
Flow Simulations on Cartesian Grids involvingComplex Moving GeometriesHans Forrer, Marsha BergerAbstract. We describe a method to solve the compressible time-dependentEuler equations using Cartesian grids for domains involving �xed or movinggeometries. We describe the concept of a mirror ow extrapolation of a givensolution over a reecting wall which may be curved or moving at a �xed orvarying speed. We use this mirror ow to develop a Cartesian grid method totreat the cells along a reecting boundary avoiding the \small-cell" problem.Numerical Results are presented.
1. IntroductionWe are developing numerical methods based on Cartesian grids for compress-ible inviscid time-dependent ows involving complex �xed or moving geometries.Cartesian grids o�er great speed, robustness, and exibility in dealing with com-plex industrial applications. In addition, they are relatively automated. However,to be able to use Cartesian grids we need to develop a treatment of the irregularboundary cells along reecting walls of moving or �xed objects.In previous work by the authors ([3], [6]) other boundary treatments for time-dependent ows described by the Euler equations have been developed. Theseboundary treatments are stable (without limiting the time step due to the arbi-trarily small cut cells), accurate (more than �rst order along the boundary) andexible (applicable for any �nite-volume method).Here we describe a numerical method to treat objects moving at a prescribedmotion or in interaction with the uid. As in [1] and in [5] we are using a �xedCartesian grid and let the object move through it. Many of the same di�cultiesof accuracy and stability of Cartesian boundary treatments are also common tofront tracking algorithms (cf. [2]).2. Problem DescriptionThe main idea of our approach is to use regular Cartesian grid cells as much aspossible. To avoid the \small-cell" problem, we �ll in the cut cells and a set ofghost cells, so that cell updates are performed on regular grid cells.



2 H. Forrer, M. BergerTo obtain ghost cell values in our method, the ow is extrapolated beyond theboundary by a mirror ow reection. The mirror ow is a smooth extrapolation ofthe ow variables beyond the boundary such that the extrapolated solution ful�llsthe governing equations.The Euler equations in two dimensions are given asUt + Fx +Gy = 0; (1)U = 0BB@ ��u�v�e 1CCA ; F = 0BB@ �u�u2 + p�uvu(�e+ p) 1CCA ; G = 0BB@ �v�uv�v2 + pv(�e+ p) 1CCA ;p = ( � 1)(�e� 12�(u2 + v2));where � is the mass density, u = (u; v)T is the velocity vector, �e is the energydensity, p is the pressure and  = 1:4.In the following the one-dimensional mirror ow extrapolation is described.The reecting wall boundary condition at x = xw isu(xw; t) = 0: (2)To describe a mirror ow extrapolation at the wall boundary, we reect the spacecoordinate x at xw x̂(x) = 2xw � x: (3)A mirror ow extrapolation is then given for x � xw as follows:0@ �̂(x; t)û(x; t)p̂(x; t) 1A := 0@ �(x̂; t)�u(x̂; t)p(x̂; t) 1A : (4)This mirror ow de�nes a smooth extrapolation of the solution beyond the wallboundary ful�lling the governing equations.If the reecting wall is moving at constant speed, i.e.,xw = xw(t); �xw(t) = 0; (5)the boundary condition is u(xw(t); t) = _xw: (6)The reection of the space coordinate is time-dependent now:x̂(x; t) = 2xw(t)� x: (7)A solution �(x; t); u(x; t); p(x; t) for x > xw(t) ful�lling the boundary condition (6)can be smoothly extrapolated beyond the boundary by the following mirror ow:0@ �̂(x; t)û(x; t)p̂(x; t) 1A := 0@ �(x̂; t)2 _xw � u(x̂; t)p(x̂; t) 1A : (8)



Flow Simulations on Cartesian Grids 3Consider now the case of a wall moving at varying velocity:xw = xw(t); �xw 6= 0: (9)The boundary condition is the same as for the wall moving at constant speed,i.e., condition (6). In general a mirror ow extrapolation is only possible in asmall neighborhood of the reecting wall in this case. The solution has a non-zeropressure gradient at the wall according topx(xw(t); t) = ��(xw(t); t) �xw(t): (10)Thus particles moving along the wall change their speed due to this pressuregradient. Not only pressure but also density has a non-zero gradient at the wall./�g/mirvar.eps///..76 � 30 mmx
t xw(t)�; u; p � x

