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A SIMPLIFIED h-BOX METHOD FOR EMBEDDED BOUNDARY
GRIDS∗
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Abstract. We present a simplified h-box method for integrating time-dependent conservation
laws on embedded boundary grids using an explicit finite volume scheme. By using a method of
lines approach with a strong stability preserving Runge–Kutta method in time, the complexity of
our previously introduced h-box method is greatly reduced. A stable, accurate, and conservative
approximation is obtained by constructing a finite volume method where the numerical fluxes satisfy
a certain cancellation property. For a model problem in one space dimension using appropriate
limiting strategies, the resulting method is shown to be total variation diminishing. In two space
dimensions, stability is maintained by using rotated h-boxes as introduced in previous work [M. J.
Berger and R. J. LeVeque, Comput. Systems Engrg., 1 (1990), pp. 305–311; C. Helzel, M. J. Berger,
and R. J. LeVeque, SIAM J. Sci. Comput., 26 (2005), pp. 785–809], but in the new formulation, h-box
gradients are taken solely from the underlying Cartesian grid, which also reduces the computational
cost.
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1. Introduction. When computing inviscid flow using an explicit finite volume
method, the time step ∆t is typically proportional to the cell volume. However, for
embedded boundary grids with cut cells adjacent to the boundary, the cut cell volumes
can be orders of magnitude smaller than the regular Cartesian grid cell volume. The
use of standard difference procedures would lead to an unacceptably small integration
time step. Both accuracy and stability are issues that need to be addressed at these
highly irregular cut cells adjacent to solid bodies.

Various methods have been proposed in the literature for dealing with the small
cell problem. The most intuitive approach is to use cell merging, where a cut cell
is combined with one or more neighbors until a cell of sufficient volume is attained.
In two space dimensions this approach has been tried in [2, 7, 10, 25, 33]. While
conceptually simple, in practice this method is hard to implement. There are many
special cases that make it particularly exasperating in three dimensions, and it is
difficult even for problems in two dimensions involving moving geometry, where the
merging procedure must be invoked at every time step.

A particularly simple approach is flux redistribution, due to Chern and Colella; see
[6, 8, 24]. In essence, flux redistribution stabilizes a finite volume scheme by allowing
only a fraction of a cell’s flux balance at each time step to update the value in the small
cell, where the fraction is proportional to the cell’s volume. To maintain conservation
the rest of the flux balance is distributed to the cut cell’s neighbors. This method
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has been implemented in three dimensions for general conservation laws. However,
results in [8] indicate that the method is only first order at the cut cells, although this
is sufficient to retain second order accuracy globally if using a second order scheme
in the interior of the domain. A similar approach has been explored by Klein, Bates,
and Nikiforakis [19] in the context of well-balanced atmospheric flow simulations.

Other approaches that have been proposed in the literature include interpolation-
based procedures, such as the mirror-cell method by Forrer and Jeltsch [11], and a
related ghost-fluid method by Dadone and Grossman [9]. There are also approaches
based on finite difference schemes [20, 29, 30] and kinetic schemes [18]. The use of
implicit schemes would be another way to stabilize cut cells, but there is a lot of
overhead associated with it that may not be warranted unless the method being used
to advance the solution in the interior of the domain is also implicit. A partially
implicit peer method for atmospheric flow simulations has recently been proposed by
Jebens, Knoth, and Weiner [17].

In previous work [3, 16] we introduced an h-box method in both one and two space
dimensions and derived some of its accuracy and stability properties. This was mostly
done in the context of the wave propagation algorithm [21, 22] in [3] and a predictor-
corrector MUSCL-type scheme [16]. We showed that the method was second order
accurate in space and time and was Gustafsson–Kreiss–Sundström (GKS)-stable [13]
in one space dimension for arbitrarily small cell sizes.

In this paper we will develop the simplified h-box method in the context of a
method of lines, the source of much of the simplification. We start in section 2 with
an overview of the original h-box method in one space dimension and review some of its
properties, since this work builds on it. In section 3 we describe the new h-box method,
also in one space dimension, which uses a method of lines discretization with a strong
stability preserving Runge–Kutta integration in time. Such methods guarantee that
the nonlinear stability properties satisfied by the spatial discretization when coupled
with forward Euler in time will be preserved when a higher order integration in time
is used. In section 3 we show using a model problem that by extending the limiting
strategy applied to the gradient in a cut cell to take into account more neighbors,
a total variation diminishing (TVD) method ensues. In section 4 we review the
two-dimensional finite volume method used for the regular part of the grid. We also
describe a rotated grid finite volume method in this context. Section 5 presents a two-
dimensional rotated grid h-box method for the cut cells at the embedded boundary,
which is again based on the method of lines approach. Computational results of
two-dimensional problems are presented in section 6.

2. One-dimensional h-box method. In this and the next section, we consider
the scalar one-dimensional conservation law

(2.1) qt(x, t) + f(q(x, t))x = 0, −∞ < x < ∞,

with initial values q(x, 0) = q0(x). Here q : R × R+ → R is the conserved quantity,
and f : R → R is the flux function.

We present and analyze the h-box method in the context of a model problem in
one space dimension where the mesh is uniform of mesh width h except for one small
cell in the middle with mesh width αh, 0 < α ≤ 1 (see Figure 2.1). The small cell k
“represents” the cut cells in an embedded boundary mesh in two space dimensions.

A typical finite volume scheme has the semidiscrete form

(2.2)
d

dt
Qj(t) = − 1

hj
(F(Qj(t), Qj+1(t))− F(Qj−1(t), Qj(t)))
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Fig. 2.1. The model problem in one space dimension has one small cell in the middle of the
domain with mesh width αh, 0 ≤ α ≤ 1. The boxes below the axis indicate the h-boxes used to
compute the flux at the left interface of the small cell.

with hj = h for all cells except the kth, where hk = αh. Typically the flux Fj+1/2 =
F(Qj , Qj+1) depends only on the neighboring cells for a first order method, or for a
second order method, on the gradient in the cell as well, which can bring in additional
neighboring values. For the small cell k simply replacing hj with αh in (2.2) will be
unstable for time steps larger than αh/sk, where sk is the maximal wave speed of
waves at the interfaces of the kth grid cell. A cut cell approach, however, should be
stable for time steps which are restricted by a CFL number for the regular part of the
mesh. This requires a special treatment at cut cells.

The main idea of the h-box method is to extend the domain of dependence in
the flux calculations in a particular way that eliminates the dependence on α in
the denominator. The fluxes must satisfy a certain cancellation property for this to
happen, so that Fk+1/2 − Fk−1/2 = O(αh). Instead of (2.2) we use a method of the
form

(2.3)
d

dt
Qk(t) = − 1

αh
(F(QL

k+1/2, Q
R
k+1/2)− F(QL

k−1/2(t), Q
R
k−1/2(t))),

where the states QL, QR are averages over boxes of length h extending to the left and
right from the small cell’s interfaces.

These boxes are indicated at the bottom of Figure 2.1 for the cell edge to the left
of the small cell. They can be thought of as a virtual grid, although solution values are
associated only with the actual Cartesian grid, and the h-box values are calculated
on-the-fly.

Examine one of the boxes in particular, say QR
k−1/2, the right box at the interface

to the left of the small cell illustrated in Figure 2.2. The values Qk and Qk+1 represent
the cell averages, and the dotted line is a piecewise linear reconstruction in cell k+1.
We can define the solution value associated with the box as the integral average over
a box of length h,

QR
k−1/2 =

∫ xk−1/2+h

xk−1/2

Q(x) dx

= αQk + (1− α)(Qk+1 + (x̄− xk+1)∇Qk+1).(2.4)
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Fig. 2.2. Notation for definition of h-box QR
k−1/2.

