
Generational Reference Counting: A Reduced-Communication 
Distributed Storage Reclamation Scheme 

Benjamin Goldberg 
Department of Computer Science 

New York University 
251 Mercer Street 

New York, NY 10012 

Abstract 

This paper describes generational reference 
counting, a new distributed storage reclamation 
scheme for loosely-coupled multiprocessors. It has a 
significantly lower communication overhead than dis- 
tributed versions of conventional reference counting. 
Although generational reference counting has greater 
computational and space requirements than ordinary 
reference counting, it may provide a significant sav- 
ing in overall execution time on machines in which 
message passing is expensive. 

The communication overhead for generational ref- 
erence counting is one message for each copy of an in- 
terprocessor reference (pointer). Unlike conventional 
reference counting, when a reference to an object is 
copied no message is sent to the processor on which 
the object lies. A message is sent only when a refer- 
ence is discarded. Unfortunately, generational refer- 
ence counting shares conventional reference counting’s 
inability to reclaim cyclical structures. 

In this paper, we present the generational reference 
counting algorithm, prove it correct, and discuss some 
refinements that make it more efficient. We also com- 
pare it with weighted reference counting, another dis- 
tributed reference counting scheme described in the 
literature. 

1 Introduction 

The emergence of LISP and functional language im- 
plementations for multiprocessors has encouraged the 

Permission to copy without fee all or part of this material is granted provided that 
the copies are not made or distributed for direct commercial advantage, the ACM 
copyright notice and the title of the publication aqd its date appear, and notice is 
given that copying is by permission of the Association for Computing Machinery. 
To copy otherwise, or to republish. requires a fee and/or specific permission. 
0 1989 ACM O-8979 I -306-X/89/0006/03 13 I I SO 

study of efficient distributed methods for storage 
reclamation. New reclamation algorithms are es- 
pecially important for loosely-coupled (distributed 
memory) multiprocessors in which each processor is 
responsible for allocating and reclaiming structures 
residing in its local memory. The reclamation schemes 
that were suitable for uniprocessors must be altered to 
work on loosely-coupled multiprocessors. Additional 
message passing and synchronization is generally re- 
quired to maintain the correctness of these schemes. 

Many current loosely-coupled multiprocessors have 
a very large communication cost associated with send- 
ing a message. Each message may consume hundreds 
or even thousands of processor cycles. For many dis- 
tributed algorithms, it is worth sacrificing space and 
computation in order to avoid communication. 

In this paper we present a distributed storage recla- 
mation algorithm that makes such a sacrifice. The 
algorithm, called generational reference counting 
or GRC, is based on the conventional reference count- 
ing scheme. Although it has somewhat greater storage 
and computational requirements then reference count- 
ing, GRC has one-third the communication overhead 
of distributed reference counting. 

The GRC algorithm was developed independently 
of the work on weighted reference counts[3,17] and 
has similar properties, namely a communication over- 
head of one message per interprocessor reference and 
extra space associated with each reference. 

The relative merits of reference counting versus 
garbage collection have been well argued (see [5] for 
a survey of the field). A method based on reference 
counting is of interest to us for the usual reasons: 

0 It is incremental: Storage reclamation occurs 
throughout the computation. The computation 
does not have to be interrupted for a significant 

A preliminary draft of this paper was presented to the 
Fourth Conference on Hypercubes, Concurrent Computers, and 
Applications. 

313 



period of time for storage reclamation to proceed. 
This is especially valuable in real time applica- 
tions. 

l The storage reclamation overhead depends on the 
amount of garbage in the system. This is not 
the case with mark/sweep garbage collection. If 
memory is nearly full (with useful data), garbage 
collection will have to be invoked often and at 
great expense. 

l Reference counting, even in loosely-coupled mul- 
tiprocessors, is relatively simple. This makes 
storage reclamation easier to implement and 
prove correct. 

A number of interesting algorithms based on 
mark/sweep garbage collection have been proposed to 
solve the problems listed above. In particular, these 
algorithms have striven to make mark/sweep garbage 
collection incremental, both for uniprocessor and mul- 
tiprocessor architectures [8,1,5,12,2,13]. These algo- 
rithms, however, have tended to be rather complex 
and require elaborate proofs of correctness. In addi- 
tion, some incremental mark/sweep garbage collection 
schemes require at least two concurrent processes, a 
mutator and a collector. In current loosely-coupled 
multiprocessors, both of these processes would have 
to be implemented (via context-switching) by each 
processor in the system. 