t �; u; p�̂; û; p̂
Figure 1. Mirror ow for a wall moving with changing speedIn two dimensions the inviscid boundary condition isu(x; t) � n = 0; x 2 �(t); (11)where �(t) is the reecting wall and n is the normal vector at the point x. Fora two-dimensional mirror ow extrapolation the normal velocity component unis treated as u in one dimension. The other variables as the tangential velocitycomponent ut, p, and � are treated as p and � in one dimension. Note that ut, p,and � may have non-zero normal derivatives even at a �xed reecting wall, namelyif the wall curvature is non-zero, i.e.,@p@n = �ututR ; @ut@n = �utR ; (12)where n is the normal coordinate and R is the curvature radius of the reectingwall. The pressure gradient lets the particles move along the wall, the gradient ofthe tangential velocity is required by zero vorticity along the inviscid wall.3. Numerical methodHere we describe how we incorporate a boundary treatment into the discretizationof the interior ow on a regular Cartesian grid. For the computational results, theboundary treatment is coupled to the Clawpack method of LeVeque [7], a multi-dimensional shock-capturing �nite-volume method for describing inviscid ows.



4 H. Forrer, M. BergerLet h be the grid parameter of a Cartesian grid. Then we set xi = x0 +ih; yj = y0+ jh; i; j 2 ZZ. The regular Cartesian grid cell Cij is then given by:Cij = [xi; xi+1]� [yj ; yj+1] : (13)The numerical solution at time tn is given by approximations of the cell averagesof the exact solution U(x; y; tn) over the grid cells:Unij � 1h2 ZCij U(x; y; tn)dx dy: (14)This numerical solution can then be updated using the Euler equations in integralform Un+1ij = Unij � �th (Fni+1;j � Fnij +Gni;j+1 �Gnij); (15)where we calculate the uxes Fij ;Gij using Clawpack.If at time tn there is a reecting wall along �(tn) going through the Cartesiangrid, we divide the cells into regular cells, boundary cells and empty cells. Figure2 on the left shows the regular and the boundary cells { all other cells are emptycells. The exact solution at time tn can be extrapolated over the reecting wall
/�g/gri1.eps///..62 � 33 mmregular cellsboundary cells�(tn) /�g/gri2.eps///..45 � 30 mmC1 C2�(tn)Figure 2. Di�erent types of grid cells at time tn (left), splittingof a boundary cell (right)such that we can assign a numerical value also for boundary cells. If at time tnthe Cartesian grid cell C is a boundary cell, we split this cell into two parts, C1is the part lying in the uid domain and C2 is the part lying on the solid domainas sketched in Figure 2 on the right. The numerical solution for such a boundarycell C at time tn is then given by UnC approximating the following cell averageUnC � 1h2 �ZC2 Û(x; y; tn) dx dy + ZC1 U(x; y; tn) dx dy� : (16)Here Û(x; y; tn) denotes the exact mirror ow solution at time tn. For the regularcells the numerical solution is given by (14).To advance the numerical solution of the regular cells and the boundary cellsusing (15), we �ll in a set of ghost cells next to the boundary cells. These ghost cellsCkl are �lled with ow variables Ûnkl using a numerical mirror ow extrapolation



Flow Simulations on Cartesian Grids 5of the numerical solution at time tn. How many ghost cells are needed dependson the speci�c numerical method. Two ghost cells are needed for the second-orderaccurate Clawpack method, as shown in Figure 3 on the left.
/�g/gri3.eps///..56 � 29 mm�(tn) ghost cells /�g/gri4.eps///..54 � 45 mm�(tn)ghost cell CxCx̂ xwxhw

Figure 3. Two layers of ghost cells for a second-order accuratemethod (left), a ghost cell C lying beyond a reecting wall (right)In the following we describe how to calculate ghost cell values using a mirrorow extrapolation of the numerical solution. Suppose at time tn there is a ghostcell C beyond a reecting wall along �(tn) which may be moving (cf. Figure 3 onthe right). The midpoint of cell C is denoted as xC . The point xw is the point on�(tn) closest to xC . The point x̂ is the reection of xC , i.e.,x̂ = 2xw � xC : (17)The normal vector n on �(tn) through xw is given byn = xw � xCjxw � xC j : (18)The ow variables of the ghost cell C are given by the pressure p̂, the density�̂, and the normal and tangential velocity components ûn, ût with respect to then direction. The reected point x̂ is lying between 4 cell centers of regular orboundary cells, such that un(x̂) can be obtained using a bilinear interpolationof the normal velocity at x̂. With _xw being the normal wall velocity at xw, thenormal velocity of the ghost cell is obtained usingûn(xC) = 2 _xw � un(x̂): (19)We experimented with two di�erent strategies to obtain the other ghost cell vari-ables (as described only for pressure in the following). One is to use the bilinearly-interpolated values at the reected point x̂, i.e.,p̂(xC) = p(x̂): (20)