The point x̄ is the centroid of the portion of the integral overlapping cell k + 1,
so that evaluating the linear reconstruction in this box at this point gives this part of
the integral. For the first order scheme, where the gradient in the Cartesian cell k+1
is set to ∇Qk+1 = 0, this reduces to

QR
k−1/2 = αQk + (1− α)Qk+1,

QL
k+1/2 = αQk + (1− α)Qk−1.

(2.5)

At the other interfaces the boxes overlap exactly with a mesh cell, and the h-box value
is simply the cell average for the regular cells; i.e., this is the standard first order finite
volume scheme.

For the higher order scheme, if the gradient is calculated using a backward differ-
ence ∇Qk+1 = Qk+1−Qk

xk+1−xk
, the resulting formulas are

QR
k−1/2 =

2αQk + (1− α)Qk+1

1 + α
,

QL
k+1/2 =

2αQk + (1− α)Qk−1

1 + α
.

(2.6)

Note that ∇Qk does not play a role since the entire cell average of Qk is included in
the integral, and no reconstruction is necessary.

In the case of linear advection qt + qx = 0 with explicit Euler time discretization
and the first order upwind flux (i.e., F(Qk, Qk+1) = Qk), the use of (2.5) gives the
small cell update

Qn+1
k = Qn

k − ∆t

αh
(QL

k+1/2 −QL
k−1/2)

= Qn
k − ∆t

αh
(αQk + (1− α)Qk−1 −Qk−1)

= Qn
k − ∆t

αh
(α(Qk −Qk−1))

= Qn
k − ∆t

h
(Qk −Qk−1).

The α in the denominator of the cell update has disappeared. The local truncation
error of this formula would appear to be inconsistent (since Qk and Qk−1 are not a
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distance h apart), but was shown to be first order in [3] using the Wendroff and White
technique for showing supraconvergence [32].

Similarly, using the more accurate linear interpolation formula (2.6) gives

Qn+1
k = Qn

k − ∆t

αh
(QL

k+1/2 −QL
k−1/2)

= Qn
k − ∆t

αh

(
2α

(1 + α)
Qk +

(1− α)

(1 + α)
Qk−1 −Qk−1

)

= Qn
k − ∆t

(1+α)
2 h

(Qk −Qk−1),

so again the α in the denominator has been mitigated. This is clearly first order, since,
using Taylor series, (Qk−Qk−1)/(1+α)h/2 = Qx+O(h). If the h-box formulas (2.6)
are used with the second order Lax–Wendroff flux function, the resulting method has
been shown to be second order in [3]. Furthermore, we have also shown that the
scheme with the small cell is stable as α → 0 according to the theory of Gustafsson,
Kreiss, and Sundström [13]. Intuitively, stability is due to the fact that the boxes for
the left and right flux calculations overlap each other except for a volume of size αh,
leading to the flux cancellation property mentioned earlier.

Here, we will always compute h-box values by integrating a piecewise linear func-
tion over a box of length h. We will compute gradients using a least squares approach,
and use a slope limiter to guarantee that the total variation of the reconstructed func-
tion is limited by the total variation of the cell average values.

3. h-box methods using the method of lines. In this work we separate the
discretization in space and time. A method of lines approach is used to obtain second
order accuracy in time. We concentrate on using h-boxes to achieve second order
accuracy and stability in space.

Let Q(t) be the vector with ith component an approximation to the value q(xi, t)
at the spatial position xi. After introducing a spatial discretization, we obtain a
system of ODEs of the form

Qt = L(Q),

where L(Q) ≈ −f(q)x denotes the discretization of the flux difference, evaluated at
the discrete locations. The spatial discretization will be chosen such that a forward
Euler step satisfies

(3.1) ‖Qn +∆tL(Qn)‖TV ≤ ‖Qn‖TV ,

where the total variation is defined as

‖Q‖TV =
∑

j

|Qj+1 −Qj |.

Instead of using the forward Euler method for the time integration, we will use a
second (or higher) order strong stability preserving (SSP) Runge–Kutta method. For
such methods

‖Qn+1‖TV ≤ ‖Qn‖TV

follows from (3.1) under the time step restriction 0 ≤ ∆t ≤ c∆tE , where ∆tE is
the time step restriction of the explicit Euler method and c ≤ 1 is a constant which
depends on the Runge–Kutta method; see [12].
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Here we use the second order accurate Runge–Kutta method from [28]:

Q(1) = Qn +∆tL(Qn),

Qn+1 =
1

2

(
Qn +Q(1) +∆tL(Q(1))

)
.

(3.2)

It is easy to see that the method (3.2) is TVD provided that (3.1) is satisfied. The time
integration (3.2) can be replaced by any other SSP Runge–Kutta method. Each stage
of such a Runge–Kutta method is a convex combination of explicit Euler methods,
and the TVD property can be obtained if the time step is small enough.

3.1. TVD stability for the uniform grid case. As a first step in specifying
the spatial discretization we review the case of an equispaced mesh with mesh width
h and cell centers xi. At each grid cell interface xi+ 1

2
, we specify numerical fluxes by

first reconstructing values of the conserved quantity at the left and right sides of each
cell interface,

Q−
i+ 1

2
= Qi +

h

2
∇Qi,

Q+
i+ 1

2
= Qi+1 −

h

2
∇Qi+1,

(3.3)

where ∇Qi is a limited gradient of the conserved quantity in the grid cell i. A typical
choice is the monotonized central-difference (MC) limiter or the minmod limiter (see,
e.g., [22]):

∇QMC
i = minmod

(
Qi+1 −Qi−1

xi+1 − xi−1
, 2

Qi −Qi−1

xi − xi−1
, 2

Qi+1 −Qi

xi+1 − xi

)
,(3.4)

∇Qminmod
i = minmod

(
Qi −Qi−1

xi − xi−1
,
Qi+1 −Qi

xi+1 − xi

)
.(3.5)

A geometric interpretation of the MC limiter applied to a cell-centered gradient is
that the gradient is reduced so that when evaluating a linearly reconstructed solution
at the edge of a cell, the value does not exceed the neighboring cell-centered value.
For minmod, the gradient is limited so that when the solution is reconstructed to the
neighboring cell center, there are no new extrema. We will use these interpretations
on the nonuniform grid.

Let F be a Lipschitz continuous and consistent numerical flux function. Then we
can define the ith component of the operator L(Q) as

(3.6) L(Q)i = − 1

h

(
F(Q−

i+ 1
2
, Q+

i+ 1
2
)− F(Q−

i− 1
2
, Q+

i− 1
2
)
)
.

For our stability analysis we consider the advection equation f(q) = uq with
positive advection speed u. In this case the numerical flux function has the form

F
(
Q−

i+ 1
2
, Q+

i+ 1
2

)
= uQ−

i+ 1
2
.

Proposition 3.1. The finite volume method

Qn+1
i = Qn

i − ν
(
Q−

i+ 1
2
−Q−

i− 1
2

)
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with the reconstructed values (3.3) using the MC slope (3.4) is TVD under the time
step restriction ν = u∆t/h ≤ 0.5.