We find distributed reference counting especially at- 
tractive for its simplicity. The disadvantage of refer- 
ence counting is that it cannot collect cyclical struc- 
tures. Although the algorithm we present in this pa- 
per has the same problem, the modifications that have 
been proposed [9,4,6] for reclaiming cyclical structures 
using uniprocessor reference counting are also applica- 
ble to generational reference counting (with the con- 
comitant loss of simplicity). 

2 Distributed Reference 
Counting 

Distributed reference counting is a simple extension 
to uniprocessor reference counting in which the each 
object o keeps count of the number of outstanding 
references (pointers) to it. When a reference to o 
(which we will refer to as an o-reference after [IS]) is 
copied, o’s reference count is incremented. When an 
o-reference is discarded, o’s reference count is decre- 
mented. If o’s reference count becomes zero, then o is 
garbage and can be reclaimed. 

On a loosely-coupled system, the creation of a new 
o-reference on a remote processor requires that a mes- 
sage be sent to o in order to increment o’s refer- 

ence count. Likewise, if a remote reference is dis- 
carded then a decrement message must be sent. How- 
ever, this simple extension of reference counting does 
not preserve the correctness of uniprocessor reference 
counting. It is possible for an object to be reclaimed 
while references to it still exist. 

Suppose an object o resides on a processor P, and 
the only o-reference p resides on a remote processor 
PP. In this case o’s reference count will be one. Now 
suppose that p is copied to create a new o-reference q 
that resides on a third processor Pp. When p is copied, 
Pp sends an increment message, call it IP, to PO. At 
some point after q arrives at Pq, q will be discarded. 
When q is discarded, Pq sends a decrement message 
D, to PO. Likewise, a decrement message D, will 
eventually be sent to PO when p is discarded. The 
following two scenarios result in o’s reference count 
being prematurely set to zero. 

If q is discarded soon after being created, D, may 
arrive at PO before Ip, even though IP was sent 
first. A decrement is performed on o’s reference 
count making its value zero even though p still 
exists. 

If p is discarded soon after q is created, Dp could 
arrive before IP . This can only happen in systems 
in which messages do not necessarily arrive in the 
order in which they are sent. This would result in 
o’s reference count being set to zero even though 
Q still exists. 

A solution to these problems was published in [16]. 
The protocol described in that paper is as follows: 

l In order to solve the second problem listed above, 
the protocol assumes that the architecture pre- 
serves the order of messages sent by each proces- 
sor. That is, if two messages are sent from pro 
cessor Pi to processor Pj, they will arrive at Pj 
in the order in which Pi sent them. This assump- 
tion can be enforced either if the system provides 
fixed routing of messages or if messages have tags 
that indicate the order in which they are sent. 

l When p is copied, Pp sends a create message to 
P, indicating that a new o-reference has been cre- 
ated. When q is created on P4, Pq sends an ac- 
knowledge message to PO. Later, when q is dis- 
carded, Pq sends a delete message to PO (notice 
that the delete message cannot be received before 
the acknowledge message). 

The object o keeps track of the number of create, 
acknowledge, and delete messages it receives and 
is only reclaimed when an equal number of each 
has been received. 

314 



While this protocol does provide a correct dis- 
tributed reference counting scheme, it requires an 
overhead of three messages per interprocessor refer- 
ence. 

2.1 Weighted Reference Counts 

Weighted Reference Counting (WRC) is a distributed 
reference counting scheme recently presented in [3] 
and [17] (although Watson&Watson attribute it to 
[18]) in which only one message is required for each 
interprocessor reference. The WRC scheme associates 
a weight with each reference such that the sum of the 
weights of all references to an object is a constant. 
Each reference must have an extra field that contains 
the weight of the reference. The scheme works as fol- 
lows: 

l When an object o is created, its reference count 
is initially set to some value w. The weight field 
of the original o-reference also is set to w. 

l Each time a reference is copied, the new reference 
takes half of the weight of the old reference. That 
is, when a reference p with a weight m is copied 
to form a reference q, then the weight of each of 
p and q becomes m/2. In this way the sum of the 
weights of all references to a given object is w. 

l When an o-reference is discarded, a delete mes- 
sage containing the weight of the deleted refer- 
ence is sent to o. This weight is subtracted from 
o’s reference count. When o’s reference count be- 
comes zero, o can be reclaimed. 