6 H. Forrer, M. BergerThis is simpler than the volume weighted averaging used in the h-box method[3], and yields only a �rst-order boundary treatment for curved reecting walls orwalls moving with varying speed.Another strategy is to extrapolate the corresponding values from the nearestboundary point xw . If xw is lying between 4 cell centers of regular or bound-ary cells, a value p(xw) is obtained using a bilinear interpolation, else p(xw) isobtained by a linear interpolation from the nearest boundary cell center using�nite-di�erences. By a bilinear interpolation we obtain also a value at the pointxhw (cf. Figure 3, right), where xhw = xw + hn: (21)Then the corresponding ghost cell values are obtained byp̂(xC) = p(xw) + jxw � xC jp(xw)� p(xhw)h : (22)Note that the boundary cells themselves can be updated using (15), so theydo not need repeated application of (16); however the price of this is a lack ofconservation (cf. [6] for more details).4. Numerical resultsFirst we look at a one-dimensional test case, namely a gas con�ned between tworeecting walls at xl = 0:5+vlt+ al2 t2 and xr = 1:0, with constants vl and al. Theinitial conditions are �(x; 0) = 1:0 + 0:2 cos(�x � 0:50:5 ); (23)v(x; 0) = 2:0(1:0� x)vl; (24)p(x; 0) = �(x; 0) ; (25)such that entropy is constant, i.e., s(x; 0) = p(x; 0)=rho(x; 0) = 1:0. As long asthe solution stays smooth, the entropy stays constant, such that we can use thisvariable for a numerical error analysis. In the numerical experiment we study thefollowing quantities at the �nal time te:errbry = jsfinaliw � 1:0j; (26)errtot = Pi jsfinali � 1j jCijPi jCij ; (27)�m =  Xi �initiali jCij �Xi �finali jCij! =Xi �initiali jCij; (28)where iw is the index of the left boundary cell. The cell volume jCij is h for regularcells, the length in the uid domain for the boundary cells and zero for empty cells.For the �rst test case we set: v0 = �0:5; a0 = 0:0; te = 0:5. The results inTable 1 for errbry suggest that the boundary treatment is only �rst-order accurate
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Figure 4. Wall moving with constant speed { ghost cell extrap-olation using (20) (middle) or (22) (right), h = 0:005extrapolation using (20) extrapolation using (22)1=h �m errbry errtot �m errbry errtot200 4.27-6 2.93-5 2.00-6 3.19-5 3.35-6 1.67-6400 9.71-7 1.16-5 5.31-7 8.08-6 7.31-7 4.14-7800 2.39-7 5.57-6 1.41-7 2.04-6 1.70-7 1.03-7Table 1. Wall moving with constant speed { error analysis usingthe two di�erent ghost cell extrapolationsif pressure and density are extrapolated using (20) in this case of a wall movingwith constant speed, whereas using (22) the errbry values suggest second-orderaccuracy also at the boundary in this case. But the lack of conservation is smallerusing (20). Figure 4 shows the results for h = 0:005.For the second test case we set: v0 = 0:0; a0 = �2:0; te = 0:5. The results inTable 2 suggest that for this second test case of a wall moving at varying speed,using (22) for the pressure and density extrapolation yields a second-order accurateboundary treatment.For the following two-dimensional test cases we are using (22) for the ghostcell values but in the second test case we we �x pressure and density to a smallvalue (0:01), in case the ghost cell values drop below this small value.



8 H. Forrer, M. Berger1=h �m errbry errtot400 6.65-5 1.90-5 3.22-6800 2.29-5 4.55-6 8.71-71600 4.73-6 9.34-7 2.46-7Table 2. Wall moving with varying speed { error analysis using(22) for the ghost cell extrapolationsThe �rst test problem is taken from [4] for a numerical convergence study.It is a supersonic vortex in a channel formed by concentric circular arcs. Theboundaries of the channel form one quarter of a circle, with inner radius ri andouter radius ro. A smooth analytic solution exists for this problem, so the errorsin the computation can be evaluated. The density is�(r) = �i �1 +  � 12 M2i (1� (rir )2)� 1�1 ; (29)and the velocity varies inversely with the radius. We use the same geometry andtest parameters as [4], �i = 1:0; ri = 1:0; ro = 1:384;Mi = 2:25; pi = 1:0=.We take the exact solution as initial condition and run the calculation until timet = 5:0, where the analysed values have converged to the 4-th digit. In the nu-merical study we look at the following relative errors using a discretization of thecontinuous L1-norm (cf. [4])errtot = Pk j�exact � �kj jCkjPk �exactjCkj ; (30)errbry = Pk2@ j�exact � �kjpjCkjPk2@ �exactpjCkj ; (31)(32)wherePk is a summation over the regular cells and the boundary cells andPk2@is a summation over the boundary cells only. jCkj is h2 for regular cells and thearea in the uid domain for the boundary cells. Our boundary treatment is notstrictly conservative. Therefore we look also at the di�erence of mass-inow andmass-outow in the �nal solution:�m = Xk2in �kjukjlk � Xk2out �kjukjlk; (33)where Pk2in is a summation over the inow cells and Pk2out over the outowcells. lk is the length of the inow/outow interface. Table 3 (left) shows an erroranalysis of the above errors. The boundary treatment is of order log2 16:35:49 = 1:57.For a moving-boundary example, we show the cylinder lift-o� by a strongshock wave, an example found in [5]. The movement of the cylinder is inducedby the ow-�eld. To describe this motion within second-order accuracy, we use a



