
H-BOX METHODS FOR THE APPROXIMATION OF HYPERBOLICCONSERVATION LAWS ON IRREGULAR GRIDSMARSHA J. BERGER�, CHRISTIANE HELZEL�, AND RANDALL J. LEVEQUEyAbstrat. We study generalizations of the high-resolution wave propagation algorithm for theapproximation of hyperboli onservation laws on irregular grids that have a time step restritionbased on a referene grid ell length that an be orders of magnitude larger than the smallest gridell arising in the disretization. This Godunov-type sheme alulates uxes at ell interfaes bysolving Riemann problems de�ned over boxes of a referene grid ell length h.We disuss stability and auray of the resulting so-alled h-box methods for one-dimensionalsystems of onservation laws. An extension of the method for the two-dimensional ase, that is basedon the multidimensional wave propagation algorithm, is also desribed.Key words. �nite volume methods, onservation laws, non-uniform grids, stability, aurayAMS subjet lassi�ations. 35L65, 65M121. Introdution. We onsider the numerial approximation of hyperboli sys-tems of onservation laws using �nite volume shemes on irregular grids. We mainlyrestrit our onsiderations to the ase of one spatial dimension, although an extensionto the two dimensional ase will also be onsidered. Under appropriate smoothnessassumptions the equations an be formulated in the di�erential form��tq(x; t) + ��xf(q(x; t)) = 0; (1.1)where q(x; t) is a vetor of onserved quantities and f(q(x; t)) is a vetor of uxfuntions. For the numerial approximation we want to use a �nite volume method.On an unstrutured grid suh a sheme an be written in the general formQn+1i = Qni � 4t4xi �Fi+ 12 � Fi� 12� ; (1.2)where Qni is an approximation of the ell average of the onserved quantity over thegrid ell [xi� 12 ; xi+ 12 ℄ at time t = tn. The vetor valued quantities Fi� 12 and Fi+ 12 arethe numerial ux funtions at the ell interfaes. We denote the time step by 4tand the length of the i-th grid ell by 4xi = xi+ 12 � xi� 12 .We are in partiular interested in the onstrution of high-resolution shemes fora grid whih ontains one small grid ell, while all other grid ells have the samelength that will be denoted by h = 4x. This situation is motivated by a two-dimensional appliation, namely the onstrution of Cartesian grid methods withembedded irregular geometry. Away from the boundary one may want to use aregular Cartesian grid. Near the boundary one then obtains irregular ut-ells, whihmay be orders of magnitude smaller than the regular grid ells. Our aim in suh asituation is to onstrut a sheme that is stable based on time steps adequate for the�Courant Institute of Mathematial Sienes, 251 Merer Street, New York, NY 10012-1185.berger�ims.nyu,edu, helzel�ims.nyu.edu This work was supported by DOE grants DE-FG02-88ER25053 and DE-FC02-01ER25472 and AFOSR grant F49620-00-1-0099.yDepartment of Applied Mathematis, University of Washington, Box 352420, Seattle, WA 98195-2420. rjl�amath.washington.edu Supported by DOE grants DE-FG03-00ER2592 and DE-FC02-01ER25474 and NSF grant DMS-0106511.Version of Otober 3, 2002 1



2 M.J. BERGER, C. HELZEL AND R.J. LEVEQUEregular grid. Suh methods were developed by Berger and LeVeque in [4℄, [5℄, [6℄. Thebasi idea of these so-alled h-box methods is to approximate the numerial uxes atthe interfaes of a small ell based on initial values spei�ed over regions of length h,i.e. of the length of a regular grid ell. If this is done in an appropriate way then theresulting method remains stable for time steps based on a CFL number appropriatefor the regular part of the grid. See also [8℄, [9℄, [10℄, [23℄, [21℄ and [25℄ for otherembedded boundary Cartesian grid methods that have this same stability property.Beside this 2D appliation, h-box shemes an also o�er interesting alternativesto existing irregular grid methods. An extension of h-box methods to a ompletelyirregular grid was onsidered by Berger et. al [7℄, see also Stern [28℄. We will onsidersuh alulations in Setion 5. In Setion 7, we onstrut a multidimensional h-boxmethod. Other potential appliations are the onstrution of moving mesh or front-traking algorithms. Stern [28℄ used an h-box method to onstrut a onservative�nite volume algorithm for a Cartesian grid with an embedded urvilinear grid.Unsurprisingly, the auray of an h-box method depends strongly on the de�-nition of the h-box values. In this paper we develop a one-dimensional as well as atwo-dimensional high-resolution h-box method. Our goal here is a systemati study ofh-box methods in a relatively simple ontext to provide fundamental understandingfor the more omplex appliations mentioned above. For the advetion equation weshow that the 1D sheme leads to a seond order aurate approximation of smoothsolutions on non-uniform grids (without any restritions on the grid). We also ver-ify that the resulting method leads to high-resolution approximations for the Eulerequations on non-uniform meshes. The approximation of transoni rarefation wavesturns out to require a speial treatment. Throughout this paper we will disuss theonstrution of h-box methods based on LeVeque's high-resolution wave propagationalgorithm [18℄. This method is implemented in the lawpak software pakage [13℄,whih provided the basi tool for our test alulations.The large time step Godunov method of LeVeque desribed in [14℄, [15℄, [16℄ isrelated to the h-box method. This sheme allows larger time steps in the approxima-tion of nonlinear systems of onservation laws by inreasing the domain of inuene ofthe numerial sheme. This is done in a wave propagation approah, in whih wavesare allowed to move through more than one mesh ell. The interation of waves isapproximated by linear superposition. At a reeting boundary this method beomesmore diÆult than an h-box method espeially in higher dimensions, sine the ree-tion of waves at the boundary has to be onsidered for waves generated by Riemannproblems away from the boundary, see [3℄. In [22℄, Lemma 3.5, Morton showed thathigh-resolution versions of suh a large time step method lead to a seond order au-rate approximation of the one-dimensional advetion equation on a non-uniform gridonly if the grid varies smoothly. The high-resolution h-box method desribed in thispaper does not require this smoothness assumption.2. The wave propagation algorithm. In this setion we desribe the basionept of the high-resolution wave propagation algorithm applied to irregular Carte-sian grids; a more general desription an be found in LeVeque [18℄ or [19℄. Thenumerial method for solving (1.1) is a Godunov-type method, i.e. the uxes at ellinterfaes are alulated by solving Riemann problems de�ned from ell averages ofthe onserved quantities. This is done by alulating waves that are moving into eahgrid ell. The �rst order update of the wave propagation algorithm has the formQn+1i = Qni � 4t4xi �A+4Qi� 12 +A�4Qi+ 12 � :



H-BOX METHODS FOR CONSERVATION LAWS ON IRREGULAR GRIDS 3Here the hange of the onserved quantities is alulated by taking all waves intoaount that are moving into the grid ell from the left respetively right ell interfae.The solution of Riemann problems at ell interfaes provides a deomposition of thejump Qni+1 �Qni into waves Wpi+ 12 that are moving with speed spi+ 12 for 1 � p �Mw,4Qni+ 12 = Qni+1 �Qni = MwXp=1Wpi+ 12 :The left- and right-going utuations are alulated asA+4Qi�12 = MwXp=1max(spi� 12 ; 0)Wpi� 12 ; A�4Qi+ 12 = MwXp=1min(spi+ 12 ; 0)Wpi+ 12 :This an be written as a �nite volume sheme of the form (1.2) using the relationsFi+ 12 = f(Qi) +A�4Qi+ 12 ; (2.1)Fi� 12 = f(Qi)�A+4Qi�12 : (2.2)Appropriate waves and speeds for systems of onservation laws an sometimes be al-ulated by using an exat Riemann solver but more often an approximative Riemannsolver, for instane a Roe-Riemann solver [26℄, is used.In the wave propagation algorithm seond order orretion terms are inluded byextending the �rst order method into the formQn+1i = Qni � 4t4xi �A+4Qi� 12 +A�4Qi+ 12�� 4t4xi � ~F 2i+ 12 � ~F 2i� 12� : (2.3)On an irregular grid, the seond order orretion terms have the form~F 2i+ 12 = 12 MwXp=1 jspi+ 12 j� 4xi(4xi +4xi+1)=2 � 4t(4xi +4xi+1)=2 jspi+ 12 j� ~Wpi+ 12 : (2.4)In (2.4) the waves ~Wp are limited waves - this limiting is neessary in order to avoidosillations near disontinuities.The resulting sheme is stable for the approximation of systems of onservationlaws (1.1) as long as time steps are restrited suh that waves move through at mostone mesh ell, whih means the Courant number is no larger than one, i.e.CFL = 4tmaxi  max(maxp(spi� 12 ; 0); jminp(spi+ 12 ; 0)j)4xi ! � 1: (2.5)The h-box method hanges this time step restrition by replaing 4xi in the denom-inator of (2.5) by h, the width of a referene grid ell. We will use the notation CFLhif we want to indiate that the Courant number is based on grid ells of width h.We want to note that some are is neessary in the onstrution of seond orderaurate algorithms for irregular grids. There exist versions of the one-dimensionalLax-Wendro� method whih lead to seond order aurate approximations of theadvetion equation only if the grid is suÆiently smooth, i.e. if4xi=4xi�1 = 1+O(h),(h = maxi4xi), see for instane Wendro� and White [30℄, [31℄ and Pike [24℄. See alsoMorton [22℄ for onvergene results of �nite volume methods for the approximationof the advetion equation on non-uniform grids.