2.2 Implementation Issues 

A significant improvement (described in[3],[17])in the 
space efficiency of the WRC scheme comes from ob- 
serving that a reference’s weight is always a power of 
two. Thus, instead of storing the whole weight of a 
reference, the log of the weight can be stored. When a 
delete message containing such a value is received by 
the object, it must be converted to the actual value 
(by a simple shift) before being subtracted from the 
object’s reference count. This provides an important 
reduction in the space on each reference required to 
store its weight. 

In the WRC scheme, the weight of a reference can 
underflow if it has a weight of one and is copied. When 
a reference a, which points to an object o, has a weight 
of one and is copied to form a reference b, an indirec- 
tion pointer i is created to point to the o. This indi- 
rection pointer includes a reference count field (just 
like other objects) initialized to w. Both a and b are 
modified to point to i and are assigned weights of w/2 

each. Thus, a and b (and any of their descendants) 
access o through i, using an extra level of indirec- 
tion. When any of these references are discarded, the 
delete messages are sent to i and i’s reference count 
is reduced appropriately. When i’s reference count 
becomes zero a delete message containing a weight of 
one (a’s original weight) is sent to the object. 

An unfortunate aspect of the use of an indirection 
pointer is that a reference, its indirection pointer, and 
the object may reside on different processors. If so, 
accessing the object would require an extra message. 
In section 4.2 we describe how this can be avoided 
(but only at the price of extra space). 

3 Generational Reference 
Counting 

Generational reference counting (GRC) was devel- 
oped independently of WRC and has similar commu- 
nication performance. CRC is a reference counting 
scheme in which each each reference has a genera- 
tion associated with it. The original reference to an 
object o is a zero generation reference, any reference 
copied from the original reference is a first generation 
reference, and so on. In general, any copy of an ith 
generation reference is an (i + 1) generation reference. 
(We use the notation G; as shorthand for the phrase 
“ith generation”) 

Each object o contains a table, called a ledger, 
which keeps track of the number of outstanding o- 
references of each generation. If o’s ledger indicates 
that there are no outstanding o-references of any gen- 
eration then o can be reclaimed. 

3.1 The GRC Algorithm 

Each o-reference contains two additional fields: a gen- 
eration field and a count field. The generation field 
identifies the generation of the reference and the count 
field records the number of references copied from this 
particular reference. 

The ledger contained in each object o is an array 
of integers. The ith element of the array contains 
information about the number of outstanding Gi o- 
references. 

Generational reference counting is performed as fol- 
lows: 

l When an object o is created on processor PO, the 
initial o-reference p is initialized as follows: 

p-generation := 0 
p.count := 0 

and o’s ledger is initialized as follows: 

315 



o.ledger[O] := 1 
o.ledgerCil := 0, for all i 2 1 

l When an o-reference p is copied the new reference 
q is initialized as follows: 

q.generation := p.generation + I 
q.count := 0 

In addition, p.count is incremented: 

p. count := p.count + 1 

l When an o-reference p is discarded, a discard 
message is sent to o containing the values of 
p. generation and p. count. 

l When a discard message to o is received, in which 
the generation field has the value i and the count 
field has the value c, the following actions are 
performed: 

o.ledger[i] := o.ledger[i] - 1 
o. ledger Ci + 11 := o.ledgerCi+ 11 t c 

When every element of the ledger becomes zero 
(for all i 2 0, o.ledger[i] = 0), o can be reclaimed. 

Notice that some elements of the ledger may hold neg- 
ative values. This can occur when discard messages 
for Gcd+r) references are received before discard mes- 
sages for the Gi references. In this case the (i + 1)th 
element of the ledger might be negative. We prove be- 
low that GRC is correct for any order in which discard 
messages are received. 

3.2 Correctness Proof 

In order to show that the GRC algorithm is correct, 
we need to prove two things: 

l If o.ledger[i] = 0, for all i 2 0, then o can be 
reclaimed. 

l If a discard message for every o-reference has 
been received, then o.ledger[i] = 0 for all i > 0. 

