = M ]

We can argue, as before, that ∆ ≤ 2−H∞(M), since M is independent of Decs(Y ). On the other
hand, since the distribution (M, Y ) is identical to (M, EncS(M)) and we have perfect completeness,
we get

∆ = Pr
S,M

[Decs(EncS(M)) = M ]

≥ Pr[S = s] · Pr
M

[Decs(Encs(M)) = M ]

≥ 2−H∞(S) · 1 (11)

where Equation (11) used the definition of s and the perfect correctness of the encryption. Com-
bining the two bounds on ∆, we get 2−H∞(S) ≤ ∆ ≤ 2−H∞(M), which implies H∞(S) ≥ H∞(M).

As we recap in Section 4 below, when ε = 0 our definition is equivalent to the original definition
of Shannon [Sha49], who showed the bound H1(S) ≥ log |M|, where H1 is Shannon’s entropy. Since
log |S| ≥ H1(S) ≥ H∞(S), we can view the last bound of Theorem 3 as a nice strengthening of
Shannon’s original bound for perfect security (and perfect correctness):4 not only H1(S) ≥ log |M|,
but also H∞(S) ≥ log |M|.

4Actually, our proof above extends to imperfect correctness, as long as we require that PrM [Decs(Encs(M)) =
M ] ≥ 1− γ, for all s ∈ S, instead of only on average over s← S.
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4 Bounds for Mutual Information Based Definition

The Shannon entropy of a random variable X is defined as H1(X)
def

= Ex←X [− log Pr[X = x]]. We
also define conditional Shannon entropy of a random variable X conditioned on another random
variable Z by

H1(X|Z)
def

= E(x,z)←(X,Z) [− log Pr[X = x|Z = z]]

where Ez←Z denotes the expected value over z ← Z. It is well known that H1(X) ≥ H1(X|Z) ≥ 0.

The mutual information between X and Y is I(X; Y )
def

= H1(X) − H1(X|Y ). It is well known
that I(X; Y ) = I(Y ; X) ≥ 0. The conditional mutual information of X and Y given Z is defined
analogously. We assume the reader is familiar with other elementary facts about Shannon entropy
and mutual information (such as the chain rule used below); see [CT06].

Let (Gen, Enc, Dec) be encryption scheme, S be it key distribution Gen(), M be some message
distribution and C ← EncS(M). We now give the following natural definitions generalizing the
original definitions of [Sha49] to imperfect correctness and security.

Definition 3 An encryption scheme (Gen, Enc, Dec) is called (1− γ′)-Shannon correct on M if

H1(M |DecS(C)) ≤ γ′

(Gen, Enc, Dec) is (1−γ′)-Shannon correct (in general) if it is (1−γ′)-Shannon correct on all message
distributions M .

An encryption scheme (Gen, Enc, Dec) is called ε′-Shannon secure on M if

I(M ; C) ≤ ε′

(Gen, Enc, Dec) is ε′-Shannon secure (in general) if it is ε′-Shannon secure on all message distribu-
tions M . ♦

We start with the following Lemma, translating the elegant “proof-by-picture” exposition of
Shannon’s bound by Wolf [Wol98] (for ε′ = 0) into a concrete inequality. (We suspect the Lemma
is well-known, but we could not locate an explicit reference.)

Lemma 4 For any (possibly correlated) distributions M, S, C, we have

H1(S) ≥ H1(M)−H1(M |(S, C))− I(M ; C) (12)

Proof:

H1(M) = H1(M |(S, C)) + I(M ; (S, C))

= H1(M |(S, C)) + I(M ; C) + I(M ; S|C)

= H1(M |(S, C)) + I(M ; C) + H1(S|C)−H1(S|(M, C))

≤ H1(M |(S, C)) + I(M ; C) + H1(S)

where the equalities used the definitions and the chain rule, and the last inequality used the facts
that H1(S|C) ≤ H1(S) and H1(S|(M, C)) ≥ 0.

As a corollary, we get the following straightforward extension of Shannon’s result:

Theorem 5 If (Gen, Enc, Dec) is ε′-Shannon secure and (1− γ′)-Shannon correct on M , then

H1(S) ≥ H1(M)− γ′ − ε′ (13)

In particular, if M is the uniform distribution over M, then H1(S) ≥ log |M| − γ′ − ε′.
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Proof: Follows from Equation (12) and H1(M |(S, C)) ≤ H1(M |DecS(C)) ≤ γ′.

Relation to Indistinguishability Notions. Here we relate the (1− γ′)-Shannon correctness
and ε′-Shannon security to the “indistinguishability-based” notions of (1 − γ)-correctness and ε-
security5 from Section 1. Using Fano’s inequality (see [CT06]), we can relate γ′ to γ as follows:

γ′ ≤ h(γ) + γ · (log |M| − 1) (14)

where h is binary entropy function h(x) = −x log2 x − (1 − x) log2(1 − x). Unfortunately, no
meaningful converse relation can be made, since changing DecS(C) to return M + 1 instead of M
has 0-correctness and 1-Shannon correctness.6

More interestingly, to relate Shannon security on M with indistinguishability security on M ,
we use the following result (implicitly) proven by Bellare et al. [BTV12] using Pinsker’s inequality
(see [CT06]).

Lemma 6 ([BTV12]) For any (possibly correlated) distributions M, C over some spaces M and
C, let7

ε = SD((M, C); M × C)

where M ×C is the product distribution of the independent marginal distributions M and C. Then,

2ε2 ≤ I(M ; C) ≤ 2ε · log(|M|/ε) (15)

In particular, notice that our notion of ε-security on M from Definition 2 is essentially equiv-
alent to SD((M, C); M × C) ≤ ε.8 Thus, ε′-Shannon security on M implies

√
2ε′-security on M .

Conversely, ε-security on M implies (2ε · log(|M|/ε))-Shannon security on M . Hence, ignoring effi-
ciency issues for Eve and the square root degradation on ε′, Shannon starts with stronger security
assumption than we do, but also gets slightly stronger conclusion: bound on H1(S), not just |S|.
However, for perfect security ε = 0 we are still slightly stronger by Theorem 3, getting a bound on
H∞(S), and not just H1(S).

Acknowledgments: The author would like to thank Dario Fiore, Stefano Tessaro and Daniel
Wichs for useful discussions.

5Here we set t =∞, as it is not clear what is the analog of time for Shannon’s security.
6Because of this, in contrast to standard correctness, the notion of “Shannon-correctness” is not a very useful

notion, and we defined it only because the quantity H1(M |DecS(C)) naturally came up in the proof. Luckily,
Equation (14) shows that (1− γ)-correctness implies a decent bound on γ′ as well.

7The statistical distance SD(X; Y ) between two random variables X, Y is defined by:

SD(X, Y )
def
=

1

2

X

x

|Pr[X = x]− Pr[Y = x]| = max
Eve

|Pr[Eve(X) = 1]− Pr[Eve(Y ) = 1]|

8Up to a factor of 2 in ε since Y might not be equal to C. I.e., ε-security implies 2ε bound on the statistical
distance above, and is implied by the ε bound on that distance.
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