4 M.J. BERGER, C. HELZEL AND R.J. LEVEQUE3. The one dimensional h-box method. First we want to approximate equa-tion (1.1) on an almost uniform grid that ontains one small grid ell in the middle.This example allows simple analytial studies. However, we will show that the resultsobtained for this simple test ase an be extended to more general appliations.We denote the length of a regular grid ell by h = 4x. The small ell has thelength �h, with 0 < � � 1. For the small ell the numerial method has to be modi�edin order to obtain a stable sheme for time steps4t that satisfy the stability onditionin the regular part of the grid. The h-box method introdued by Berger and LeVeque[5℄ de�nes new left and right states at the edges of the small ell that represent theonserved quantities at these interfaes over boxes of length h, see Figure 3.1. Thisguarantees that the domain of dependene of the numerial solution has the size of aregular mesh ell, whih is a neessary stability ondition.3.1. First order aurate h-box methods. As a �rst step we ompare theperformane of two di�erent h-box shemes applied to the advetion equation qt(x; t)+aqx(x; t) = 0. We will assume that a > 0, although analogous onsiderations an ofourse be made for the ase a < 0. In the following we assume that k is the index ofthe small ell. In order to alulate numerial uxes at the small ell interfaes newvalues of the onserved quantity q that represent pieewise onstant initial values overboxes of length h will be de�ned. For the left ell interfae of the small ell, thesevalues are denoted by QLk� 12 and QRk� 12 . At the right ell interfae of the small ellwe have to de�ne values QLk+ 12 and QRk+ 12 . This is indiated by the shaded boxes ateah interfae in Figure 3.1.
(a) xk+ 12 xk+1+ 12xk�1� 12 xk� 12Qnk�1 Qnk Qnk+1QRk� 12QLk� 12 (b) xk+ 12 xk+1+ 12xk�1� 12 xk� 12Qnk�1 Qnk Qnk+1QRk+ 12QLk+ 12Fig. 3.1. Shemati desription of h-box values assigned to the left small ell interfae (see(a)) respetively the right small ell interfae (see (b)).The most obvious hoie is to de�ne the h-box values via ell averaging over thepieewise onstant initial values. (To keep the notation simple we sometimes suppressthe time index, if it is lear that we mean the values at time tn.) We obtain:QLk� 12 = Qk�1; QRk� 12 = �Qk + (1� �)Qk+1QLk+ 12 = �Qk + (1� �)Qk�1; QRk+ 12 = Qk+1 (3.1)Suh h-box values were used in Berger and LeVeque [5℄ as well as by Forrer andJeltsh [10℄. For the advetion equation the update of the small ell value an now



H-BOX METHODS FOR CONSERVATION LAWS ON IRREGULAR GRIDS 5be alulated using the upwind method. We obtainQn+1k = Qnk � 4t�h �aQLk+ 12 � aQLk� 12 �= Qnk � a4t�h ��Qnk + (1� �)Qnk�1 �Qnk�1�= Qnk � a4th (Qnk �Qnk�1): (3.2)Note that the small denominator (that may ause a stability problem) has been re-moved. One an indeed show TVD stability for this method assuming CFLh � 1,see Setion 4. However, it is lear that this an not be a very aurate formula. Thetrunation error of the sheme (3.2) has the formLq = qn+1k � qnk4t + aqnk � qnk�1h= qt(xk ; tn) + a2(�+ 1)qx(xk ; tn) +O(4t; h)= a2(�� 1)qx(xk; tn) +O(4t; h)Only for � = 1 is the trunation error in ell k of the order O(4t; h). Note thatgrid funtions for the exat solution q are expressed with lower ase letters, whereasnumerial approximations are written in apital letters.In spite of the apparent inonsisteny of the sheme, numerial tests suggestthat this h-box method onverges with �rst order. For the advetion equation we anindeed prove that under appropriate smoothness assumptions the sheme is �rst orderaurate in the small ell. This so-alled supra-onvergene property an be shownusing an idea developed for onservation laws by Wendro� and White [30℄, [31℄. Seealso [12℄, [20℄ where these ideas were introdued for boundary value problems forODEs.Proposition 1. We onsider the approximation of the advetion equation on analmost uniform grid with mesh width h that ontains one small mesh ell of length �h,with � � 1. The 1D h-box method (3.2), based on an upwind disretization with h-boxvalues alulated by averaging over pieewise onstant ell average values, leads to a�rst order aurate approximation for suÆiently smooth solutions of the advetionequation in spite of the fat that the trunation error indiates inonsisteny.Proof: The basi step of the proof is to alulate the loal trunation error for agrid funtion w, whih must be an aurate enough approximation of the grid funtionof the exat solution q. We want to show that the trunation error for w is �rst order,i.e. Lw = O(h). In order to do this we speify the grid funtion to have the formwni = qni + 12(1� �i)hqx(xi; tn):Here we assume that 4xi = �ih, i.e. �i = 1 for i 6= k and �k = �. The distanebetween xk and xk�1 is 12h(1 + �). In the simple situation of only one small grid ellwe have wni = qni for i 6= k and wnk = qnk + 12 (1� �)hqx(xk; tn). The trunation error



6 M.J. BERGER, C. HELZEL AND R.J. LEVEQUEof the grid funtion w for the sheme (3.2) has in the small ell the form:Lw = wn+1k � wnk4t + awnk � wnk�1h= qn+1k + 12 (1� �)hqx(xk ; tn+1)� qnk � 12 (1� �)hqx(xk ; tn)4t+ aqnk + 12 (1� �)hqx(xk; tn)� qnk�1h +O(4t; h)= qnk +4tqt(xk; tn) + 12 (1� �)hqx(xk; tn)� qnk � 12 (1� �)hqx(xk; tn)4t+ a qnk + 12 (1� �)hqx(xk ; tn)� qnk + 12 (1 + �)hqx(xk ; tn)h +O(4t; h)= qt(xk ; tn) + aqx(xk ; tn) +O(4t; h) = O(4t; h)From the trunation error of w and the stability of the method for CFLh � 1 it followsthat jwk �Qkj = O(4t; h). Sine w = q +O(h) we obtain the estimatejqk �Qkj = O(h);i.e. the h-box method (3.2) leads to a �rst order aurate approximation of the adve-tion equation in the small ell k, in spite of the fat that the sheme is inonsistent inthe small ell. Using the same grid funktion w one an also show that the trunationerror Lw in ell k+1 is of the order O(h). In all other regularly spaed grid ells, themethod agrees with the upwind sheme for whih the trunation error is also O(h).Therefore, we obtain �rst order onvergene in the whole domain. �In order to obtain a more aurate small ell sheme, we will now onsider theonstrution of h-box values based on linear interpolation using again grid ell valuesthat are overlapped by the h-boxes. Suh h-box values have the general formQLk� 12 = Qk�1; QRk� 12 = �Qk + (1� �)Qk+1QLk+ 12 = �Qk + (1� �)Qk�1; QRk+ 12 = Qk+1:We want to determine � so that we obtain a onsistent h-box sheme, i.e. for whihLq = O(h;4t). By again using Taylor series expansion we �nd that only � = 2�1+�leads to an upwind method that satis�es this ondition. This suggests that the h-boxvalues should have the form:QLk� 12 = Qk�1; QRk� 12 = 2 � Qk + (1� �) Qk+11 + �QLk+ 12 = 2 � Qk + (1� �) Qk�11 + � ; QRk+ 12 = Qk+1: (3.3)Note that this interpolation formula was already given in [4℄, but not further investi-gated there. In [7℄, [28℄ h-box values were de�ned in a similar way and the resultingsheme was shown to give good results for advetion and Burgers' equation.One time step of the h-box method based on the interpolation formula (3.3) againfor a > 0 has in the small ell the formQn+1k = Qnk � a4th � Qnk �Qnk�1(1 + �)=2 : (3.4)