These properties must be independent of the order in 
which the discard messages are received. 

Lemma 1 After all Gi o-references have been dis- 
carded, the sum of the counts in their discard messages 
is equal to the total number of G(i+l) o-references cre- 
ated. 

This follows easily from the following observations 
about each Gi reference p. 

l Each time p is copied in order to create a Gci+l) 
reference, p’s count is incremented. Since p’s 
count was initialized to 0, p’s count represents 
the number of Gi+l references created from p. 

l A discard message for p is only sent when p is 
discarded and no more copies can be made from 
p. Therefore the count in p’s discard message 
gives an accurate count of the Gci+i) references 
copied from p. 

l A G(i+l) reference can only be created by copying 
a Gi reference. 

Lemma 2 When a discard message for every o- 
reference has been received, o can be reclaimed. 

A discard message for an o-reference p is sent only 
when p is discarded. Therefore, if a discard message 
for every reference has been received then all refer- 
ences must have been discarded and o can be safely 
reclaimed. 

Lemma 3 At any point during the lifetime of o, for 
each i 1 0 

o.ledger[i] = C(i-l) - Ni 

where C(i-1) is the sum of the counts in the discard 
messages received for G(i-1) o-references and Ni is 
the number of discard messages received for Gi o- 
references. 

This follows directly from the GRC algorithm. Each 
time a discard message for a Gciql) o-reference is re- 
ceived, o.ledger[i] is increased by the count contained 
in the message. Each time a discard message for a Gi 
o-reference is received, o.ledger[i] is decremented by 
one. 

Theorem 1 Ifo.ledger[i]= 0 for all i 2 0 then a dis- 
card message has been received from every o-reference. 

We proceed by induction on the generation i of each 
o-reference: 

A discard message must have been received 
from the Gs (original) o-reference in order for 
o.ledger[O] to be zero. A discard message from 
any other o-reference cannot affect the value of 
o.ledger[O] and the value of o.ledger[O] was ini- 
tially one. 

Assuming that a discard message for each Gi ref- 
erence, 0 5 i 5 Jc, has been received, we must 
show that a discard message for every G(k+l) ref- 
erence has also been received. 

Since o.ledger[k+l] = 0, the number of discard 
messages received for Gck+i) references is equal 
to the sum of the counts received in discard mes- 
sages for Gk references (by lemma 3). And, since 
discard messages for all Gk references have been 
received, the sum of their counts is the total num- 
ber of generation G(k+l) created (by lemma 1). 

316 



Therefore, discard messages for all Gck+i) refer- 
ences have been received. 

Theorem 2 If discard messages for all references 
have been received, then o.ledger[i] = 0 for all i >_ 0. 

We prove the contrapositive: If there is a j 2 0 
such that o.ledger[j]# 0 then there is a o-reference 
for which a discard message has not been received. 

If o.ledger[O]# 0 then a discard message from the 
Go reference has not been received. The effect of re- 
ceiving a discard message from the Ge reference is to 
decrement o.ledger[O] to zero. 

Otherwise, if there exists a j > 0 such that 
o.ledgerb]# 0 then there two possibilities: 

l If o.ledgerlj]< 0 then (by lemma 3) the number 
of discard messages received for Gj references is 
greater then the sum of the counts in discard mes- 
sages for GO-1) references. By lemma 1, there 
must be at least one G(iB1> reference for which a 
discard message has not been received. 

l If o.ledger[j]> 0 then (by lemma 3) the sum of the 
counts in discard messages for Gcjml) references 
is greater then the number of discard messages for 
Gj references. By lemma 1, there must be at least 
one Gj reference for which a discard message has 
not been received. 

Theorems 1 and 2, along with lemma 2, prove the 
correctness of the GRC algorithm. 

3.3 Implementation Issues 

Just as weighted references are susceptible to under- 
flow in the WRC scheme, references and ledgers can 
overflow in the GRC scheme. In this section, we de- 
scribe how such overflow can be handled. 

In a ledger, the field associated with a particular 
generation may overflow. In addition, the number of 
generations of references may exceed the number of 
fields in the ledger. In either case, more space must 
be found to increase the number of generation fields 
or to increase the size of each generation field. Several 
alternatives are possible, including: 

l If the ledger is sufficiently large, it can be over- 
written with the address of a new, larger ledger. 
When a discard message arrives, the new ledger 
is accessed through the old ledger using a level of 
indirection. 

l Rather than allocate a whole new ledger, new 
space is allocated to serve as an extension of the 
old ledger. If the number of reference generations 
has overflowed, then the new extension will con- 
tain additional generation fields of the same size. 

