Lecture 0: Introduction

Fernando Diaz
Microsoft Research NYC

September 7, 2014
Information Retrieval

given a query and a corpus, find relevant documents.
Information Retrieval

given a **query** and a **corpus**, find **relevant documents**.

- **query**: user’s expression of the information need
Information Retrieval

given a **query** and a **corpus**, find **relevant documents**.

- **query**: user’s expression of the information need
- **corpus**: the repository of retrievable items
given a **query** and a **corpus**, find **relevant documents**.

- **query**: user’s expression of the information need
- **corpus**: the repository of retrievable items
- **relevance**: satisfaction of the information need
Examples of Information Retrieval Problems

Web Search

given a **keyword** and a **web crawl**, find **relevant URLs**.
Examples of Information Retrieval Problems

Image Search

given a keyword and image database, find relevant images.
Examples of Information Retrieval Problems

Question Answering

given a question and available text, rules, logic, find an answer.
Examples of Information Retrieval Problems

Job Search

given a resume and job advertisements, find relevant jobs.
Examples of Information Retrieval Problems

Applicant Search

given a advertisement and resumes, find good candidates.
History

• **1950s**: early information work in problem definition, metrics.

• **1960s**: Gerard Salton begins work on SMART; Cranfield evaluation method defined.

• **1970s**: information retrieval research community developed (SIGIR); many fundamental concepts proposed (e.g. cluster-based retrieval, pseudo-relevance feedback).

• **1980s**: development of first commercial information retrieval systems.

• **1990s**: TREC conferences begin, standardizing evaluation; web search engines developed, using many fundamental IR techniques.
Text REtrieval Conference (TREC)

• Started in 1992 as a forum to compare IR systems using standard test collections, ensuring reproducibility.
• Initially focused on ad hoc retrieval (keyword search), the scope has broadened to include multi-lingual retrieval, legal retrieval, and question answering.
• Allowed for accelerated comparison and testing of algorithmic changes across systems.
• Resulted in similar forums in Europe (CLEF), Asia (NTCIR), and India (FIRE).
IR ≠ DB

<table>
<thead>
<tr>
<th></th>
<th>DB</th>
<th>IR</th>
</tr>
</thead>
<tbody>
<tr>
<td>data fields</td>
<td>structured</td>
<td>semi-structured</td>
</tr>
<tr>
<td>queries</td>
<td>clear semantics</td>
<td>free text</td>
</tr>
<tr>
<td>matching</td>
<td>structured</td>
<td>free text</td>
</tr>
<tr>
<td>ranking</td>
<td>exact</td>
<td>imprecise</td>
</tr>
<tr>
<td></td>
<td>none</td>
<td>important</td>
</tr>
</tbody>
</table>

Based on a table by James Allan
Fundamental Problems in Information Retrieval Research

- **Effectiveness**: how well does the system satisfy the user’s information need?
 - algorithms
 - interaction
 - evaluation

- **Efficiency**: how efficiently does the system satisfy the user’s information need?
 - indexing architectures
 - fast score computation
 - evaluation
Effectiveness

term importance: which words are important when ranking a document (e.g. frequent vs. discriminative words)?

stemming: how to collapse words which are morphologically equivalent (e.g. bicycles → bicycle)

query expansion: how to collapse words which are semantically equivalent (e.g. bicycles → bicycle)

document structure: do matches in different parts of the document matter (e.g. title vs. body match)?

personalization: can we exploit user information to improve ranking?
Effectiveness

interaction

- relevance feedback: ask a user which documents are relevant
- disambiguation: how to ask a user which words are important
Effectiveness evaluation

- relevance: how to define a good document
- metrics: how to measure if the ranking is good
- comparison: how to compare two systems
Efficiency
indexing architectures

- parsing: how should a document be split into a set of terms?
- indexing: which words should be kept?
- weighting: what information needs to be stored with terms?
- compression: how to compress the index size?
Efficiency
fast score computation

• inverted indices: fast retrieval and scoring of short queries.
• tiering: can we tier retrieval and ranking to improve performance?
• branch and bound: how to efficiently prevent scoring unnecessary documents?
Modeling

• information retrieval often involves formally modeling the retrieval process in order to optimize performance.

• modeling tasks
 • abstractly represent the documents
 • abstractly represent the queries
 • model the relationship between query and document representations
Modeling
Boolean Retrieval Model

- represent each document as an unweighted bag of words.
- represent the query as an unweighted bag of words.
- retrieve an unordered set of documents containing the query words.
Modeling
Simple Ranked Retrieval Model

• represent each document as an weighted bag of words (based on document frequency).
• represent the query as an unweighted bag of words.
• retrieve a ranking documents containing the query words.
Modeling

- much of the history of information retrieval effectiveness research involves developing new models or extending existing models.
- as modeling becomes more complicated, mathematics and statistics become necessary.
- new models still being developed.
• **Hypothesis**: Incorporating feature x will improve performance.
Information Retrieval Research

• **Hypothesis:** Incorporating feature x will improve performance.
 • how to come up with new features (hypotheses)?
 • how to measure performance?
• **Hypothesis:** Incorporating feature x will improve performance.
 • how to come up with new features (hypotheses)?
 • how to measure performance?
• **Experiment:** Compare performance using feature x to a strong baseline.
• **Hypothesis:** Incorporating feature x will improve performance.
 • how to come up with new features (hypotheses)?
 • how to measure performance?

• **Experiment:** Compare performance using feature x to a strong baseline.
 • what is a strong baseline?
 • how to compare?
Search Engines: Information Retrieval in Practice

• **Lecture 1: Evaluation**
 - What are the core offline relevance metrics?
 - What are the core online relevance metrics?

• **Lecture 2: Ranking**
 - What are the core signals for ranking web pages?
 - What are the core algorithms for combining signals?