H-BOX METHODS FOR CONSERVATION LAWS ON IRREGULAR GRIDS 7We an derive the same method as a �nite di�erene sheme, by replaing qx(xk ; tn)in the Taylor series expansion ofq(xk; tn +4t) = q(xk ; tn) +4tqt(xk ; tn) +O(4t2)= q(xk ; tn)�4t � a qx(xk ; tn) +O(4t2) (3.5)by an appropriate �rst order aurate �nite di�erene formula. The h-box method(3.4) an be interpreted as a �nite di�erene sheme that approximates the qx(xk)terms by one sided �nite di�erenes. This h-box method leads to a �rst order auratemethod that approximates linear funtions exatly. One an also show that an upwindsheme based on the h-box values (3.3) also leads to a onsistent �rst order aurateupdate in the two neighboring grid ells of the small ell.If we use the wave propagation algorithm then the �rst order update in the smallell an be written in the formQn+1k = Qnk � 4t�h �A+4Q̂k� 12 � f(QRk� 12 ) +A�4Q̂k+ 12 + f(QLk+ 12 )� ; (3.6)with 4Q̂k� 12 = QRk� 12 �QLk� 12 and 4Q̂k+ 12 = QRk+ 12 �QLk+ 12 . In the limit ase � = 1we have QRk� 12 = QLk+ 12 and (3.6) redues to the �rst order aurate wave propagationalgorithm that is valid in the regular parts of the grid. This formula remains validfor nonlinear equations as well as systems of onservation laws, assuming we have aRiemann solver that provides us a deomposition of QR�QL as desribed in Setion2. We indiate quantities that are alulated from h-box values by the ^ symbol.Numerial results shown in Setion 5 will demonstrate the superior properties ofan h-box method with h-boxes obtained by linear interpolation.3.2. A seond order aurate h-box method. In order to obtain a high-resolution sheme we want to inlude seond order orretion terms. This means wewant to obtain an update of the small ell that an be written asQn+1k = Qnk � 4t�h �A+4Q̂k� 12 � f(QRk� 12 ) +A�4Q̂k+ 12 + f(QLk+ 12 )�� 4t�h �F̂ 2k+ 12 � F̂ 2k� 12� ;here F̂ 2 denotes the seond order orretion terms that are implemented in ux di�er-ening form. By analogy to the standard wave propagation algorithm, these seondorder orretion terms should also be alulated by using the waves and speeds ob-tained from solving Riemann problems at the ell interfaes. For the small ell weagain use the waves and speeds from Riemann problems de�ned by the same h-boxvalues used to obtain the �rst order update. We will restrit our onsideration toh-box values that are alulated using the interpolation formula (3.3).The formula (2.4) for the seond order orretion ux on irregular grids suggestsusing orretion terms of the formF̂ 2i+ 12 = 12 MwXp=1� 1(1 + �)=2 � 4t(1 + �)h=2 jŝpi+ 12 j��jŝpi+ 12 j�Ŵpi+ 12 (i = k�1; k) (3.7)in the small ell. The waves Ŵpi+ 12 and the speeds ŝpi+ 12 an be obtained by solvingRiemann problems de�ned by the h-box values at the small ell interfaes. One an



8 M.J. BERGER, C. HELZEL AND R.J. LEVEQUEshow that the trunation error in the small ell that results from suh a high-resolutionwave propagation sheme is Lqk = O(h2;4t2), i.e. assuming the sheme is stable wewould obtain a seond order aurate approximation in the small ell. However,numerial tests showed that suh an approah is not stable for time steps satisfyingCFLh � 1.Instead we use seond order orretion terms of the form:F̂ 2i+ 12 = 12 MwXp=1�1� 4th jŝpi+ 12 j� � jŝpi+ 12 jŴpi+ 12 (i = k � 1; k) (3.8)The waves are again alulated from Riemann problems de�ned by the h-box values.The di�erene from (3.7) is that we don't take the size of the small ell into aountin the alulation of the orretion uxes. This reets the general onept of theh-box method where uxes are alulated from values de�ned over regions of lengthh. Although the trunation error for the grid ell k now ontains �rst order termswhih don't anel out, the numerial results are very satisfying and indiate seondorder onvergene as well as stability for CFLh � 1. Assuming that the solution issuÆiently smooth we an indeed prove that the resulting method leads to a seondorder aurate approximation for the advetion equation.Proposition 2. We onsider the approximation of the advetion equation on analmost uniform grid with mesh width h that ontains one small mesh ell of length�h, with � � 1. The h-box method onsisting of the �rst order update (3.4) and theseond order orretion terms (3.8) (without limiters) leads to a seond order aurateapproximation for suÆiently smooth solutions of the advetion equation.Proof: We again use the idea of Wendro� and White and onsider the trunationerror Lw for a grid funtion of the form wni = qni + 18h2(�i+1)(�i�1)qxx(xi; tn). Herewe assume that4xi = �ih. We have �i = 1 for i 6= k and �k = �. In regular grid ellsi 6= k the grid funtion w agrees with the exat solution. We only want to show seondorder onvergene in the small ell as well as in the two neighboring ells k � 1 andk + 1, sine the method redues to the high-resolution wave propagation algorithmin the other regular grid ells. In the ase onsidered here, the wave propagationalgorithm on the regular part of the grid is equivalent to the Lax-Wendro� sheme.The trunation error for the grid funtion w has the formLw = wn+1k � wnk4t + 2a (wnk � wnk�1)h(1 + �) +�1� a4th � awnk+1 � 2wnk + wnk�1h(1 + �)= qt(xk; tn) + 4t2 qtt(xk ; tn) + aqx(xk ; tn) + 14h(�� 1)aqxx(xk ; tn)�14h(1 + �)aqxx(xk ; tn)+�1� a4th � a 14h2(1 + �)2qxx(xk ; tn)� 14h2(�2 � 1)qxx(xk ; tn)h(1 + �) +O(4t2; h2)Here we use hk+ 12 = hk� 12 = 12h(1 + �) for the distane from the ell enter ofthe small ell k to the ell enters of the neighboring ells. By using the relationsqt(xk ; tn) = �aqx(xk; tn) and qtt(xk; tn) = a2qxx(xk ; tn) all lower order terms in theabove equation anel and we obtain Lw = O(4t2; h2). This shows that jwk �Qkj =O(4t2; h2). Sine the grid funtion was hosen to satisfy w = q+O(h2), we onlude