If the count field for a generation has overflowed, 
the ledger will have to be restructured so that to 
gether the ledger and the extension contain the 
same number of fields as before, with each field 
being larger. The extension would reside in a 
hash table and be found by hashing the address 
of the object (similar to the Deutsch & Bobrow 
scheme [7] described in section 5.2). 

In both cases, the new ledger would need a tag to indi- 
cate how the old ledger was extended (either number 
or size of generation fields). Likewise, the object must 
contain a bit to indicate that its ledger had been ex- 
tended. 

A similar method can be used to handle overflow 
of the generation or count fields of a reference. The 
reference can be overwritten to point to an indirection 
pointer with larger generation and/or count fields. 
Unlike WRC, this indirection pointer will always be 
on the same processor as the reference, thus adding 
no extra communication overhead. Alternatively, a 
larger generation field and/or count field can be stored 
in a hash table, hashed on the address of the reference. 

4 Comparing WRC and GRC 

4.1 Space Efficiency 

Weighted reference counting appears significantly 
more space-efficient than generational reference 
counting. We examine the number of references that 
can be supported if n bits are associated with an ob- 
ject in each scheme. 

In WRC, a n bit reference count allows a total 
weight of 2”. This allows there to be at most 2n 
references (each with a weight of 1). It would be ex- 
tremely unlikely, however, that the reference weights 
would be distributed so evenly (An analytical study 
of the average number of reference copies that will be 
made before an indirection pointer is required is be- 
yond the scope of this paper), In the worst case, a 
single pointer would be copied many times, limiting 
the number of references to n. A reference’s weight 
field always occupies log n bits. 

It is much more difficult to analyze the number of 
references that can be created using an n bit ledger in 
the GRC scheme. There are several reasons for this 
difficulty: 

l Whether a particular field of the ledger overflows 
or not may depend on the order of arrival of dis- 
card messages. By lemma 3, even if the num- 
ber of ith generation references created ia great,er 
than can be stored in the it.11 field of the ledger, 
overflow will occur only if the difference between 

317 



the sum of the counts in the (i - 1) generation 
discard messages and the number of ith genera- 
tion discard messages is too large to store in the 
ith field of the ledger. 

l The size of the count field in a reference does 
not necessarily depend on the size of the fields in 
the ledger. It may be reasonable for the count 
field in a reference to be smaller than each fieId 
of the ledger because the ledger stores the total 
number of known references of each generation. 
On the other hand, a discard message containing 
a count too large for the corresponding ledger 
field may not necessarily overflow the ledger, for 
the reason mentioned above. In this case, it may 
be reasonable to give a reference a larger count 
field than in the ledger. 

l The number of generation fields may be chosen 
according to the language, program, or applica- 
tion being executed. If there are g fields, then 
each field will be n/g bits wide (Again, an ana- 
lytical study of the expected number of genera- 
tions and number of references per generation is 
beyond the scope of this paper). The choice of g 
depends on the expected width (i.e. number of 
times each reference is copied) and the expected 
depth (i.e. length of a chain of copies) of refer- 
ence copying. 

Assuming that discard messages will arrive in the 
worst possible order, a ledger containing g fields of 
n/g bits each (with each field able to store values be- 
tween -2(“/g)-l and 2(nlg)-1) can record the creation 
of approximately g * Z(*/g)-i references at best with- 
out overflowing. Although dependent on g, this is 
substantially less than the best (but unlikely) case for 
WRC. In the worst case the ledger will overflow when 
MIN(g, 2(“lS)-l) references are created, when either 
the number of generations or the count within a gener- 
ation overflows. Again, this is smaller than the worst 
case for WRC. 

The space efficiency advantage that WRC holds 
over GRC is perhaps the strongest argument for using 
WRC. If, however, communication costs is of much 
greater concern, GRC may be preferable for reasons 
discussed in the next section. 

