Lecture 6
Theory of Real Approximation

Chee Yap

Courant Institute of Mathematical Sciences
New York University
Overview

What is the computational foundation of EGC? It is really a theory of real computation. We will introduce the basic elements of such a theory. We prove a transfer theorem that locates the central problem that must be solved in exact real computation.

• 0. Review

• I. Basics of Real Approximation

• II. Numerical Computational Model

• III. Transfer theorem
0. REVIEW
I. TOWARDS A THEORY OF REAL COMPUTATION
Dilemma of Real Computation

- **Standard Complexity Theory**
 - Turing machines, countable domain
 - Does not work for uncountable domain!
 - Whiteboard Aside: Describe simple Turing machines

- **Smale:**
 - “There is not even a formal definition of algorithm in Numerical Analysis.” [BCSS, p.23]
 - “Towards resolving the problem [conflict between continuous and discrete] we are led to .. allow real numbers as inputs” [BCSS, p.23]
Dilemma of Real Computation

- **Standard Complexity Theory**
 - Turing machines, countable domain
 - Does not work for uncountable domain!
 - Whiteboard Aside: Describe simple Turing machines

- **Smale:**
 - “There is not even a formal definition of algorithm in Numerical Analysis.” [BCSS, p.23]
 - “Towards resolving the problem [conflict between continuous and discrete] we are led to .. allow real numbers as inputs” [BCSS, p.23]
Dilemma of Real Computation

- **Standard Complexity Theory**
 - Turing machines, countable domain
 - Does not work for uncountable domain!
 - Whiteboard Aside: Describe simple Turing machines

- **Smale:**
 - “There is not even a formal definition of algorithm in Numerical Analysis.” [BCSS, p.23]
 - “Towards resolving the problem [conflict between continuous and discrete] we are led to .. allow real numbers as inputs” [BCSS, p.23]
Dilemma of Real Computation

- Standard Complexity Theory
 - Turing machines, countable domain
 - Does not work for uncountable domain!
 - Whiteboard Aside: Describe simple Turing machines

- Smale:
 - “There is not even a formal definition of algorithm in Numerical Analysis.” [BCSS, p.23]
 - “Towards resolving the problem [conflict between continuous and discrete] we are led to .. allow real numbers as inputs” [BCSS, p.23]
Two Approaches to Real Computation

- Algebraic Approach (Smale, et al)
 - Real numbers are directly represented as atomic objects, and can be compared without error
 - Algebraic operators can be carried out without error
 - Whiteboard Aside: Straightline model augmented with loops and access to infinite array

- Analytic Approach (Weihrauch, etc)
 - Real numbers are represented by Cauchy sequences
 - Whiteboard Aside: Extend Turing machines to input and output infinite sequences
Two Approaches to Real Computation

- **Algebraic Approach (Smale, et al)**
 - Real numbers are directly represented as atomic objects, and can be compared without error
 - Algebraic operators can be carried out without error
 - Whiteboard Aside: Straightline model augmented with loops and access to infinite array

- **Analytic Approach (Weihrauch, etc)**
 - Real numbers are represented by Cauchy sequences
 - Whiteboard Aside: Extend Turing machines to input and output infinite sequences
Two Approaches to Real Computation

- **Algebraic Approach (Smale, et al)**
 - Real numbers are directly represented as atomic objects, and can be compared without error
 - Algebraic operators can be carried out without error
 - Whiteboard Aside: Straightline model augmented with loops and access to infinite array

- **Analytic Approach (Weihrauch, etc)**
 - Real numbers are represented by Cauchy sequences
 - Whiteboard Aside: Extend Turing machines to input and output infinite sequences
Two Approaches to Real Computation

- Algebraic Approach (Smale, et al)
 - Real numbers are directly represented as atomic objects, and can be compared without error
 - Algebraic operators can be carried out without error
 - Whiteboard Aside: Straightline model augmented with loops and access to infinite array

- Analytic Approach (Weihrauch, etc)
 - Real numbers are represented by Cauchy sequences
 - Whiteboard Aside: Extend Turing machines to input and output infinite sequences
Two Approaches to Real Computation

- **Algebraic Approach (Smale, et al)**
 * Real numbers are directly represented as atomic objects, and can be compared without error
 * Algebraic operators can be carried out without error
 * Whiteboard Aside: Straightline model augmented with loops and access to infinite array

- **Analytic Approach (Weihrauch, etc)**
 * Real numbers are represented by Cauchy sequences
 * Whiteboard Aside: Extend Turing machines to input and output infinite sequences
• Criticisms (see [Weihrauch] or [Traub])
 * Real numbers are arbitrarily complex

What about the analytic approach?

• Problems from our viewpoint:
 * Zero Problem is trivial in Algebraic Approach
 * Zero Problem is undecidable in Analytic Approach
• Criticisms (see [Weihrauch] or [Traub])
 * Real numbers are arbitrarily complex
 What about the analytic approach?