H-BOX METHODS FOR CONSERVATION LAWS ON IRREGULAR GRIDS 9that jqk �Qkj = O(4t2; h2):Stability of this seond order aurate sheme will be shown in the Appendix.Using the same grid funtion w, one an also show that Lw = O(4t2; h2) in theneighboring grid ells k � 1 and k + 1. Therefore, the numerial solution onvergeswith seond order auray in the whole domain. �Figure 3.2 shows a shemati desription of the �rst order update and the high-resolution orretion for ell k+1. The dotted lines depit the initial values, i.e. QLk+ 12and QRk+ 12 = Qk+1. In a �rst step the pieewise onstant values are propagated overa distane a4t as shown in Figure 3.2 (a). In order to inrease the auray, thepieewise onstant initial values are replaed by pieewise linear funtions. In Figure3.2 (b), we show the pieewise linear reonstruted funtion QLk+1(x; tn) that has theslope � = (QRk+ 12 � QLk+ 12 )=h. Sine we already alulated the �rst order update,the seond order orretion terms, alulated by propagating pieewise linear initialvalues QLk+ 12 (x; tn) instead of the pieewise onstant value QLk+ 12 , only take the shadedregion shown in Figure 3.2 (b) into aount. Compare with LeVeque [17℄, where suhseond order orretion terms were desribed for the approximation of the advetionequation on a uniform grid.
(a) xk+ 12xk+ 12 � h xk+ 32 (b) xk+ 12xk+ 12 � h xk+ 32Fig. 3.2. h-box values at the interfae xk+ 12 , dotted lines depit the initial values, solid linesthe solution after one time step. (a) �rst order update by h-box method, (b) seond order orretionwave of QLi+ 12 .3.3. Limiters for the h-box method. In order to have ontrol over unphysialosillations near disontinuities some kind of limiters must be used in the seond orderorretion terms (2.4). In the wave propagation algorithm this is done by using wavelimiters that modify the magnitude of the waves Wp (p = 1; : : : ;Mw) in the uxesthat model the seond order orretion terms. A limited p-waveWpi+ 12 is obtained byomparison of this wave with the neighboring p-waves Wpi� 12 or Wpi+ 32 , depending onthe diretion of ow, see LeVeque [18℄ or [19℄ for details.In our high-resolution h-box method we an use the same limiting proess in orderto obtain limited versions of the waves that were alulated from h-box values. Theselimited waves an then be used in the seond order orretion uxes (3.8). In orderto obtain the limiter for waves at a small ell interfae, we ompare those waves withwaves arising from Riemann problems at a distane h away from the ell interfae.This an be done by onstruting two additional h-boxes at the small ell interfae.The waves resulting from the solution of Riemann problems de�ned by these newh-box values to the left and right hand side of a small ell interfae an then be used



10 M.J. BERGER, C. HELZEL AND R.J. LEVEQUEin order to estimate the wave limiter for the waves at the small ell interfae. Thisrequires the solution of two additional Riemann problems for eah small ell interfae,see Figure 3.3. We used suh a limiting proess in order to approximate a shok wavesolution on an irregular grid shown in Setion 5.
xk� 12Qnk�1 Qnk Qnk+1QRk� 12QLk� 12Qnk�2 Qnk+2

QRRk� 12QLLk� 12 Ŵk� 12Ŵk� 12 ;�h Ŵk� 12 ;+hxk� 52 xk� 32 xk+ 12 xk+ 32 xk+ 52
Fig. 3.3. Shemati desription of h-box values assigned to the left small ell interfae. Twoadditional h-box values are needed to estimate the wave limiter for the seond order orretion terms.In addition to the wave limiting proess we also inlude a limiter into the approx-imation of the h-box values. Note that the h-box values (3.3) an also be obtained byreonstruting a pieewise linear funtion Q(x) from the ell averages Qi for all i andalulating the average value of this pieewise linear funtion over the same boxes oflength h as indiated in Figure 3.1. If the reonstruted funtion has the formQk�1(x) = Qk�1 + Qk �Qk�112h(1 + �) (x� xk�1) for x 2 [xk� 32 ; xk� 12 ); (3.9)Qk+1(x) = Qk+1 + Qk+1 �Qk12h(1 + �) (x � xk+1) for x 2 [xk+ 12 ; xk+ 32 ); (3.10)then averaging over boxes of length h leads to h-box values that have the form (3.3).The slopes of the pieewise linear initial values are�k�1 = Qk �Qk�1h(1 + �)=2 and �k+1 = Qk+1 �Qkh(1 + �)=2 :Near disontinuities suh pieewise linear values may not represent a good approxi-mation of the solution. We an use standard slope limiters in order to obtain betterapproximations there. We an for instane use a slope limiter proposed by van Leer[29℄. Here the slopes are replaed by limited versions that have the form �̂i = �i�ifor i 2 fk � 1; k + 1g. For our appliation the limiter has the form�i(�i) = min�1; j�ij+ �i1 + j�ij �with �k�1 = Qk�1 �Qk�2Qk �Qk�1 and �k+1 = Qk+2 �Qk+1Qk+1 �Qk :It may be replaed by other limiter funtions. Note that we do not want to use asteeper slope than �k�1 respetively �k+1 for the onstrution of h-box values, beause



H-BOX METHODS FOR CONSERVATION LAWS ON IRREGULAR GRIDS 11only those values lead to a seond order approximation in smooth regions. However,near disontinuities we want to limit these slopes. The resulting limited h-box valuesan be alulated using the formulasQLk+ 12 = �Qk + (1� �)�Qk�1 + �1 + � (Qk �Qk�1)�k�1�QRk� 12 = �Qk + (1� �)�Qk+1 + �1 + � (Qk �Qk+1)�k+1� :4. On the stability of the h-box method. The h-box method retains stabilityby onstruting a �nite volume sheme for whih the ux di�erene is of the order ofthe size of the grid ell. For a small grid ell this requires Fk+ 12 � Fk� 12 = O(�h). Inthis ase the term �h arising in the denominator of the �nite volume sheme shouldnot ause a stability problem. In regions where the solution of the onservation lawis smooth, the h-box values are onstruted to satisfy an analogous property, namelyQL;Rk+ 12 � QL;Rk� 12 = O(�h). Sine in our appliations the ux funtion is a Lipshitzontinuous funtion of QL and QR, the ux di�erene has the required anellationproperty, see [5℄.For the advetion equation Stern [28℄ proved that the �rst order aurate h-boxmethods are total variation diminishing. Here we will briey outline this proof whihfollows the general onept desribed above. The �rst order h-box method an (fora > 0) be rewritten in the formQn+1i = Qni � a4t�ih (QLi+ 12 �QLi� 12 )= Qni � a4t�ih ��iQni � �i 1�ih Z xi� 12�h+�ihxi� 12�h Qni�1(x)dx| {z }~Qni �:Here we assume that eah grid ell has the size hi = �ih with 0 < �i � 1. Qni�1(x) isthe pieewise linear reonstruted funtion (3.9). The stability result also holds on anirregular grid with more than one small ell. See also Setion 5 for a slightly di�erentgeneralization of the pieewise linear funtion that has to be used in the onstrutionof h-box values for a ompletely irregular grid.Using this notation we now onsider the di�erene jQn+1i+1 �Qn+1i j and sum overall grid ells. This sum an be estimated as:TV (Qn+1) =Xi jQn+1i+1 �Qn+1i j� �1� a4th �Xi jQni+1 �Qni j+ a4th Xi j ~Qni+1 � ~Qni jWe obtain the TVD property TV (Qn+1) � TV (Qn) for time steps CFLh � 1, ifXi j ~Qni+1 � ~Qni j � TV (Qn): (4.1)For the h-box method (3.2) using h-box values that were alulated by averaging overpieewise onstant values, (4.1) is always satis�ed, sine ~Qni = Qni . For the more



12 M.J. BERGER, C. HELZEL AND R.J. LEVEQUEaurate �rst order h-box method (3.4), the TVD property an be shown if a TVDslope limiter is used in the onstrution of the h-box values, as disussed in Setion3.3. Note that for the approximation of the advetion equation, the �rst order h-boxmethod based on h-box values (3.1), i.e. de�ned by averaging over pieewise onstantvalues of the onserved quantities is also monotone. This property does not arryover to the �rst order h-box method with h-box values alulated by the interpolationformula (3.3). Note also that none of these two �rst order aurate h-box methodsapplied to Burgers' equation leads to a monotone method.In the Appendix we show stability for the seond order aurate h-box methodapplied to the advetion equation. This proof is based on the stability theory ofGustafsson, Kreiss and Sundstrom [11℄.5. Irregular grid alulation. In order to demonstrate the robustness of thehigh-resolution h-box method we now apply the sheme to a ompletely arbitrarygrid. By again assigning values to boxes of length h, we obtain a sheme that remainsstable for time steps appropriate for a uniform grid with grid ells of length h. Inthis more general situation more than two grid ells may be overlapped by an h-box.We assume that grid ells have the length hi = �ih with �i � 1 for all indies i.We will show that a generalization of the h-box method based on averaging overpieewise linear values of the onserved quantities gives aurate results also in thismore diÆult situation. We will need to use pieewise linear reonstruted valuesh
QLk+ 12 QRk+ 12QRk� 12QLk� 12

m l k s t
Fig. 5.1. Shemati desription of the h-box method on a ompletely irregular grid.Qi(x) = Qi + Qi+1 �Qih(�i + �i+1)=2(x� xi) for x 2 [xi� 12 ; xi+ 12 ); i 2 fm; lg (5.1)Qj(x) = Qj + Qj �Qj�1h(�j + �j�1)=2(x� xj) for x 2 [xj� 12 ; xj+ 12 ); j 2 fs; tg:(5.2)The indies m; l and s; t indiate the grid ells that are only partly overed by theleft- respetively right-going h-boxes that are onstruted at the ell interfaes of gridell k. Slopes are needed only in these four ells beause averaging over an entire ellgives a value that is independent of the slope. Averaging over these pieewise linear