4.2 Communication Efficiency 

The GRC scheme always has a communication over- 
head of at most one message per interprocessor refer- 
ence. This is independent of whether or not a genera- 
tion or count field had to be extended in a reference or 
ledger. In the WRC scheme, unless indirection point- 
ers are required to handle underflow, the communica- 

tion overhead is also one message per interprocessor 
reference. 

If indirection pointers are used in the WRC scheme, 
two messages may be required to access an object, 
one to the indirection pointer containing the address 
of the object and one to the object itself. If reduc- 
ing the communication overhead of storage reclama- 
tion is the overriding concern of the implementor, the 
GRC scheme may prove preferable. However, given 
the space efficiency advantage of WRC, it may be 
sufficient to assign each object a large enough weight 
such that the chances of requiring indirection pointers 
are slim. 

Notice that reference weight underflow in WRC can 
be handled in the same manner as overflow in GRC 
(although this hasn’t been discussed in the WRC liter- 
ature). Extra space can be allocated for a reference’s 
weight when underflow occurs. A reference’s weight 
will still be 2”, but now negative values of n can be 
stored. When the object receives a delete message 
containing a negative exponent, the reference count 
field must be extended to the appropriate precision. 
This would avoid the extra communication of the in- 
direction pointer scheme. 

5 Refinements to the GRC 
Scheme 

The following modifications to the GRC algorithm can 
be used to reduce its communication and memory re- 
quirements. These refinements can just as easily be 
applied to the WRC scheme. 

5.1 Using escape information 

To further reduce the communication requirements of 
GRC, we enlist the support of the compiler in order 
to determine when a discard message can be avoided. 
The compiler technique that we will rely on to im- 
prove the performance of GRC is called escape anal- 
ysis. There have been several papers [14,10,15] writ- 
ten on the techniques for performing escape analysis 
and thus we will concentrate on applying it to gener- 
ational reference counting. Our use of escape analysis 
for storage reclamation is related to (although more 
general than) the call-graph reclamation scheme pre- 
sented in [ll,lO]. 

Traditionally, escape analysis has been used to de- 
termine when an object is returned (“escapes”) from 
the procedure in which it was created. For exam- 
ple, escape analysis has been used [15] to determine if 
the extent (lifetime) of a closure (e.g. the result of a 
lambda expression in LISP) exceeds the extent of its 

318 



defining procedure. This is useful in deciding whether 
the closure must be allocated in the heap or may be 
allocated on the stack. 

This same analysis can be applied to determining if 
the lifetime of a reference exceeds the lifetime of the 
reference it was copied from. We first need to define 
some terms: 

A reference p is a descendant of a reference q if p 
was copied from q or if p was copied from another 
descendant of q. If so, then q is said to be an ancestor 
of p. A reference q is said to have a greater eztent, 
or lifetime, then a descendant p if and only if q is 
discarded after p. If a reference p has a greater lifetime 
then all of its descendants, then we say p is dominant. 

The compiler, via escape analysis, can in many 
cases determine which references are dominant. We 
are interested in this information for the following rea- 
son: If a reference p is dominant, then no discard mes- 
sage should be sent for any descendant of p. This is 
because p’s descendants will have already been dis- 
carded by the time p is. The referenced object can 
remain unaware of the fact that p’s descendants were 
ever created and discarded. Of course, if p is domi- 
nated by another reference, then no discard message 
should be sent for p. 

We modify the GRC algorithm to use the escape 
information provided by the compiler. The modifi- 
cation consists of initializing a dominated reference’s 
generation field to -1 to indicate that it is dominated 
by another reference. When a dominated reference is 
discarded, no discard message is sent. 

When a reference p is copied to create a new refer- 
ence q, one of the following occurs: 

l If the compiler has determined that p is domi- 
nant, then the generation field of q is initialized 
to -1 and the count field is left uninitialized (to 
save an instruction). 

l If p’s generation field is -1 then q’s generation 
field is initialized to -1. By definition, a descen- 
dant of a dominated reference p is also domi- 
nated. 

l Otherwise, p is not (detectably) dominated and 
q’s generation and count fields are initialized ac- 
cording to the GRC algorithm presented in sec- 
tion 3.1. The count field of p is incremented as 
usual. 

When a reference p is discarded, one of the following 
actions are performed: 

l If p’s generation field is -1, then no action is per- 
formed. 

l Otherwise, a discard message is sent as specified 
by the GRC algorithm. If p happened to be domi- 

nant (and not dominated) then its count field will 
have remained at zero. 