• Problems from our viewpoint:
 * Zero Problem is trivial in Algebraic Approach
 * Zero Problem is undecidable in Analytic Approach
• Criticisms (see [Weihrauch] or [Traub])
 ∗ Real numbers are arbitrarily complex

What about the analytic approach?

• Problems from our viewpoint:
 ∗ Zero Problem is trivial in Algebraic Approach
 ∗ Zero Problem is undecidable in Analytic Approach
How We Solve Numerical Problems??

- E.g., Solving PDE model, Numerical Optimization Problem, etc

- **STEP A:**
 - Design an ideal Algorithm A
 - Assume certain operations such as $\pm, \times, \exp()$

- **STEP B:**
 - Implements Algorithm A as a Numerical Program B
 - Accounts for numerical representation, errors, etc
How We Solve Numerical Problems??

• E.g., Solving PDE model, Numerical Optimization Problem, etc

• STEP A:
 * Design an ideal Algorithm A
 * Assume certain operations such as $\pm, \times, \exp()$

• STEP B:
 * Implements Algorithm A as a Numerical Program B
 * Accounts for numerical representation, errors, etc
How We Solve Numerical Problems?

- E.g., Solving PDE model, Numerical Optimization Problem, etc

- **STEP A:**
 - Design an ideal Algorithm A
 - Assume certain operations such as $\pm, \times, \exp()$

- **STEP B:**
 - Implements Algorithm A as a Numerical Program B
 - Accounts for numerical representation, errors, etc
How We Solve Numerical Problems??

- E.g., Solving PDE model, Numerical Optimization Problem, etc

- **STEP A:**
 - Design an ideal Algorithm A
 - Assume certain operations such as $\pm, \times, \exp()$

- **STEP B:**
 - Implements Algorithm A as a Numerical Program B
 - Accounts for numerical representation, errors, etc
How We Solve Numerical Problems??

• E.g., Solving PDE model, Numerical Optimization Problem, etc

• **STEP A:**
 ∗ Design an ideal Algorithm A
 ∗ Assume certain operations such as $\pm, \times, \exp()$

• **STEP B:**
 ∗ Implements Algorithm A as a Numerical Program B
 ∗ Accounts for numerical representation, errors, etc
How We Solve Numerical Problems??

- E.g., Solving PDE model, Numerical Optimization Problem, etc

- **STEP A:**
 - Design an ideal Algorithm A
 - Assume certain operations such as $\pm, \times, \exp()$

- **STEP B:**
 - Implements Algorithm A as a Numerical Program B
 - Accounts for numerical representation, errors, etc
How We Solve Numerical Problems??

- E.g., Solving PDE model, Numerical Optimization Problem, etc

- STEP A:
 - Design an ideal Algorithm A
 - Assume certain operations such as \pm, \times, $\exp()$

- STEP B:
 - Implements Algorithm A as a Numerical Program B
 - Accounts for numerical representation, errors, etc
How We Solve Numerical Problems??

- E.g., Solving PDE model, Numerical Optimization Problem, etc

- **STEP A:**
 - Design an ideal Algorithm A
 - Assume certain operations such as $\pm, \times, \exp()$

- **STEP B:**
 - Implements Algorithm A as a Numerical Program B
 - Accounts for numerical representation, errors, etc
What is the Abstract View?

- **Step A:**
 - Algorithm A belongs to an Algebraic Model (e.g., BSS)
 - Basis $\Omega = \{\pm, \times, \exp(), \ldots\}$

- **Step B:**
 - Program B belongs to ...?
 - See below – numerical pointer machines

- **Critical Questions:**
 - Can Algorithm A be implemented by some Program B?
 - Wanted: a Transfer Theorem!
What is the Abstract View?

• Step A:
 ✴ Algorithm A belongs to an Algebraic Model (e.g., BSS)
 ✴ Basis $\Omega = \{\pm, \times, \exp(), \ldots\}$

• Step B:
 ✴ Program B belongs to ...?
 ✴ See below – numerical pointer machines

• Critical Questions:
 ✴ Can Algorithm A be implemented by some Program B?
 ✴ Wanted: a Transfer Theorem!
What is the Abstract View?

• **Step A:**
 - Algorithm A belongs to an Algebraic Model (e.g., BSS)
 - Basis $\Omega = \{\pm, \times, \exp(), \ldots\}$

• **Step B:**
 - Program B belongs to ...?
 - See below – numerical pointer machines

• **Critical Questions:**
 - Can Algorithm A be implemented by some Program B?
 - Wanted: a Transfer Theorem!
What is the Abstract View?

- **Step A:**
 - Algorithm A belongs to an Algebraic Model (e.g., BSS)
 - Basis $\Omega = \{\pm, \times, \exp(), \ldots\}$

- **Step B:**
 - Program B belongs to ...?
 - See below – numerical pointer machines

- **Critical Questions:**
 - Can Algorithm A be implemented by some Program B?
 - Wanted: a Transfer Theorem!
What is the Abstract View?