H-BOX METHODS FOR CONSERVATION LAWS ON IRREGULAR GRIDS 13funtions leads to the h-box valuesQLk� 12 = k�1Xi=m+1�iQi + �1� k�1Xi=m+1�i� � hQm + Qm+1 �Qm�m + �m+1 � k�1Xi=m�i � 1�iQRk� 12 = s�1Xi=k �iQi + �1� s�1Xi=k �i� � hQs + Qs �Qs�1�s + �s�1 �1� sXi=k �i�iQLk+ 12 = kXi=l+1�iQi + �1� kXi=l+1�i� � hQl + Ql+1 �Ql�l + �l+1 � kXi=l �i � 1�iQRk+ 12 = t�1Xi=k+1�iQi + �1� t�1Xi=k+1�i� � hQt + Qt �Qt�1�t + �t�1 �1� tXi=k+1�i�i
(5.3)

5.1. Approximation of the advetion equation on irregular grids. Wean show that these h-box values used in an upwind sheme (whih is equivalent tothe �rst order wave propagation algorithm) lead to a onsistent approximation of theadvetion equation.Proposition 3. The h-box method Qn+1i = Qni �a 4t�ih(QLi+ 12 �QLi� 12 ) with h-boxvalues de�ned by (5.3) leads to a �rst order aurate approximation of the advetionequation (with advetion speed a > 0) on an irregular grid.The proof is based on Taylor series expansion and may be found in the preprintversion of this paper [2℄. Together with the stability result mentioned in Setion 4,we obtain �rst order onvergene of this h-box method on irregular grids using timesteps that satisfy CFLh � 1.One the h-box values are de�ned we an apply the same seond order orretionterms (3.8) at the ell interfaes of a ompletely irregular grid. With suh an approahwe an expet seond order onvergene. Figure 5.2 shows numerial results for theapproximation of the advetion equation on a sequene of irregular grids. The initial
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Fig. 5.2. Approximation of the advetion equation on an irregular grid using the high-resolutionh-box method with h-box values alulated by linear interpolation. (a) numerial results on anirregular grid with h = 0:04, (b) log-log-plot of h versus L1-norm as well as maximum-norm errorshows seond order onvergene.values are set to q(x; 0) = sin(2�x) on the interval [0; 1℄. Periodi boundary onditionsare imposed. A onvergene study shows that our new high-resolution h-box methodonverges with seond order auray both in the L1 as well as the maximum norm.The auray of this alulation ompares well with the auray of the standard wavepropagation algorithm that was briey desribed in Setion 2. However, here we ould
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Fig. 5.3. Approximation of the advetion equation on an irregular grid using an h-box methodwith seond order orretion terms, were h-box values are alulated by averaging over pieewiseonstant values of the onserved quantity. (a) numerial results on an irregular grid with h =0:04, (b) log-log-plot of h versus L1 norm error as well as maximum norm error shows �rst orderonvergene.use muh larger time steps. In Figure 5.3, we show results for the same test ase, buthere the h-box values were onstruted by averaging over pieewise onstant valuesof the onserved quantity, i.e. the formally inonsistent method desribed in Setion3.1. Although we add seond order orretion terms (whih inreases the auray)the resulting method is only �rst order aurate. This is analogous to our analytialresults for the simpler situation with only one small ell.5.2. Approximation of the Euler equations on irregular grids. In this se-tion we study the performane of the high-resolution h-box method for one-dimensionalEuler equations. The equations an be written in the form (1.1) withq = (�; �u;E); f(q) = (�u; �u2 + p; u(E + p));where �; p; E and u desribe the density, pressure, total energy and the veloity re-spetively. The equation of state has the formE = p � 1 + 12�u2:First we onsider the approximation of a test problem de�ned in Example 5.1 on anirregular grid.Example 5.1. We onsider the numerial approximation of the 1D Euler equa-tions on an irregular grid. The grid ells vary in size between h=10 and h. The initialvalues are suÆiently smooth so that the solution does not develop shoks over thetime interval onsidered. Reeting boundary onditions are imposed on the left andright boundary. The omputational domain is the interval [0; 1℄. Our initial valuesare �(x; 0) = 1 + 0:4 sin��2 + x�� ; u(x; 0) = 0:25� (x � 0:5)2; p(x; 0) = 1The ratio of spei� heats is set to  = 1:4.In Figure 5.4 we show numerial results for the approximation of Example 5.1using our new high-resolution h-box method. A onvergene study for density atdi�erent time steps is shown in Table 5.1. Here we ompare the numerial solutionfor density on a sequene of irregular grids to a highly resolved referene solution
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Fig. 5.4. Numerial results of density and pressure for Example 5.1 on an irregular grid(h = 0:02). The solid line shows a highly resolved referene solution alulated on a regular grid.t=0.2 t = 0.4 t = 0.6 t = 0.8 t = 1h/EOC L1 error of density (unlimited method)0.02 1.1229d-4 1.544d-4 3.4573d-4 5.9017d-4 0.00140.01 2.9567d-5 4.2550d-5 9.4628d-5 1.7825d-4 4.2628d-4EOC 1.92 1.86 1.87 1.73 1.720.005 7.7282d-6 1.1786d-5 2.5092d-5 5.1242d-5 1.3381d-4EOC 1.94 1.89 1.91 1.80 1.67h/EOC L1 error of density (using minmod limiter)0.02 1.6893d-4 2.0212d-4 3.1620d-4 5.2083d-4 0.00120.01 5.6937d-5 6.5761d-5 1.1105d-4 1.9282d-4 3.6960d-4EOC 1.57 1.62 1.51 1.46 1.700.005 1.6357d-5 2.1260d-5 4.5036d-5 7.6802d-5 1.2018d-4EOC 1.80 1.63 1.30 1.33 1.62Table 5.1Convergene study for Example 5.1. L1-error of density at di�erent times as well as theexperimental order of onvergene (EOC) are shown. For this smooth test problem, we show resultsfor the unlimited seond order h-box method as well as the limited h-box method using a minmodlimiter.that was alulated on a regular spaed grid. We show results for both the unlimitedseond order h-box method and a version using the minmod limiter. Next we onsiderthe approximation of a shok wave with the Euler equations.Example 5.2. We onsider the 1D Euler equations with initial values on theinterval [0; 1℄ that have onstant density � = 1 and onstant pressure p = 1. Theveloity is set to u = 1 for x < 0:5 and u = �1 for x > 0:5. The ratio of spei� heatsis  = 1:05. The exat solution of this problem onsists of two symmetri shok wavesthat are propagating outwards. We use an irregular grid with grid ells that may besmaller than h = 0:01 on the left half of the interval. For x > 0:5 the grid is regularwith mesh length 4x = 0:01. We use time steps that orrespond to CFLh � 0:9.Figure 5.5 shows numerial results of Example 5.2 for the high-resolution h-boxmethod based on the linear interpolation formula. Our numerial results in (a) showthat the limiters desribed in Setion 3.3 an suppress spurious osillations near thedisontinuity. The approximation of the shok wave that is moving into the region ofthe irregular grid is in good agreement with the symmetri shok wave that is movinginto the regular part of the grid. On the irregular grid the shok is smeared out over