This is easily seen as a simple application of Harten’s theorem [14], which we
repeat here in preparation for extending it to the case of an h-box method on a
nonuniform mesh. Harten’s theorem states that a method of the form

Qn+1
i = Qn

i − Cn
i−1(Q

n
i −Qn

i−1) +Dn
i (Q

n
i+1 −Qn

i )

satisfies ‖Qn+1‖TV ≤ ‖Qn‖TV , provided that

Cn
i−1 ≥ 0,(3.7)

Dn
i ≥ 0,(3.8)

Cn
i +Dn

i ≤ 1(3.9)

hold for all i.
On a uniform grid with mesh width h, this can be achieved as follows:

Qn+1
i = Qn

i − ν

(
Qn

i +
h

2
∇Qn

i −Qn
i−1 −

h

2
∇Qn

i−1

)
(3.10)

= Qn
i − ν

(
Qn

i −Qn
i−1 +

h

2
∇Qn

i − h

2
∇Qn

i−1

)
(3.11)

= Qn
i − ν

(
1 +

∇Qn
i

2
h (Q

n
i −Qn

i−1)
−

∇Qn
i−1

2
h(Q

n
i −Qn

i−1)

)
(Qn

i −Qn
i−1).(3.12)

We can set Ci−1 to be ν times the term in the large parenthesis, and Di = 0. Using
ν ≤ 0.5 means we need the sum of the three terms in the parentheses to be ≤ 2, so
that (3.9) is satisfied. Looking at the case where the solution is increasing (the other
case can be done analogously), the MC slope limiter requires the gradient to satisfy

Qi +
h

2
∇Qn

i ≤ Qn
i+1,(3.13)

Qi −
h

2
∇Qn

j ≥ Qn
i−1.(3.14)

This leads to 0 ≤ Ci−1 ≤ 1 in (3.12). If the solution is an extremum, the gradients
are set to 0, so again 0 ≤ Ci−1 ≤ 1. !

If we use the second order time integration (3.2), we obtain the TVD result under
the time step restriction of the explicit Euler method, i.e., ν ≤ 0.5.

Remark 3.1. Note that although the finite volume method with the forward Euler
scheme in time is TVD with a time step of u∆t/h ≤ 0.5, the linear scheme, obtained
by omitting the limiting step for the gradients, is linearly unstable as can be seen
using a straightforward Fourier analysis. This is true whether we use central, upwind,
or downwind differences to compute the gradients.

The finite volume method with the second order Runge–Kutta method (3.2) in
time (which is used in our simulations) is linearly stable and has a stability limit of
u∆t/h ≤ 1 for centered gradients and u∆t/h ≤ 0.5 for one-sided differences in the
upwind direction. The latter matches the TVD limit obtained by the SSP theory.
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3.2. TVD stability for the nonuniform grid case. We now consider the
approximation of the advection equation on a grid of the form shown in Figure 2.1.
There is one grid cell with width αh, 0 < α ≤ 1, while all other grid cells have the
width h. The goal is to construct a finite volume method that is second order accu-
rate for smooth solutions and TVD for time steps satisfying the time step condition
u∆t/h ≤ 0.5 independently of the size of the small grid cell.

To achieve this we construct values of the conserved quantity which are assigned
to a box of length h at the left and right of each cell interface. At the interfaces of
the small grid cell k we define these values as

QL
k+ 1

2
:= αQk + (1− α)

(
Qk−1 +

αh

2
∇Qk−1

)
,(3.15)

QR
k+ 1

2
:= Qk+1,(3.16)

QL
k− 1

2
:= Qk−1,(3.17)

QR
k− 1

2
:= αQk + (1− α)

(
Qk+1 −

αh

2
∇Qk+1

)
.(3.18)

Furthermore we assign slopes to each h-box,

∇QL
k+ 1

2
:= α∇Qk + (1 − α)∇Qk−1,(3.19)

∇QR
k+ 1

2
:= ∇Qk+1,(3.20)

∇QL
k− 1

2
:= ∇Qk−1,(3.21)

∇QR
k− 1

2
:= α∇Qk + (1 − α)∇Qk+1(3.22)

by using (limited) slopes from the underlying Cartesian grid cells. This definition of
the gradients is an important component of the new method. Note that this choice
of h-box values and gradients is exact for linear solutions.

We can now construct left and right values at each grid cell interface. For the
approximation of the advection equation with advection speed u > 0 the only modifi-
cation (compared to the equidistant grid case) is needed in the construction of Q−

k+ 1
2
,

which has the form

(3.23) Q−
k+ 1

2
= QL

k+ 1
2
+

h

2
∇QL

k+ 1
2
.

We obtain the one-dimensional Runge–Kutta h-box method for the advection equation
by defining

L(Q)k = − u

αh

(
Q−

k+ 1
2
−Q−

k− 1
2

)
,

L(Q)i = −u

h

(
Q−

i+ 1
2
−Q−

i− 1
2

)
, i *= k,

(3.24)

and using this operator in the time integration (3.2).
Now we discuss the TVD property of the h-box method. We will show that the

h-box method defined by (3.15)–(3.24) is TVD if the underlying Cartesian grid cell
gradients are limited using the minmod limiter. Since minmod is one of the most
diffusive limiters, we also discuss the construction of h-box methods based on the less
diffusive MC limiter. For this case we will show that the h-box method is TVD if
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some additional limiting is applied. This additional limiting either might be applied
to the h-box gradients as discussed in Lemma 3.2 below, or it might be expressed as
an additional limiting of the underlying Cartesian gradients near the small cell; see
Theorem 3.3.

As outlined above, it is enough to show that the spatial discretization (3.24) is
TVD for the explicit Euler method assuming that u∆t/h ≤ 0.5. We consider here
the case of monotone increasing data. The only equations that are different from the
regular grid case are the updates for cells k and k + 1, which use the h-box values
QL

k+ 1
2
and slope ∇QL

k+ 1
2
, defined above. For these cells the scheme is

Qn+1
k = Qn

k − ν

α

(
QL

k+1/2 +
h

2
∇QL

k+1/2 −Qn
k−1 −

h

2
∇Qn

k−1

)
,(3.25)

Qn+1
k+1 = Qn

k+1 − ν

(
Qn

k+1 +
h

2
∇Qn

k+1 −QL
k+1/2 −

h

2
∇QL

k+1/2

)
.(3.26)

Looking first at the small cell equation (3.25) and the definitions (3.15) and (3.19),
the small cell update simplifies to

Qn+1
k = Qn

k − ν

(
Qn

k −Qn
k−1 +

h

2
∇Qn

k − αh

2
∇Qn

k−1

)
(3.27)

= Qn
k − ν

(
1 +

∇Qn
k

2
h(Q

n
k −Qn

k−1)
−

α∇Qn
k−1

2
h (Q

n
k −Qn

k−1)

)
(Qn

k −Qn
k−1).(3.28)

Note that the small term α in the denominator has disappeared, again indicating
the cancellation property of h-box schemes. As in the uniform grid case, we will
choose ν times the term in the large parenthesis as Ck−1. This coefficient is less than
1 if we limit the gradient ∇Qn

k using

(3.29) Qn
k − h

2
∇Qn

k ≥ Qn
k−1

instead of (the possibly expected)

(3.30) Qn
k − αh

2
∇Qn

k ≥ Qn
k−1.

Equation (3.30) agrees with the geometric interpretation for MC limiting at the
small cell, but for very small cell sizes α ≈ 0, it does not provide enough limiting to
achieve the TVD property. Equation (3.29) is a stronger condition. Note that linear
solutions automatically satisfy (3.29) and so do not need to be limited (thus preserving
second order accuracy). Equation (3.29) is also not quite as stringent as the minmod
limiter on a nonuniform mesh, which would require that when the solution in one cell
is reconstructed to the neighboring cell center, it should not exceed that value. This
would give

Qn
k − (1 + α)h

2
∇Qn

k ≥ Qn
k−1,(3.31)

an even stronger condition.

The MC limiter for ∇Qn
k−1 gives the term

∇Qn
k−1

2
h (Qn

k−Qn
k−1)

≤ 1, and multiplying by

α only further reduces this term.
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Looking next at (3.26) for the cell to the right of the small cell, we can rewrite
this as

Qn+1
k+1 = Qn

k+1 − ν

(
Qn

k+1 −QL
k+1/2 +

h

2
∇Qn

k+1 −
h

2
∇QL

k+1/2

)
(3.32)

= Qn
k+1 − ν

(
Qn

k+1 −QL
k+1/2

(Qn
k+1 −Qn

k )
+

∇Qn
k+1

2(Qn
k+1−Qn

k )

h

−
∇QL

k+ 1
2

2(Qn
k+1−Qn

k )

h

)
(Qn

k+1 −Qn
k ).(3.33)

Again Ck will be ν times the term in the large parentheses. To show that Ck ≤ 1 for
ν ≤ 0.5, we prove the following lemma.