Flow Simulations on Cartesian Grids 9h errtot errbry �m2.68-2 1.52-3 1.83-3 2.49-31.32-2 3.58-4 4.77-4 4.13-46.70-3 8.95-5 1.63-4 7.09-53.35-3 1.96-5 5.49-5 1.89-5 h X Y �m3.33-3 6.89-1 1.429-1 1.79-22.50-3 7.00-1 1.392-1 1.05-22.00-3 7.06-1 1.379-1 9.50-3Table 3. Error analysis for the supersonic vortex (left) { con-vergence history for the cylinder lifto� (right)staggered time grid. The center of the cylinder is given at full time-steps Xn andits velocity at staggered time-steps Vn� 12 . At time tn the force Fn on the cylinderis calculated by a numerical integration of the ow �eld pressure times the normalvector along the surface of the cylinder; the velocity is updated byVn+ 12 = Vn� 12 + �tM Fn; (34)where M is the mass of the cylinder. The position of the cylinder is updated byXn+1 = Xn +�tVn+ 12 : (35)We use the same parameters as in [5]. A cylinder with radius 0:05 is initiallylocated at the lower wall at x = 0:15 of a channel with width 0:2. A Mach 3 shockwave starts at x = 0:08 moving towards the cylinder and lifting it o�. The densityand pressure of the resting gas are � = 1:4 and p = 1:0. The density of the cylinderis 10:77. The calculation is stopped at time 0:3282. In our calculation the cylinderhits the upper wall, opposed to the results of [5]. Table 3 (right) lists the �nalposition of the center of the cylinder X;Y , and the �nal relative mass loss as afunction of the grid parameter h. Figure 5 shows pressure contours of the initialcondition, the solution at half-time and the �nal solution after the cylinder has hitthe upper wall.AcknowledgmentsThe authors were supported in part by DOE Grant De-FG02-92ER25139, and byAFOSR Grant F49620-97-1-0322.References[1] S.A. Bayyuk, K.G. Powell, and B. van Leer. A Simulation Technique for 2-D Un-steady Inviscid Flows Around Arbitrarily Moving and Deforming Bodies of ArbitraryGeometry. AIAA paper 93-3391, 1993.[2] J.B. Bell, P. Colella, and M. Welcome. Conservative Front Tracking for Inviscid Com-pressible Flow. 10th AIAA Computational Fluid Dynamics Conference, Honolulu, pp.814{822, 1991.
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Figure 5. Cylinder lift-o�, h = 0:0025[3] M.J. Berger and R.J. LeVeque. Stable Boundary Conditions for Cartesian Grid Cal-culations. ICASE Report No. 90-37, May, 1990.[4] M.J. Berger and J. Melton. An Accuracy Test of a Cartesian Grid Method for SteadyFlow in Complex Geometries. Proceedings of 5th International Conference on Hyper-bolic Problems, Stony brook, NY, 1994.[5] J. Falcovitz, G. Alfandary, and G. Hanoch. A Two-Dimensional Conservation LawsScheme for Compressible Flows with Moving Boundaries. Journal of Comp. Phys.,138, pp. 83{102, 1997.[6] H. Forrer and R. Jeltsch. A Higher-Order Boundary Treatment for Cartesian-GridMethods. To appear, J. Comp. Phys., 1998. Also, ETH Report No. 96-13, availablevia netscape in http://www.sam.math.ethz.ch/Reports/1996-13.html.[7] R.J. LeVeque. CLAWPACK software. available fromhttp://www.amath.washington.edu/~rjl/clawpack.html.Courant Institute,251, Mercer StreetNew York, NY 10012E-mail address : forrer@cims.nyu.edu