16 M.J. BERGER, C. HELZEL AND R.J. LEVEQUEmore grid ells than on the regular grid. The reason for this more smeared out shokpro�le is that a jump in the onserved quantities an inuene several h-box values.In Figure 5.5 (b) we show the results obtained by the seond order method withoutlimiters.
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Fig. 5.5. Approximation of Example 5.2 on a grid that is irregular for x < 0:5 and regularfor x > 0:5. (a) plot of density with limiters, (b) plot of density without limiters. The solid lineindiates the exat solution.6. Approximation of transoni rarefation waves. In this setion we pointout that h-box methods an ause numerial diÆulties in the approximation of tran-soni rarefation waves that do not appear for standard Godunov-type methods onregular or irregular spaed grids. To see this we �rst onsider the approximation ofBurgers' equation ��tq + ��x �12q2� = 0 (6.1)with initial values q(x; 0) = � �0:5 : x � 0:50:5 : x > 0:5on an irregular grid. The �rst order aurate uxes at ell interfaes an be alulatedby using the exat formula, i.e.Fi� 12 = 8<: minQLi� 12�q�QRi� 12 f(q) : QLi� 12 � QRi� 12maxQRi� 12�q�QLi� 12 f(q) : QRi� 12 � QLi� 12 ;with the ux f(q) = 12q2. Figure 6.1 (a) demonstrates that this method produesunphysial osillations around the soni point. Note that in this setion we onlyuse �rst order aurate methods, to isolate this phenomena from the ux limitingproedure. The numerial problem an be avoided by using the Lax-Friedrihs ux,whih has at the interfae xk� 12 the formFk� 12 = 12�f(QLk� 12 ) + f(QRk� 12 )�+ h24t�QLk� 12 �QRk� 12 �:See Figure 6.1 (b) for numerial results. The same e�et an also be observed in theapproximation of a transoni rarefation wave for the Euler equations. To see this
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Fig. 6.1. Approximation of a transoni rarefation wave solution for Burgers' equation on anirregular grid. (a) h-box method based on Godunov ux, (b) h-box method based on Lax-Friedrihsux.we onsider a typial shok tube problem for whih the solution onsists of a rightmoving shok wave, a ontat disontinuity and a left moving transoni rarefationwave. For the numerial approximation we used a Roe Riemann solver with standardentropy �x for transoni rarefation waves. The results of this alulation are shownin Figure 6.2. The numerial solution shows some osillations around the soni point,see Figure 6.2 (b) for a loser view of the region around the soni point. If the uxesat the ell interfaes are again alulated by the Lax-Friedrihs method this numerialproblem does not arise, see Figure 6.3.
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Fig. 6.2. Approximation of a shok tube problem for the Euler equations. (a) plot of densityobtained by �rst order Roe solver with entropy �x, (b) zoom of density around soni point.
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Fig. 6.3. Approximation of a shok tube problem for the Euler equations. (a) plot of densityobtained by Lax-Friedrihs method, (b) zoom of density around soni point.



18 M.J. BERGER, C. HELZEL AND R.J. LEVEQUEIn the preprint [2℄ of this paper, we studied the entropy onsisteny of the h-box method for the approximation of Burgers' equation. For the h-box method withGodunov ux, we showed that a disrete entropy inequality is satis�ed away from sonipoints. This implies that the numerial solution onverges to the entropy onsistentweak solution of the onservation law. We showed that this disrete entropy inequalityan be violated at a soni point. While this does not give us any predition whetherthe method is entropy onsistent or not at the soni point, it is interesting to notethat this is exatly the ase were the h-box method leads to numerial diÆulties.We plan to further investigate the entropy onsisteny of h-box methods in order todevelop an `entropy-�x' that is less dissipative than the Lax-Friedrihs method andthat an be extended to a high-resolution method.7. Higher-dimensional irregular grid alulations. Now we will onsidertwo dimensional systems of onservation laws in the form��tq(x; y; t) + ��xf(q(x; y; t)) + ��yg(q(x; y; t)) = 0: (7.1)The simplest way to extend a one dimensional method for onservation laws to mul-tidimensional problems is to use dimension splitting. Equation (7.1) would be ap-proximated by solving one dimensional subproblems in an alternating way. The high-resolution one-dimensional h-box method ould be used in eah substep.Instead of using a dimensional splitting approah, we will here develop a two-dimensional h-box method that is based on the multidimensional wave propagationalgorithm [17℄, [18℄. We assume that the reader is familiar with the two dimensionalwave propagation algorithm and with the notation used below. As a �rst step in thisapproah we solve one-dimensional Riemann problems normal to eah ell interfae.Based on formula (3.6), whih desribes the one-dimensional h-box method, we obtainQn+1ij = Qnij +4upij= Qnij � 4t4xi �A+4Q̂i�12 ;j +A�4Q̂i+ 12 ;j + f(QLi+ 12 ;j)� f(QRi� 12 ;j)�� 4t4yj �B+4Q̂i;j� 12 + B�4Q̂i;j+ 12 + g(QLi;j+ 12 )� g(QRi;j� 12 )� (7.2)The method (7.2) is stable for time steps that satisfy CFLh � 12 . Seond orderorretion terms of the form (3.8) an be inluded in x as well as in y diretion, whihleads to a method of the formQn+1ij = Qnij +4upij � 4t4xi �F̂ 2i+ 12 ;j � F̂ 2i� 12 ;j�+ 4t4yj �Ĝ2i;j+ 12 � Ĝ2i;j� 12 � : (7.3)The seond order orretion terms are again obtained by using the waves and speedsalulated from solving Riemann problems de�ned by h-box values. Limiters are usedin exatly the same form as desribed earlier for the 1D ase.In addition to uxes in the normal diretion, the multidimensional wave propaga-tion algorithm also alulates waves that are moving in a transverse diretion. For theusual wave propagation sheme one hasQLi+ 12 ;j = QRi� 12 ;j and QLi;j+ 12 = QRi;j� 12 . In thisase the transverse propagation of waves an be obtained by a deomposition of theux di�erenes A�4Q, B�4Q into transverse utuations. For the h-box method



H-BOX METHODS FOR CONSERVATION LAWS ON IRREGULAR GRIDS 19this transverse propagation has to be modi�ed. In order to explain the transversepropagation we onsider the 2D advetion equation��tq(x; y; t) + a ��xq(x; y; t) + b ��y q(x; y; t) = 0; a; b > 0:Assuming �rst that 4xi = h and 4yj � h, the hange of the ell average of theonserved quantity q in grid ell (i; j) due to the �rst order update in the x diretionhas the form � 4t4xiA+4Qi� 12 ;j = �4th a(Qni;j �Qni�1;j): (7.4)Sine we assume that the advetion speed a in the x-diretion is positive, there is nowave that moves into this ell from the right ell interfae. Furthermore, the di�erenef(QLi+ 12 ;j) � f(QRi� 12 ;j) vanishes in the ase 4xi = h. In the 2D ase a part of theright-moving ux di�erene A+4Q should a�et other grid ells. This is indiatedin Figure 7.1. The shaded regions indiate the inuene of the jump Qij � Qi�1;j(initially loated at the left ell interfae) due to the solution of the Riemann problemin the normal diretion. In a multidimensional method the solution of the Riemannproblem at the interfae xi� 12 should not only a�et the ell average of the onservedquantities in the grid ell (i�1; j) and (i; j). It should also have an e�et on grid ellsin the tangential diretion. In the situation shown in (a), the triangular portion of the
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Fig. 7.1. Di�erent possibilities for transverse propagation of a right-moving wave for the ad-vetion equation on a non-uniform Cartesian grid.wave desribes the fration that should a�et the grid ell (i; j + 1). The transversepropagation of the wave onsidered in Figure 7.1 (a) should hange the ell averageof the onserved quantity in grid ell (i; j) by the amount(4t)24xi4yj 12bA+4Qi�12 ;j = (4t)24xi4yj 12B+A+4Qi� 12 ;j :The hange of the ell average of the onserved quantity in ell (i; j + 1) due to thetransverse propagation of this wave has the form� (4t)24xi4yj+1 12B+A+4Qi� 12 ;j :The notation B�A�4Q was introdued in [18℄ to desribe transverse propagations ofleft and right moving ux di�erenes. For the wave propagation algorithm with time