Lemma 3.2. Consider a grid with mesh width xi+ 1
2
− xi− 1

2
= h for all i with

i *= k and mesh width xk+ 1
2
−xk− 1

2
= αh, 0 < α ≤ 1. Let Q be a monotone increasing

grid function and ∇Q a grid function of limited gradients. The h-box values QL
k+ 1

2

and the h-box gradient ∇QL
k+ 1

2
are computed using (3.15), (3.19). Assume that the

h-box gradient is limited such that

(3.34) QL
k+ 1

2
+

h

2
∇QL

k+ 1
2
≤ Qk+1.

Then the following inequalities hold:

(3.35) 0 ≤ ∇Qk+1
2
h (Qk+1 −Qk)

≤ 1,

(3.36) 0 ≤
∇QL

k+ 1
2

2
h (Qk+1 −Qk)

≤
Qk+1 −QL

k+ 1
2

Qk+1 −Qk
≤ 1.

Proof. The inequalities (3.35) hold if a TVD limiter such as the MC limiter is
used in order to compute the limited gradient ∇Qk+1.

To get

Qk+1 −QL
k+1/2

(Qk+1 −Qk)
≤ 1,(3.37)

we need QL
k+ 1

2
≤ Qk. We have

QL
k+ 1

2
= αQk + (1 − α)

(
Qk−1 +

αh

2
∇Qk−1

)
≤ Qk,(3.38)

(1 − α)

(
Qk−1 +

αh

2
∇Qk−1

)
≤ (1− α)Qk, or(3.39)

(
Qk−1 +

αh

2
∇Qk−1

)
≤ Qk.(3.40)

We already have
(
Qk−1 +

h

2
∇Qk−1

)
≤ Qk

for the MC limiter, and the factor α only helps here.
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The inequality

∇QL
k+ 1

2

2
h (Qk+1 −Qk)

≤
Qk+1 −QL

k+ 1
2

(Qk+1 −Qk)
(3.41)

follows under the assumption (3.34).
Our assumption (3.34) is the usual MC limiter but applied here to the h-box

values. Imposing this extra limiting step on the h-box gradient, in addition to applying
it to the Cartesian gradients, results in a TVD scheme.

Alternatively, we can try instead to find conditions for the gradients on the Carte-
sian grid alone that give a TVD scheme. Substituting in (3.34) using the definition of
QL and ∇QL in (3.15) and (3.19), we need to find conditions for limiting the gradients
∇Qk−1 and ∇Qk that will give us

αQk + (1− α)Qk−1 +
(1− α)

2
αh∇Qk−1 +

h

2
(α∇Qk + (1 − α)∇Qk−1) ≤ Qk+1.

(3.42)

This can be rearranged as

(1− α)

(
Qk−1 +

h

2
∇Qk−1 +

αh

2
∇Qk−1

)
+ α

(
Qk +

h

2
∇Qk

)
≤ Qk+1.(3.43)

Both in the neighboring cell of the small cell as well as in the small cell, we need to
assume a slightly stronger limiting of the gradient than what would be obtained by
using only the MC limiter. If the minmod limiter is used to limit ∇Qk−1, then we
obtain

(3.44) Qk−1 +
h

2
(1 + α)∇Qk−1 ≤ Qk.

In cell k we require the additional limiting

Qk +
h

2
∇Qk ≤ Qk+1.

This expression for the small cell k has the same form as (3.29) but applied to the
cell on the right. Under these two additional conditions on the gradients (which are
automatically satisfied for minmod but not for the MC limiter), the left-hand side of
(3.43) is less than or equal to

(1 − α)Qk + αQk+1 ≤ Qk+1(3.45)

since we are considering the case of monotone increasing data Qk ≤ Qk+1. Thus
(3.34) would be satisfied. A slightly different requirement for ∇Qk−1 is also possible
that would limit that cell against its neighbor two cells away:

Qk−1 + (1 + α)
h

2
∇Qk−1 ≤ Qk+1.(3.46)

We summarize our results.
Theorem 3.3. Consider the approximation of the advection equation with posi-

tive advection speed on a grid with mesh width xi+ 1
2
− xi− 1

2
= h for all i with i *= k

and mesh width xk+ 1
2
− xk− 1

2
= αh with 0 < α ≤ 1. The h-box method consisting

of the time integration (3.2) with the operator L(Q) defined in (3.24) and the spatial
reconstruction (3.23) is TVD under the CFL condition ν ≤ 0.5
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• if either all Cartesian grid cell gradients ∇Q (including the small cell gradi-
ent) are limited using the minmod limiter; or

• if all Cartesian grid cell gradients are limited using the MC limiter and ad-
ditional limiting is applied to the gradients in the small cell k and the neigh-
boring cell k − 1.
The small cell gradient ∇Qk is limited such that

Qk −
h

2
∇Qk ≥ Qk−1 and Qk +

h

2
∇Qk ≤ Qk+1

hold in the case of increasing data, and

Qk−1 ≥ Qk −
h

2
∇Qk and Qk +

h

2
∇Qk ≥ Qk+1

hold in the case of decreasing data.
The neighboring cell gradient ∇Qk−1 is limited such that

Qk−1 + (1 + α)
h

2
∇Qk−1 ≤ Qk+1

holds in the case of monotone increasing data, and

Qk−1 + (1 + α)
h

2
∇Qk−1 ≥ Qk+1

holds in the case of monotone decreasing data.

4. Two-dimensional finite volume method. Now consider a two-dimensional
hyperbolic system of the form

(4.1) qt(x, y, t) + f(q(x, y, t))x + g(q(x, y, t))y = 0

with given initial values q(x, y, 0). Here, q : R2 × R+ → Rm is a vector of conserved
quantities, and f, g : Rm → Rm are vector-valued flux functions.

It is easier to describe the numerical method by looking at the advection equation

(4.2) qt + uqx + vqy = 0,

with u, v ∈ R.
4.1. Grid-aligned finite volume method. We briefly review the basic two-

dimensional finite volume method, since we will need to refer to it when we generalize
to cut cells. This method will be used on the regular portion of the grid. The two-stage
second order SSP method in time is coupled with this standard finite volume scheme in
space. At each stage gradients are computed using central differences, and a standard
slope limiter is applied. These gradients are used to reconstruct the solution to the
midpoint of each cell edge. For example, Q−

i+ 1
2 ,j

= Qi,j +
∆x
2 ∂xQi,j . The cell to the

right, (i+1, j), will predict the right state at this face Q+
i+ 1

2 ,j
= Qi+1,j − ∆x

2 ∂xQi+1,j .

A Riemann solver, denoted RP (Q−, Q+), determines the single state to use at each
edge to evaluate the operator L (i.e., the flux differences of f and g in this case).

In two dimensions the stability limit of this scheme for linear advection on an
equidistant grid with h = ∆x = ∆y and centered gradients without limiters is∆t(|u|+
|v|)/h ≤ 1. Note that if the velocities u and v are approximately equal, this gives a
time step that is half that of a corner-coupled scheme such as the corner transport
upwind method. The question of stability in two dimensions will come up again in
section 5.2 when we discuss the optimal length for an h-box.
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4.2. Orthogonal rotated grid method. We first present the basic idea of
rotated grid methods for regular Cartesian grids without embedded boundaries. See
also [27, 23] for related regular-grid rotated grid methods.

In a rotated grid approach, the normal flux at a grid cell interface is computed
as a superposition of fluxes computed in a direction $ξ = (α,β)T and the orthogonal
direction $η = (−β,α)T . The vectors $ξ and $η are unit normals that can be defined in
several ways.