In this way, no discard message is sent by any (de- 
tectably) dominated reference. While we lack any 
empirical evidence on the savings gained from this 
refinement of the GRC algorithm, we suspect it may 
be substantial. 

Escape information can be exploited in WRC in a 
similar manner. A dominating reference would sim- 
ply not share its weight with any of its copies. The 
dominated copies (and their descendants) would be 
given a zero weight and would not report their dis- 
cards to the object. In order to give a zero weight to 
a reference, an extra bit is required (since a reference’s 
weight normally must be a power of two). 

We are still engaged in finding an effective algo- 
rithm for performing escape analysis to determine 
which references are dominant. We hope to describe 
such an algorithm in a future paper. 

5.2 Using Multiple Reference Tables 

In order to reduce the space requirements of unipro- 
cessor reference counting, Deutsch & Bobrow[7] de- 
scribed a scheme using hash tables to store the refer- 
ence counts of only those objects that have multiple 
outstanding references. The reference count for each 
multiply referenced object resides in a multiple refer- 
ence table or MRT. Those objects that do not have 
reference counts in the MRT are assumed to have a 
reference count of one. 

Each object contains an extra bit that is used to 
indicate whether a reference count for that object is 
contained in the MRT. Initially, that bit is set to zero 
to indicate that no reference count exists for the new 
object. When a reference to an object o is copied, one 
of the following actions is performed: 

If no reference count for o exists in the MRT then 
a new element, hashed on the address of o, is 
placed in the MRT. This new element contains a 
reference count whose value is two. 

If o’s reference count does exist in the MRT, then 
that reference count is incremented. 

When a reference to o is discarded, one of the fol- 
lowing actions is performed: 

l If o’s reference count exists in the MRT then the 
reference count is decremented. If the new value 
of the reference count is one then the reference 
count is removed from the MRT. 

l If no reference count exists for o in the MRT then 
o can be reclaimed. 

319 



This scheme can be modified to work with gener- 
ational reference counting. An MRT is used to hold 
ledgers for those objects whose original (0th genera- 
tion) reference was copied. Once an object’s ledger is 
created in the MRT, it remains there until the object 
is reclaimed. This is because there is no way to tell if 
only one remaining reference to an object exists. 

The algorithm is as follows. Each object is created 
with a single extra bit that indicates whether a ledger 
exists for that object in the MRT (initially this bit is 
zero). When a discard message arrives for an object 
o one of the following actions are performed: 

l If no ledger exists for o in the MRT and the gen- 
eration and count fields of the discard message 
are both zero (indicating that the original refer- 
ence was discarded without being copied) then o 
is reclaimed. 

l If no ledger exists for o in the MRT and either the 
generation or count field of the discard message 
is non-zero, then a ledger is created in the MRT 
for o and the appropriate fields of the ledger are 
initialized according to the GRC algorithm. The 
extra bit in o is modified to indicate that a ledger 
for o exists in the MRT. 

l Otherwise, if a ledger exists for o in the MRT, 
then the ledger is modified according to the GRC 
algorithm. If all of the elements of the ledger are 
zero then o can be reclaimed. 

In this way, only those objects that have had multiple 
references will have a ledger. 

It may be worthwhile to use a similar method for 
references. Those references that have been copied 
and need to support generational reference counting 
could have their generation and count fields contained 
in a hash table similar to the MRT. Thus each refer- 
ence p would contain a single bit that would be set if 
the p is copied or if p had been copied from another 
reference. When a reference is discarded, if the bit 
is zero then a discard message with generation and 
count fields set to zero is sent. Otherwise, the appro- 
priate generation and count values for the reference 
are found in the reference table and are sent in a dis- 
card message. 

The Deutsch and Bobrow method can be used in 
the WRC scheme by allocating an object’s weighted 
reference count in the MRT only if a discard message 
is received containing a weight less than the original 
weight w. An object with no reference count field is 
assumed to have a reference count of w. 

6 Conclusion 

We have presented a distributed storage reclamation 
scheme based on reference counting that has signifi- 
cantly lower communication overhead than the multi- 
processor extension of conventional reference count- 
ing. A price is paid, both in computational and 
space complexity, for the reduction in communica- 
tion. Whether this price is worth paying depends on 
the communication behavior of a particular machine. 
Experimental evidence is needed to determine if gen- 
erational reference counting is feasible. 