20 M.J. BERGER, C. HELZEL AND R.J. LEVEQUEstep restrition CFL � 1 the transverse propagation has always the triangular formdepited in Figure 7.1 (a), even if the grid is irregular. Sine the transverse propa-gation approximates terms that are needed in order to obtain seond order auray,we inlude those terms into the seond order orretion terms used in Equation (7.3).The up-going ux di�erene B+A+4Qi�12 ontributes to the ~G term in the form ofan update Ĝ2i;j+ 12 := Ĝ2i;j+ 12 � 12 4t4xiB+A+4Qi� 12 ;jFor our h-box method we have to extend the transverse propagation to allowalso wave propagation of other forms, for instane those shown in (b) or (). Forthe situation shown in Figure 7.1 (b) the update of the ux ~G due to the transversepropagation has the formĜ2i;j+ 12 := Ĝ2i;j+ 12 � 4t� 124yj=bb4t4xi 4yjB+A+4Qi� 12 ;j :In the situation shown in (), the transverse propagation of A+4Qi� 12 ;j leads to anupdate of Ĝ2i;j+ 12 as well as Ĝ2i;j+ 32 , depending on the fration of the wave onsidered.As demonstrated in these examples, simple geometri routines an be used to alu-late the fration of the waves that determine the hange of the ell average of theonserved quantity due to the transverse propagation. Note that the wave speed inthe normal diretion (i.e. a in our example) is present in the utuations A�4Q. Inorder to alulate the transverse propagations no other information from the stru-ture of the Riemann problem in the normal diretion is needed. Therefore, even for asystem of onservation laws, we only have to deompose the left and right-moving uxdi�erenes, instead of deomposing eah wave resulting from the Riemann problem inthe normal diretion separately.So far we have assumed that 4xi = h. If 4xi < h, we want to use the one-dimensional h-box method in order to alulate the uxes in the normal diretion.The transverse propagation will take a very similar form as disussed above. Now weould interpret the grid ells (i; j), (i; j+1) shown in Figure 7.1 as h-boxes onstrutedat the interfae xi� 12 . The transverse propagation of waves should again depend onthe fration of the wave that moves through the h-box onsidered. This an bealulated in exatly the same way as desribed above for the ase 4xi = h. Inorder to obtain the orret anellation property needed for a stable update, we haveto inlude the terms f(QLi+ 12 ;j) and f(QRi� 12 ;j) that arise in Equation (7.2) into ourtransverse propagation. Motivated by equations (2.1), (2.2) we do this by applyingan update of the form A+4Qi� 12 ;j := A+4Qi� 12 ;j � f(QRi� 12 )A�4Qi� 12 ;j := A�4Qi� 12 ;j + f(QLi� 12 )before we alulate the hange of the uxes Ĝ2. For our example of the advetionequation with positive advetion speeds, this update of A�4Q has the e�et thatA�4Q is no longer equal to zero. Moreover, the fration of the wave that is prop-agated in the transverse diretion only depends on the size of the grid ells and thespeed b. Therefore, our transverse propagation has the e�et that a fration of theupdate used in Equation (7.3) is propagated in the transverse diretion. The update,



H-BOX METHODS FOR CONSERVATION LAWS ON IRREGULAR GRIDS 21whih desribes the wave propagation in the x diretion was already onstruted tobe of the order O(4x) with 4x � h. Our transverse propagation allows that at mosta fration of magnitude O(4y) (4y � h) is propagated in the transverse diretion.(See for instane Figure 7.1 ().) Therefore, our transverse propagation satis�es theanellation property. The transverse propagation of B+4Q also has to be inludedin an analogous way. By inluding the transverse propagation into our 2D h-boxmethod, we obtain stability for time steps that satisfy the ondition CFLh � 1.A transverse propagation of the seond order orretion (3.8) an be inludedinto the transverse propagation in the same form as it was disussed for the wavepropagation algorithm in [18℄. This further inreases the auray of the method. Itwas used in our test alulations below.We now demonstrate the performane of our 2D high-resolution h-box methodfor the approximation of the advetion equation. We will ompare the numerialresults obtained for this h-box sheme with results obtained using the standard high-resolution lawpak algorithm for irregular grid alulations. The latter methodrequires the time step restrition CFL � 1, while the h-box method is stable for timesteps that satisfy CFLh � 1. We �rst study the auray for the two dimensionaladvetion equation.Example 7.1. We onsider the approximation of the advetion equation qt+qx+qy = 0, with initial values q(x; y; 0) = sin(2�x) os(2�y) on the domain [0; 1℄� [0; 1℄.We impose periodi boundary onditions. The grid ontains two lines as well as twoolumns of grid ells with height respetively width 0:1h and 0:9h. All other grid ellshave the size h� h. See Figure 7.2 (a) for a plot of a fration of the grid.Test alulations for Example 7.1 on�rm that the h-box method leads to seondorder aurate approximations also in this multidimensional appliation. In Figure7.2 (d) we doument the experimental order of onvergene of the h-box methodin both the L1-norm (depited by o-symbols) as well as in the maximum norm (+-symbols). For this grid, inauraies near the small ells would be displayed in themaximum norm rather than the L1-norm. However, in both norms the experimentalorder of onvergene is about 2. The results for the h-box method ompare wellwith numerial results obtained with the standard wave propagation algorithm withappropriate modi�ations that allow the approximation on a nonuniform grid. Bothshemes onverge with seond order, but the error is slightly smaller if we use theh-box method. This is due to the numerial visosity, sine the time step restritionCFL � 0:9 for the wave propagation algorithm leads away from the small ell to timesteps that orrespond to CFL � 0:1.Our two-dimensional h-box method an be extended to systems of onservationlaws in the same way as the standard wave propagation algorithm. The modi�ationsdesribed above now have to be applied to eah wave resulting from the deompositionof the left- respetively right-going ux di�erenes into up- and down-going waves.In our last example we onsider the approximation of a two dimensional Riemannproblem for the Euler equations, as studied in [27℄ . This same example was onsideredin [18℄, where results of lawpak alulations on a uniform grid are shown. Theinitial values are pieewise onstant in four quadrants and the solution of eah singleRiemann problem is a shok wave. Due to the interation a omplex solution strutureis obtained. For this alulation we have, in addition to the regular grid ells of thesize h � h, 10 lines and 10 olumns with height respetively width varying between0:1h and 0:9h. Our solution on a nonuniform grid alulated by the high-resolutionh-box method with h = 0:005 ompares well with those obtained on a regular grid,



22 M.J. BERGER, C. HELZEL AND R.J. LEVEQUE

(a) 0.3 0.35 0.4 0.45 0.5

0.3

0.35

0.4

0.45

0.5

Fraction of two−dimensional grid (h=0.02)

(b) 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Contour plot of solution at time t=1 (h=0.01)

() 10
−3

10
−2

10
−1

10
−4

10
−3

10
−2

10
−1

h

L 1 e
rr

or
 (

oo
o)

, M
ax

 e
rr

or
 (

+
+

+
)

EOC = 2.00
EOC = 2.00

(d) 10
−3

10
−2

10
−1

10
−5

10
−4

10
−3

10
−2

h
L 1 e

rr
or

 (
oo

o)
, M

ax
 e

rr
or

 (
+

+
+

)

EOC = 2.19
EOC = 2.09

Fig. 7.2. Approximation of Example 7.1. (a) The grid for a disretization with h = 0:02, (b)ontour plot of the solution using the two-dimensional h-box approah with h = 0:01 and CFLh � 0:9,() onvergene study for irregular grid lawpak algorithm, CFL � 0:9, (d) onvergene study forh-box method, CFLh � 0:9. (o-symbol: error in L1-norm, +-symbol: error in maximum norm)see Figure 7.3. The shok waves are equally well approximated with both methods.Slight di�erenes are only visible at the unstable ontat lines, whih are very sensitiveto the numerial method, see also [18℄ were it was shown that di�erent limiters havea quite large impat on the approximation.
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Fig. 7.3. (a) Contour plot of density obtained by the high-resolution wave propagation algorithmon a uniform grid with h = 0:005, (b) ontour plot of density obtained with high-resolution h-boxmethod, h = 0:005. We used the monotonized entered limiter.