We define variables

(4.3) ξ = αx + βy, η = −βx+ αy,

and transform (4.1) into a system in these new variables, which has the form

(4.4) ∂tq(ξ, η, t) + ∂ξf
ξ(q(ξ, η, t)) + ∂ηf

η(q(ξ, η, t)) = 0,

with

f ξ(q) = αf(q) + βg(q), fη(q) = −βf(q) + αg(q).

The numerical fluxes F ξ and F η are calculated by solving Riemann problems in
the $ξ and the $η direction. For rotationally invariant systems of conservation laws
(such as the Euler equations) this is particularly simple, since the form of f ξ and fη

agrees with f(q) by using the rotated velocities instead of the velocities in the x and
the y direction. Thus a single Riemann solver can be used for all directions. The
numerical flux normal to the cell edge is obtained by projecting F ξ and F η onto the
direction of the coordinate frame.

In order to calculate fluxes in these rotated directions, values of the dependent
variables have to be assigned. At the interface (i − 1

2 , j), for example, we compute

values (QL,R
ξ )i− 1

2 ,j
as well as

(
QL,R

η

)
i− 1

2 ,j
. Our approach for computing these values

is motivated by the multidimensional upwind method of Roe and Sidilkover [27] and
can be interpreted as an h-box method as indicated in Figure 4.1 and explained in
[16]. We also assign gradients of these quantities to the rotated boxes. Using these
h-box values and gradients, we can reconstruct values at the grid cell interface which
we denote by Q−,+

ξ and Q−,+
η . Now we compute fluxes F ξ

i− 1
2 ,j

and F η
i− 1

2 ,j
by solving

the Riemann problems

∂tq(ξ, η, t) + ∂ξf
ξ(q(ξ, η, t)) = 0,(4.5)

q(ξ, η, 0) =

{
(Q−

ξ )i− 1
2 ,j

: ξ < xi− 1
2
α+ yjβ,

(Q+
ξ )i− 1

2 ,j
: ξ > xi− 1

2
α+ yjβ

(4.6)

and

∂tq(ξ, η, t) + ∂ηf
η(q(ξ, η, t)) = 0,(4.7)

q(ξ, η, 0) =

{ (
Q−

η

)
i− 1

2 ,j
: η < −xi− 1

2
β + yjα,(

Q+
η

)
i− 1

2 ,j
: η > −xi− 1

2
β + yjα.

(4.8)

Analogously, we can compute fluxes at interfaces (i, j− 1
2 ). The numerical fluxes Fi− 1

2 ,j

and Fi,j− 1
2
which are used to update the conserved quantities are finally obtained via

Fi− 1
2 ,j

= αF ξ
i− 1

2 ,j
− βF η

i− 1
2 ,j

,

Fi,j− 1
2
= βF ξ

i,j− 1
2
+ αF η

i,j− 1
2
.

(4.9)



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

A874 MARSHA BERGER AND CHRISTIANE HELZEL

j

$η

$ξ

QL
ξ

QR
η

QL
η

QR
ξ

i

Fig. 4.1. h-boxes for systems, used to compute fluxes at a vertical interface.

4.3. Nonorthogonal rotated grid method. The directions $ξ and $η do not
necessarily have to be orthogonal. Instead we can use general directions $ξ = (α1,β1)T

and $η = (α2,β2)T . The rotated fluxes now have the form

f ξ(q) = α1f(q) + β1g(q),

fη(q) = α2f(q) + β2g(q).
(4.10)

Numerical approximations of those fluxes at the interface (i− 1
2 , j) are again denoted

by F ξ
i− 1

2 ,j
and F η

i− 1
2 ,j

. We obtain the numerical flux Fi− 1
2 ,j

used in the finite volume

approach by combining those fluxes:

(4.11) Fi− 1
2 ,j

= AF ξ
i− 1

2 ,j
+BF η

i− 1
2 ,j

.

The coefficients have to be chosen in such a way that

(4.12) A(α1f + β1g) +B(α2f + β2g) = f ;

i.e., we obtain the linear system

(4.13)

(
β1 β2
α1 α2

)(
A
B

)
=

(
0
1

)

with the solution

(4.14) A =
β2

α1β2 − α2β1
, B =

−β1
α1β2 − α2β1

.

Clearly the directions $ξ and $η must not be parallel; i.e., α1β2 *= α2β1.
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Analogously, at the interface (i, j − 1
2 ) we require

(4.15) A(α1f + β1g) +B(α2f + β2g) = g

and obtain the coefficients

(4.16) A =
α2

β1α2 − β2α1
, B =

α1

β2α1 − β1α2
.

In our application of rotated grid methods for the construction of cut cell methods,
the directions $ξ and $η will be far from parallel but not necessarily orthogonal.

5. The embedded boundary h-box method. We now use the rotated grid
h-box method for the approximation of two-dimensional systems of conservation laws
(4.1) at embedded boundaries. We have implemented and tested our embedded
boundary method for both the two-dimensional advection equation as well as the
Euler equations of gas dynamics. We always assume that the embedded boundary
is a solid wall reflecting boundary. For the advection equation, this means that the
boundary flux is equal to zero. For the Euler equations the velocity normal to the
boundary segment is equal to zero.

We assume that the embedded boundary is described by a piecewise linear seg-
ment that cuts through each boundary cell once. Each irregular grid cell is then a
polygon with at most five sides, and the finite volume method can be written in the
semidiscrete form

d

dt
Qij(t) = − 1

κij∆x∆y

(
hi+ 1

2 ,j
Fi+ 1

2 ,j
(t)− hi− 1

2 ,j
Fi− 1

2 ,j
(t)

+ hi,j+ 1
2
Fi,j+ 1

2
(t)− hi,j− 1

2
Fi,j− 1

2
(t) + hbFb(t)

)
,

(5.1)

where we make use of the Cartesian grid structure. For cut cells, some of the edge
lengths might vanish. The length of the boundary segment is denoted by hb, and
the corresponding flux in Cartesian coordinates is denoted by Fb. The area of the
grid cell (i, j) is |Cij | = κij∆x∆y, where 0 ≤ κij ≤ 1 is the area fraction. For the
discretization in time we again use the SSP Runge–Kutta method (3.2).

5.1. h-box values at smoothly varying embedded boundaries. To explain
the flux calculation at embedded boundaries, we first describe the computation of h-
box values, which we denote as in the previous section by QL,R

ξ and QL,R
η . Let us

consider a triangular-shaped cut cell as depicted in Figure 5.1 and a planar boundary
segment. Let $n be the direction normal to the boundary segment, pointing into the
flow domain. We use a rotated grid method with $η = (−β,α)T = $n and $ξ = (α,β)T .

At the boundary segment, we construct h-boxes as indicated in Figure 5.1(a).
The boundary h-box which points into the flow domain overlaps with at most four
grid cells. The h-box value QR

η which is assigned to this h-box is obtained by an
area-weighted average over piecewise linear reconstructed values of the underlying
Cartesian cut cell grid. To model a reflecting boundary, the value QL

η is obtained by
reflecting QR

η , i.e., by negating the normal velocity component.
We also construct h-boxes in the $η direction at the horizontal and vertical grid

cell interface. These boxes are indicated in Figure 5.1(b). Note that those h-boxes
overlap with the boundary boxes of Figure 5.1(a) except for an area the size of the
small grid cell. This will lead to the cancellation property for fluxes in the $η direction.

At the horizontal and vertical edges of the cut cell, we furthermore construct
h-boxes in the ξ direction, shown in Figures 5.1(c) and 5.1(d), and we assign h-box
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(a)

$η $ξ

QR
η

QL
η

(b)

QL
η

QR
η

QL
η

QR
η

(c)

QL
ξ

QR
ξ

(d)

QL
ξ

QR
ξ

Fig. 5.1. h-boxes of the rotated grid cut cell method: (a) boundary h-box, (b) h-boxes in direction
normal to the boundary segment at the two cut cell interfaces, (c) and (d) h-boxes tangential to the
boundary segment.

values to these boxes, also from the underlying Cartesian grid. Note that these boxes
overlap except for an area the size of the small grid cell.