In addition, it is not clear if there is any advantage 
to using the generational reference counting scheme 
instead of the weighted reference counting scheme. 
Weighted reference counting appears to be more space 
efficient, although further analytical and experimen- 
tal study is required to fully understand the behavior 
of each scheme. 

References 

PI 

PI 

PI 

VI 

PI 

PI 

PI 

PI 

H.G. Baker, Jr. List processing in real time on 
a serial computer. CACM, 21(4):280-294, April 
1978. 

M. Ben-Ari. Algorithms for on-the-fly garbage 
collection. Trans. on Prog. Lang. and Sys., 
6(3):333-344, July 1974. 

D.I. Bevan. Distributed garbage collection using 
reference counting. In PARLE Parallel Archi- 
tectures and Languages Europe, pages 176-187, 
Springer-Verlag LNCS 259, June 1987. 

D.R. Brownbridge. Cyclic reference counting 
for combinator machines. In Functional Pro- 
gramming Languages and Computer Architec- 
ture, pages 273-288, Springer-Verlag LNCS 201, 
September 1985. 

J. Cohen. Garbage collection of linked data 
structures. Computing Surveys, 13(3):341-367, 
September 1981. 

A. Deb. Parallel garbage collection for graph ma- 
chines. In Proceedings of the Santa Fe Workshop 
on Graph Reduction, pages 252-264, Springer- 
Verlag LNCS 279, September 1986. 

L.P. Deutsch and D.G. Bobrow. An efficient in- 
cremental automatic garbage collector. CA CM, 
19(9):522-526, September 1976. 

E.W. Dijkstra, L. Lamport, A.J. Martin, and 
E.M.F. Steffens. On-the-fly garbage collection: 

320 



an exercise in cooperation. Commun. ACM, 
21(11):966-975, November 1978. 

[9] D.P. Friedman and D.S. Wise. Reference count- 
ing can manage the circular environments of mu- 
tual recursion. 1nf. Process. Lett., 8(1):921-930, 
January 1979. 

[lo] P. Hudak. Cull-graph reclamation: an atterna- 
tive storage reclamation scheme. AMPS Techni- 
cal Memorandum 4, Dept. of Computer Science, 
University of Utah, August 1981. 

[ll] P. Hudak. Object and Tusk Reclamation in Dis- 
tributed Applicative Processing Systems. PhD 
thesis, University of Utah, July 1982. 

[12] P. Hudak and R.M. Keller. Garbage collec- 
tion and task deletion in distributed applicative 
processing systems. In Proc. 1982 ACM Conf. 
on LISP and Functional Prog., pages 168-178, 
ACM, August 1982. 

[13] J. Hughes. A distributed garbage collection 
algorithm. In Functional Programming Lan- 
guages and Computer Architecture, pages 256- 
272, Springer-Verlag LNCS 201, September 1985. 

[14] R.J.M. Hughes. Backward Analysis of Func- 
tional Programs. Technical Report, Glasgow 
University, 1988. 

.5] D. Kranz, R. Kelsey, J. Rees, P. Hudak, J. 
Philbin, and N. Adams. Orbit: an optimizing 
compiler for Scheme. In SIGPLAN ‘86 Sympo- 
sium on Compiler Construction, pages 219-233, 
ACM, June 1986. Published as SIGPLAN No- 
tices Vol. 21, No. 7, July 1986. 

[16] Claus-Werner Lermen and Dieter Maurer. A 
protocol for distributed reference counting. In 
Proc. 1986 ACM Conference on Lisp and 
Functional Programming, pages 343-350, ACM 
SIGPLAN/SIGACT/SIGART, Cambridge, Mas- 
sachusetts, August 1986. 

[17] Paul Watson and Ian Watson. An effieient 
garbage collection scheme for parallel computer 
architectures. In PARLE Parallel Architectures 
and Languages Europe, pages 432-443, Springer- 
Verlag LNCS 259, June 1987. 

[18] K-S. Weng. An Abstract Implementation for a 
Generalized Dataflow Language. 
MIT/LCS/TR 228, M assachusetts Institute of 
Technology, Laboratory for Computer Science, 
1979. 

321 