H-BOX METHODS FOR CONSERVATION LAWS ON IRREGULAR GRIDS 23Conlusions. We studied high-resolution h-box methods for the approximationof hyperboli systems of onservation laws on irregular grids and showed that thede�nition of the h-box values is important in order to onstrut aurate shemes. Inforthoming work we will use this to onstrut a new two-dimensional high-resolutionh-box sheme for the approximation of onservation laws with embedded irregularboundaries. So far there is no Cartesian grid embedded boundary method that leadsto a seond order aurate approximation at boundary ells. Further work will alsoonentrate on the entropy onsisteny of h-box methods and the approximation oftransoni rarefation waves.Appendix A. Stability of the seond order h-box method. In this ap-pendix we prove the stability of the seond order h-box sheme for qt = qx usinglinear interpolation aording to the theory of Gustafsson, Kreiss and Sundstrom [11℄(heneforth GKS). We treat the small ell with mesh width �h as a boundary ondi-tion for the Lax-Wendro� sheme applied on either side of the small ell, using thenotation of Figure A.1. Here the onserved quantity assigned to the right h-box at
x� 12 x 12V�2 V�1 V0U0 U1 U2

h �h
x 32x� 32V�2 V�1 W U1 U2

Fig. A.1. Notation for GKS stability, with one small ell in the middle.the interfae x� 12 is denoted by V0. The left h-box value at the interfae x 12 is U0.The derivation of the stability ondition for the update of the small ell is similar tothose used in Berger [1℄, where stability for shemes with loal grid re�nement wasanalyzed.Both U and V are omputed using the seond order Lax-Wendro� sheme,Un+1j = Unj + �=2(Unj+1 � Unj�1) + �2=2(Unj+1 � 2Unj + Unj�1); j � 1;V n+1j = V nj + �=2(V nj+1 � V nj�1) + �2=2(V nj+1 � 2V nj + V nj�1); j � �1; (A.1)with � = 4th . Using the approah of [1℄, we look for solutions of the formUnj = ��jzn; j�j � 1 j = 1; 2; : : :V nj = �� jzn; j� j � 1 j = �1;�2; : : : : (A.2)With this numbering, for l2 solutions the root � of the harateristi equation forU on the right side has magnitude less than 1, and � has magnitude greater than 1.Roughly speaking, the sheme is unstable if and only if there are l2 solutions satisfyingthe interpolation onditions with growth in time jzj > 1.



24 M.J. BERGER, C. HELZEL AND R.J. LEVEQUEThe linear interpolation onditions (3.3) give usU0 = 1� �1 + � V�1 + 2�1 + �W; V0 = 1� �1 + � U1 + 2�1 + �W (A.3)where the small ell, labeled W above, satis�es the \small-ell" version of Lax-Wendro�,Wn+1 =Wn + �t�h �U0 + U12 + �t2h (U1 � U0)� V0 + V�12 � �t2h (V0 � V�1)� : (A.4)The harateristi equation forW isWn = ŵzn. We normalize the equations and takeŵ = 1. Substituting the harateristi roots for U; V into the interpolation onditions(A.3) gives � = 1� �1 + ����1 + 2�1 + �; � = 1� �1 + ��� + 2�1 + �: (A.5)Equation (A.5) is easily solved for � and �, giving� = 2� �1 + �+ (1� �)��1�(1 + �)2 � (1� �)2���1 ; � = 2� (1 + �+ (1� �)�)(1 + �)2 � (1� �)2���1 : (A.6)Substitution of the resolvent equations for U and V into (A.4) givesz = 1 + �2� ��(1 + �) + ��(�� 1)� �(1 + ��1)� ��(1� ��1)� : (A.7)We use (A.5) to replae � and � in terms of ���1 and ��. Also, for a given meshwidth h on both the left and right, it is easily seen that the produt of the roots �and � are �� = ��1�+1 , so ��1 an be replaed using �. Thus, (A.7) simpli�es toz = 1� 2�21 + � + �(1 + �)1 + � �(�+ �) (A.8)We all this root ondition for the stability of the small ell sheme with Lax-Wendro�.If there are roots z with jzj > 1 and �; ��1 with magnitude less than or equal to 1,satisfying (A.8) then by the GKS theory, the sheme is unstable. Conversely, if thereare no suh roots, the sheme is stable. As in [1℄, we will use the maximum prinipleto redue the range of values we need to hek for stability.To see that the maximum priniple applies, we will show that the right hand sideof (A.8), all it f(z), has no singularities for jzj � 1 and is bounded as z !1. Firstnote that f(z) = (1� 2�21+� ) + �(1+�)1+� �(� + �) has no branh points for jzj � 1. Thisis beause the roots �; � satisfy the Lax Wendro� harateristi equation for (A.1),z = 1 + �2 (� � ��1) + �22 (� � 2 + ��1) (A.9)whih lead to a quadrati equation for � with roots�1;2 = z � 1 + �2 �p(z � 1)2 + �2(2z � 1)�(� + 1) (A.10)One of the roots is always inside the unit irle, the other one is outside the unitirle, see [11℄, Lemma 6.1. The root inside the unit irle is the root we all � above,� is the root that is outside the unit irle.



H-BOX METHODS FOR CONSERVATION LAWS ON IRREGULAR GRIDS 25The square root term of (A.10) is zero only for z = 1� �, whih being inside theunit irle is outside the region of interest, so there are no branh points for jzj > 1.Also, note from (A.10) that as z !1, the root � grows like 2z�2+� , so the root � growslike �(��1)2z , whih is learly bounded for large z. So the maximum priniple applies.Thus f(z) attains its maximum value on the irle jzj = 1. The next step thenis to examine the magnitude of f(z) for values of z on the unit irle. Sine we anonly show analytially that f(z) � 1 for � > :5, we instead evaluate f(z) numerially,for 0 � � � 1, and 0 < � � 1, on the unit irle for z = ei�; 0 � � � 2�. Figure A.2shows the lous of values of f(z), where the unit irle is also drawn. As the �gure
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Fig. A.2. Lous of values of f(z) for jzj = 1; all values lie inside or on the unit irle.and some algebra shows, only for z = 1; � = 0; and z = �1; � = 1, does z = f(z).Examining the �rst value z = 1 = f(z), we have � = 0, or equivalently �t = 0,so Qn+1 = Qn (with Q 2 fU; V;Wg), learly a stable solution. For the other ase,we have z = �1 = f(z), whose only solution (again using some numerial evaluationand some algebra) is � = 1; � = 0. But � = 0 orresponds to the usual Lax-Wendro�sheme without the small ell, and � = 1 for this ase is straight opying of thesolution (� = 0; � = �1). Again this is stable.Sine Lax Wendro� is a seond order method, the use of linear interpolation withO(h2) error on a lower dimensional set of points is reasonable. However, one mightonsider the use of quadrati interpolation for U0; V0. The next question is whatstenil to use for the quadrati interpolant. Using the notation of Figure A.1, onemight onsider using the same interpolant based on V�1; W and U1 to get both U0and V0. However this hoie redues the stability region to � < :5. If instead theinterpolant for U0 uses the surrounding points V�1 and W , and the third point isalways the upwind point V�2, full stability for a Courant number of � � 1 is retainedfor all small ells with 0 < � < 1. REFERENCES[1℄ M.J. Berger. Stability of interfaes with mesh re�nement. Math. Comp., 45:301{318, 1985.[2℄ M.J. Berger, C. Helzel, and R.J. LeVeque. h-box methods for the approximation of hyperbolionservation laws on irregular grids. Preprint 2002-022, Conservation law preprint server,http://www.math.ntnu.no/onservation/2002/.[3℄ M.J. Berger and R.J. LeVeque. An adaptive Cartesian mesh algorithm for the Euler equationsin arbitrary geometries. AIAA paper AIAA-89-1930, pages 305{311, 1989.[4℄ M.J. Berger and R.J. LeVeque. Cartesian meshes and adaptive mesh re�nement for hyper-
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