Let us now consider in more detail the computation of h-box values in the $η
direction at one grid interface; compare with Figure 5.2. Consider first the h-box
which lies completely inside the flow domain. This h-box intersects with two grid
cells of the underlying Cartesian cut cell mesh. We compute the area fractions for
those polygonal fractions of the h-box. Furthermore, we compute the center of mass
for those fractions. Now the h-box value is obtained from the value of the depen-
dent variables at those centers of mass and then using an area-weighted average over
the reconstructed values. This reconstruction uses gradients in the grid cells of the
underlying Cartesian grid which are computed using a standard least square proce-
dure that includes all neighbors sharing an edge with a cut cell [1]. If that does not
yield at least three equations, the diagonal cell between the two neighbors is included
as well.

An h-box might also lie partly beyond the boundary. In this case the part of the
h-box which lies inside the solid body is reflected to the flow domain, as indicated
in Figure 5.2(b). Again using an area-weighted average, we assign a value of the
dependent variables to the reflected fraction of the h-box. The part of the h-box
which lies inside the solid body contributes the reflected value to the computation of
the h-box value.
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(a)

QR
η

QL
η

(b)

Fig. 5.2. Computation of h-box values. The dots indicate the centers of mass of the polygonal
fractions. (a) shows the location of the h-boxes. The shaded h-box is used to compute QR

η . (b) shows
the reflection of the h-box fraction (dashed lines) lying inside the solid body. The reflected fraction
contributes to the computation of QL

η .

If a grid cell interface belongs to only one cut cell, then the rotated grid is chosen in
a direction normal and tangential to the boundary segment of that cut cell. However,
a grid cell interface might also belong to two cut cells. The directions of the rotated
grid for this interface can then be chosen based on an average of the directions imposed
by the two neighboring boundary segments. Alternatively, the interface flux can be
computed using a rotated grid with an orientation that is imposed by the smaller
cut cell. For a smoothly varying boundary this will still guarantee the cancellation
property. We have used both and have seen no reason to prefer one or the other.

In a preprocessing step, all these area fractions and centers of mass are com-
puted once. During each time step, this geometric information is used in the form of
coefficients in our formulas for the computation of h-box values.

Since the rotated grid method is more expensive than the regular method, in-
volving twice as many Riemann problems at cut cell edges, we usually apply this to
compute only the cut cell fluxes. At regular grid cell interfaces we use the nonrotated
method described in section 4.1. This nonsmooth change is a potential source of ad-
ditional truncation error. We will examine this in the computational experiments in
section 6.

5.2. Determination of h-box length. We next discuss the issue of what the
length of h-boxes should be. Along a vertical cell interface midpoint (xi+ 1

2
, yj), the

domain of dependence for the advection equation (4.2) at time T is the point (xi+ 1
2
−

uT, yj − vT ).
First consider a rotated grid h-box method with h-box constructed in the upwind

direction and h-box values which are obtained by area-weighted averaging over piece-
wise constant cell averages. The domain of dependence of the exact solution is inside
the numerical domain of dependence if and only if

(5.2) h ≥
√
u2 + v2∆t;

compare with Figure 5.3.
Since the TVD-Runge–Kutta method of section 4.1, used for the regular part of
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h
|v|∆t

|u|∆t

Fig. 5.3. Determination of h-box length

the grid, is linearly stable, provided that

∆t(|u|+ |v|)/∆x,y ≤ 1,

the h-box length

(5.3) h =

√
u2 + v2

|u|+ |v| ∆x,y

satisfies the geometric CFL condition for all appropriate time steps. Here we assume
that the regular grid part is equidistant with ∆x,y = ∆x = ∆y.

Alternatively, we can use the larger, fixed h-box length

h = ∆x,y,

which has the (slight) computational advantage of being constant independent of
direction.

For the advection equation (4.2), Roe and Sidilkover suggested a rotated grid
upwind method which is stable, provided that

(5.4) max

(
|u|∆t

∆x
,
|v|∆t

∆y

)
≤ 1.

In [16], we showed that this method can be interpreted as a rotated grid h-box method
with h-boxes constructed in the upwind direction and with the h-box length

(5.5) h =

√

1 +

(
min(|u|, |v|)
max(|u|, |v|)

)2

∆x,y.

If the overall scheme used in the regular parts of the grid is stable for time steps which
satisfy the less restrictive time step (5.4), then we use this longer h-box length.

We can extend the idea to the case of advection in a spatially varying velocity
field, i.e., u = u(x, y), v = v(x, y). Now the h-box length depends on the position.
This is used in the first test case of section 6. In the more general case of an em-
bedded boundary method for which the boundary segment is not aligned with the
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flow direction, we typically construct h-boxes in directions tangential and normal to
the boundary. Then the formulas for the h-box length of an h-box in the $ξ = (α,β)
direction are obtained by replacing (u, v) in (5.3) or (5.5) by (α,β).

Although we restrict our considerations in this paper to equidistant Cartesian
grids with ∆x,y = ∆x = ∆y, h-box methods can easily be extended to the more
general case ∆x *= ∆y. In this case the h-box length can again be determined by
starting with inequality (5.2) and replacing the ∆t term by the CFL condition for
these grids.

In the graphical illustrations of our h-box method, we used the h-box length (5.5).

5.3. Spatial reconstruction of interface values. In order to get second order
accurate approximations in space with the method of lines approach, we again need to
reconstruct values to the grid cell interfaces and compute fluxes by solving Riemann
problems for these reconstructed values.

To compute these values, we need to assign a gradient to each h-box. These gradi-
ents are denoted by ∇QL,R

ξ,η . These are gradients in Cartesian coordinates assigned to

the h-boxes in the $ξ and $η directions. Recall that we have already computed limited
least square gradients in every Cartesian cut cell. We use a scalar minmod limiter
which generalizes the one-dimensional TVD results of section 3.2. A simple approach
for the h-box virtual grid cells is to compute a gradient using an area-weighted average
of gradients from the Cartesian cut cell mesh. Here we use the same area-weighted
average that was used for the computation of h-box values. Note that this choice of
h-box gradients is linearity preserving. Left and right values at the grid cell interface
can now be computed:

Q−
ξ = QL

ξ +
h

2
$ξ ·∇QL

ξ , Q+
ξ = QR

ξ − h

2
$ξ ·∇QR

ξ ,

Q−
η = QL

η +
h

2
$η ·∇QL

η , Q+
η = QR

η − h

2
$η ·∇QR

η .
(5.6)

Another possibility is to compute a (limited) gradient in the ξ and the η direction by
using two additional h-box values as indicated in the one-dimensional case in Figure
2.1. This was done in our original h-box method but is more complicated than the
first approach. In the computational experiments we will compare the accuracy.

The flux components are then obtained by rotating these interface values in the
direction $ξ and $η, respectively, and evaluating the fluxes by solving Riemann prob-
lems, i.e.,

(5.7) F ξ = F(Q−
ξ , Q

+
ξ ), F η = F(Q−

η , Q
+
η ).

These fluxes are then rotated back to Cartesian coordinates, and the interface fluxes
are computed via (4.9).

5.4. The rotated grid cut cell method for nonsmooth embedded bound-
aries. Now assume that the boundary varies nonsmoothly. We distinguish between
a convex and a concave boundary segment as illustrated in Figure 5.4. A convex
boundary segment is easier to handle. In Figure 5.4(a), there are two triangular-
shaped cut cells. The nonsmooth variation of the rotated grid method does not lead
to any problems in this case. For both triangular-shaped cut cells, we can choose a
rotated grid using the normal and tangential directions of the boundary segment from
that cell. In Figure 5.4(b), we depict a case where a fraction of the x-face at a grid cell
interface (which is marked in bold) belongs to two cut cells which have very different
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(a) (b)

(c) (d)

2

3 4

1

Fig. 5.4. Cut cells at a convex (a)–(b) and a concave (c)–(d) nonsmoothly varying boundary
segment.

orientations of the boundary segment. With an orthogonal rotated grid method, we
can either compute the fluxes based on the orientation of the cut cell to the left or
the cut cell to the right. Since these cut cells are not very small, this situation is
not critical in terms of stability. However, it can be seen that only the boxes in the
direction normal to the boundary segment contribute to the cancellation property for
the left and right grid cells. Therefore, one can compute the flux at the bold-marked
interface using a nonorthogonal rotated grid method in which the two directions are
the normal directions of the two boundary segments.

Next consider the case of a concave boundary segment. The situation in Figure
5.4(c) is again less critical, since the cut cells are relatively large. In this situation we
can use the orthogonal rotated grid method based on the local boundary orientation.
At the bold-marked interface we can compute fluxes using the nonorthogonal rotated
grid method in which the two normal directions determine the directions for the flux
computation. Alternatively, the two tangential directions can be used for this flux
computation.

Figure 5.4(d) shows the most challenging case: Two small triangular-shaped grid
cells are located at the corner of a nonsmoothly varying concave boundary segment.
There are different possibilities for constructing a stable rotated grid method in this
situation.

(1) One can compute the cell average of the conserved quantities based on an
orthogonal rotated grid method for each of these two small triangular-shaped cut
cells. Such a method would satisfy the cancellation property, but it would not be
conservative, since the flux at the interface which is shared by both of the triangular-
shaped cells (i.e., the flux between cell 1 and cell 2) would have a different form for
each of the two grid cells. However, a loss of conservation is what we typically want
to avoid when approximating conservation laws. Therefore, we do not use such an
approach here.

(2) One can change the geometry in such a way that tiny cells with this particular
configuration are ignored; i.e., we would assume the two tiny grid cells are completely
inside the solid body. This approach would make the cut cell grid generation more
difficult.
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(3) We compute fluxes at the boundary of the two small cells in the direction
normal to the boundary segment using our rotated grid h-box method. The flux
between cell 1 and cell 2 is computed using the nonorthogonal rotated grid h-box
method by choosing the two normal directions. Now we cannot compute the flux
between cell 1 and cell 3 as well as the flux between cell 2 and cell 4 in such a
way that the cancellation property is satisfied. We ignore this flux computation and
instead compute all the remaining fluxes of cell 3 and cell 4. Using all these fluxes
we compute average values of the conserved quantities for cell 1 and cell 3 and use
this value in both grid cells. Analogously we compute the average of the conserved
quantities in cell 2 and cell 4. This can be thought of as cell merging but on a much
smaller scale. Still, an important question is whether this approach will carry over
to three-dimensional complicated geometries in a straightforward way. This approach
will be used for a test problem in section 6.2.

6. Numerical results.

6.1. Convergence study. First we present an accuracy study for solid body
rotation inside an annulus defined by two concentric circles. The radius of the inner
circle is R1 = 0.75, and the radius of the outer circle is R2 = 1.25. The annulus is
embedded in the rectangular domain [−1.5, 1.5]× [−1.5, 1.5] which is discretized with
a Cartesian mesh. We use initial values of the form

q(x, y, 0) = 0.5 (erf (5(θ − π/3)) + erf (5(2π/3− θ)))

with θ = arctan(y/x). The velocity field describing solid body rotation was obtained
using the stream function ψ(x, y) = π

(
R2

2 − r2
)
/5 with r =

√
x2 + y2. One rotation

is completed at time t = 5.
In all our calculations, we choose the time steps in such a way that

max
x,y

(|u(x, y)|+ |v(x, y)|)∆t

∆x
≤ 1

is satisfied. For this smooth test problem we do not use limiters.
In order to measure the accuracy of our embedded boundary method at the

boundary as well as inside the domain, we use two different norms. Inside the domain
(regular cells + cut cells) we calculate the error using the L1-norm of the relative
error

(6.1) Ed =

∑
i,j |Qi,j − q(xi, yj)|κi,j∑

i,j |q(xi, yj)|κi,j
,

where Qi,j is the numerical solution in grid cell (i, j), q(xi, yj) is the exact solution
at the center of mass of the grid cell, and κi,j is the area fraction of the grid cell. To
separately measure the boundary error, we sum over the cut cells and calculate the
norm

(6.2) Eb =

∑
(i,j)∈K |Qi,j − q(xi, yj)|bi,j∑

(i,j)∈K |q(xi, yj)|bi,j
,

where bi,j is the length of the boundary segment in grid cell (i, j) and K is the set of
all cut cells. We compute the error on grids with different mesh widths and use these
error values to estimate the experimental order of convergence (EOC).
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For the method of lines approach used in this paper, we obtain the most accurate
results using the h-box length (5.3). Therefore, we present numerical results for that
h-box length. However, there is not much variation in accuracy between the methods.

Tables 6.1–6.3 show results of a numerical convergence study.
For the computations of Table 6.1 we use the rotated grid approach for all cut cell

fluxes and the grid-aligned method at the regular grid cell interfaces. The gradient
∇Qξ assigned to an h-box is computed by an area-weighted average of gradients from
the grid cells covered by the h-box. This is our simplest version of the h-box method.

Table 6.1
Convergence study for annulus test problem. The h-box gradient ∇Qξ is computed using area-

weighted averaging. The rotated grid method is used only for cut cell fluxes. The h-box length is
computed using (5.3). The time step is 0.005, 0.0025, 0.00125, and 0.000625, respectively.

Mesh Domain error Outer boundary Inner boundary

100× 100 3.6258 × 10−2 2.8652 × 10−2 6.2931 × 10−2

200× 200 9.4289 × 10−2 7.1730 × 10−3 2.0467 × 10−2

EOC 1.94 2.00 1.62

400× 400 2.3614 × 10−3 1.9339 × 10−3 6.1384 × 10−3

EOC 2.00 1.89 1.74

800× 800 5.9263 × 10−4 7.3541 × 10−4 1.9252 × 10−3

EOC 1.99 1.39 1.67

Table 6.2
Convergence study for annulus test problem. The gradient ∇QL

ξ is computed using additional
h-box values as indicated in Figure 2.1. The rotated grid is used only for cut cell fluxes. The h-box
length is computed using (5.3). Same constant time steps as above.

Mesh Domain error Outer boundary Inner boundary

100× 100 3.3963 × 10−2 2.0970 × 10−2 4.8592 × 10−2

200× 200 9.0872 × 10−3 5.2268 × 10−3 1.4906 × 10−2

EOC 1.90 2.00 1.46

400× 400 2.3160 × 10−3 1.4705 × 10−3 4.4369 × 10−3

EOC 1.97 1.83 1.75

800× 800 5.8679 × 10−4 5.9915 × 10−4 1.4643 × 10−3

EOC 1.98 1.29 1.60

Table 6.3
Convergence study for annulus test problem. The gradient ∇QL

ξ is computed using additional
h-box values as indicated in Figure 2.1. The rotated grid method is used for all grid cell interfaces.
The h-box length is computed using (5.3). Same constant time steps as above.

Mesh Domain error Outer boundary Inner boundary

100× 100 2.6955 × 10−2 1.8720 × 10−2 4.0417 × 10−2

200× 200 7.0471 × 10−3 4.6140 × 10−3 1.1433 × 10−2

EOC 1.93 2.02 1.82

400× 400 1.7720 × 10−3 1.1459 × 10−3 3.0071 × 10−3

EOC 1.99 2.01 1.93

800× 800 4.4314 × 10−4 2.8817 × 10−4 7.9922 × 10−4

EOC 2.00 1.99 1.91
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Note that there are two issues which could potentially lead to a loss of accuracy
and convergence rate. There is a nonsmooth change of the numerical method from a
grid-aligned to a rotated grid approach. Furthermore, the computation of gradients
by the averaging technique is in general only first order accurate, while we use second
order accurate central difference gradients for the regular grid cells. In Table 6.2
we instead compute the h-box gradients using centered differencing. To do this, we
construct additional h-boxes (one additional h-box in the upwind direction and one
h-box in the downwind direction), which allows us to use centered differencing to
assign a gradient to the h-box. Note that this modification affects only the cut cell
fluxes. The error is only slightly smaller, so we conclude that it is not worth this extra
work.

Finally, in Table 6.3 we show the results of a computation using a rotated grid
for all fluxes. The gradients ∇Qξ are again computed using centered differencing of
h-box values. This gives the smallest error and full second order convergence rates in
the cut cells as well as in the whole domain. However, the discretization errors which
we obtain for our simplest h-box method are again only slightly larger. We conclude
that the simplest version of our embedded boundary method is a good choice also for
more complex applications.

In Figure 6.1 we plot the solution in the cut cells as a function of the angle θ.
These plots show that there are no accuracy or stability problems in any of the cut
cells.
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Solution at inner boundary
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0.6

0.8

1

Solution at outer boundary

(a) (b)

Fig. 6.1. Plot of the solution in the cut cells as a function of θ after one rotation (i.e., at time
t = 5) computed on a 400 × 400 grid. (a) Along the inner boundary segment, which contains 780
cut cells. (b) Along the outer boundary segment, which contains 1332 cut cells. The solid line is the
exact solution.

6.2. Shock reflection. As a test case for the two-dimensional Euler equations
we consider shock reflection off a double wedge. The rectangular computational do-
main is [0, 4]× [0, 2]. The embedded geometry is described by the function

y(x) =

{
2(x− 2.00025) : y ≤ 1,

2− 2(x− 2.00025) : y > 1.

We assume that this is a reflecting boundary.
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(a) (b)

Fig. 6.2. Coarse versions of the (a) mapped grid and (b) cut cell mesh.

The regular grid cells have the lengths ∆x = ∆y = 1/100 and ∆x = ∆y = 1/200,
respectively. There are two very small triangular-shaped grid cells located in the
corner. This configuration is analogous to the most challenging situation described
in section 5.4. The area fraction (compared to a regular cell) is 6.25 × 10−4 on the
coarser mesh and 2.5× 10−3 on the finer mesh.

The flow domain is the region to the left of this boundary curve. Initially a
Mach two shock wave is located at x = 1.5. The state in front of the shock is ρ = 1.4,
u = v = 0, p = 1. The shock is moving to the right and is reflected from the embedded
boundary. At a later time the two reflected shocks interact with each other; compare
with Figure 6.3.

For this experiment gradients are computed using primitive variables, and the
minmod limiter is used on the entire domain. The fluxes are computed using the HLL
solver introduced by Harten, Lax, and van Leer [15]. For this computation we use the
grid-aligned finite volume method in all regular mesh cells. For the flux calculation
at the interface shared by the two tiny grid cells we use the nonorthogonal rotated
grid cut cell method with the directions ξ = (2,−1)T and η = (2, 1)T , i.e., the two
normal directions. For all the other cut cell fluxes, we use the orthogonal rotated grid
cut cell method. We compute the average of the tiny grid cell with the neighboring cut
cell in the horizontal direction, as explained in section 5.4.

To verify the accuracy of our computation, we compare the result with a compu-
tation on a mapped grid. The mapping is illustrated in Figure 6.2(a). We extend our
method of lines finite volume method to mapped grids in an analogous manner as in
[22, 5]. This problem (in particular on the mapped grid) is sensitive to the carbuncle
problem; compare with, e.g., [26]. Therefore, we used the HLL Riemann solver, which
does not resolve contact discontinuities.

As a reference solution, we use a highly refined mapped grid with 1000 × 1000
grid cells. Figure 6.3 shows contour lines of density at four different times. In Figure
6.4 we plot the density at time t = 0.6 along the reflecting double wedge as a function
of the distance from the corner point at (2.50025, 1). Negative values of the x-axis
correspond to the lower part of the boundary segment (i.e., y ≤ 1), and positive values
correspond to the upper part. The solid line is obtained from the refined reference
solution. On top of this reference solution we plot the results from coarser mapped
grid computations. These can be compared with the results which we obtain for our
cut cell computation; see Figure 6.6.

We now compute the problem on a cut cell mesh. Figure 6.5 shows contour plots
of density at two different times obtained on cut cell grids with ∆x = ∆y = 1/100 and
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Fig. 6.3. Contour plots of density at different times computed on a mapped grid with 1000×1000
grid cells.

(a) (b)

Fig. 6.4. Density along the double wedge at time t = 0.6 computed on a mapped grid. The
solid line is obtained from the refined reference solution. In (a) we show results from a computation
using 200× 200 grid cells; in (b) we show results using 400× 400 grid cells.

∆x = ∆y = 1/200, respectively. In Figure 6.6 we plot the density in the cut cells along
the embedded boundary and again compare these values with the refined mapped grid
computation. Our results show that the accuracy obtained in the cut cells along the
embedded boundary compares well with that of the mapped grid approach using a
comparable resolution.

Finally, in Figure 6.7 we show contour plots of density at two different times using
our cut cell method with the less diffusive Harten–Lax–van Leer contact (HLLC)
Riemann solver (introduced by Toro, Spruce, and Speares [31]). This leads to a more
highly resolved solution structure inside the domain without causing problems for the
cut cell update.
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(a) (b)

(c) (d)

Fig. 6.5. Contour plots of density at two different times using the proposed cut cell method.
In the regular grid cells, the grid-aligned finite volume method is used. For the cut cell fluxes away
from the concave corner, the orthogonal rotated grid method is used. The two small triangular
grid cells in the corner are updated using the nonorthogonal rotated grid method. (a), (b) Using
∆x = ∆y = 1/100. (c), (d) Using ∆x = ∆y = 1/200.

(a) (b)

Fig. 6.6. Density along the cut cells at time t = 0.6. The solid line is obtained from the
refined mapped grid reference solution. In (a) we show results from a cut cell computation using
∆x = ∆y = 1/100; in (b) we show results using ∆x = ∆y = 1/200.
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Fig. 6.7. Contour plots of density at two different times computed with the cut cell method by
using the HLLC Riemann solver. The regular grid cells have the size ∆x = ∆y = 1/200.

Conclusions. We have presented a Cartesian grid embedded boundary method
for hyperbolic PDEs based on a method of lines approach using SSP Runge–Kutta
integration in time. Using a spatial reconstruction based on a rotated grid h-box
approach, our method is stable for a time step based on the regular grid size, and is
linearly exact for the arbitrarily small cut cells that appear where the Cartesian grid
intersects the boundary. With a second order SSP method, the overall scheme retains
second order accuracy. The method of lines approach leads to several simplifications
and a much reduced stencil size compared to the MUSCL-type approach considered
previously.

The introduction of the nonorthogonal rotated grid approach makes the method
more flexible for nonsmoothly varying embedded boundaries. This needs to be ex-
plored for more complicated geometries in two dimensions. The extension of this algo-
rithm for three-dimensional geometries is likely to add many programming
complications.

We would also like to investigate extensions to incompressible flow. The use of the
“virtual grid” to regularize the difference scheme at the cut cells might be especially
useful for the approximation of higher derivatives in viscous flows. Furthermore, we
are also working on higher order spatial discretizations for h-box methods. Finally,
the method of lines approach allows the use of advanced splitting techniques, which
can, for instance, be used to approximate problems with very different time scales.
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