- **Step A:**
 - Algorithm A belongs to an Algebraic Model (e.g., BSS)
 - Basis $\Omega = \{\pm, \times, \exp(), \ldots\}$

- **Step B:**
 - Program B belongs to ...?
 - See below – numerical pointer machines

- **Critical Questions:**
 - Can Algorithm A be implemented by some Program B?
 - Wanted: a Transfer Theorem!
What is the Abstract View?

• Step A:
 * Algorithm A belongs to an Algebraic Model (e.g., BSS)
 * Basis $\Omega = \{\pm, \times, \exp(), ...\}$

• Step B:
 * Program B belongs to ...?
 * See below – numerical pointer machines

• Critical Questions:
 * Can Algorithm A be implemented by some Program B?
 * Wanted: a Transfer Theorem!
What is the Abstract View?

- **Step A:**
 - Algorithm A belongs to an Algebraic Model (e.g., BSS)
 - Basis $\Omega = \{\pm, \times, \exp(), ...\}$

- **Step B:**
 - Program B belongs to ...?
 - See below – numerical pointer machines

- **Critical Questions:**
 - Can Algorithm A be implemented by some Program B?
 - Wanted: a Transfer Theorem!
What is the Abstract View?

● **Step A:**
 ∗ Algorithm A belongs to an Algebraic Model (e.g., BSS)
 ∗ Basis $\Omega = \{\pm, \times, \exp(), \ldots\}$

● **Step B:**
 ∗ Program B belongs to ...?
 ∗ See below – numerical pointer machines

● **Critical Questions:**
 ∗ **Can Algorithm A be implemented by some Program B?**
 ∗ **Wanted: a Transfer Theorem!**
What is the Abstract View?

● Step A:
 * Algorithm A belongs to an Algebraic Model (e.g., BSS)
 * Basis $\Omega = \{\pm, \times, \exp(), \ldots\}$

● Step B:
 * Program B belongs to ...?
 * See below – numerical pointer machines

● Critical Questions:
 * Can Algorithm A be implemented by some Program B?
 * Wanted: a Transfer Theorem!
What is the Abstract View?

- **Step A:**
 - Algorithm A belongs to an Algebraic Model (e.g., BSS)
 - Basis $\Omega = \{\pm, \times, \exp(), \ldots\}$

- **Step B:**
 - Program B belongs to ...?
 - See below – numerical pointer machines

- **Critical Questions:**
 - Can Algorithm A be implemented by some Program B?
 - Wanted: a Transfer Theorem!
Representable Reals

- Representation of reals is critical starting point
 - cf. Analytic or Algebraic Approaches

- Axioms for the set F of representable reals
 - F is a countable set dense subset of \mathbb{R}
 - F is a ring extension of \mathbb{Z}
 - F can be represented efficiently
 - Comparisons and Ring operations are polynomial-time in this representation

- E.g., F can be taken to be \mathbb{Q} or bigfloats

- PRINCIPLE: all output and input of our
Representable Reals

- Representation of reals is critical starting point
 - cf. Analytic or Algebraic Approaches

- Axioms for the set \mathbb{F} of representable reals
 - \mathbb{F} is a countable set dense subset of \mathbb{R}
 - \mathbb{F} is a ring extension of \mathbb{Z}
 - \mathbb{F} can be represented efficiently
 - Comparisons and Ring operations are polynomial-time in this representation

- E.g., \mathbb{F} can be taken to be \mathbb{Q} or bigfloats

- PRINCIPLE: all output and input of our
Representable Reals

• Representation of reals is critical starting point
 * cf. Analytic or Algebraic Approaches

• Axioms for the set \mathbb{F} of representable reals
 * \mathbb{F} is a countable set dense subset of \mathbb{R}
 * \mathbb{F} is a ring extension of \mathbb{Z}
 * \mathbb{F} can be represented efficiently
 * Comparisons and Ring operations are polynomial-time in this representation

• E.g., \mathbb{F} can be taken to be \mathbb{Q} or bigfloats

• PRINCIPLE: all output and input of our
Representable Reals

• Representation of reals is critical starting point
 * cf. Analytic or Algebraic Approaches

• Axioms for the set \mathbb{F} of representable reals
 * \mathbb{F} is a countable set dense subset of \mathbb{R}
 * \mathbb{F} is a ring extension of \mathbb{Z}
 * \mathbb{F} can be represented efficiently
 * Comparisons and Ring operations are polynomial-time in this representation

• E.g., \mathbb{F} can be taken to be \mathbb{Q} or bigfloats

• PRINCIPLE: all output and input of our
Representable Reals

• Representation of reals is critical starting point
 * cf. Analytic or Algebraic Approaches

• Axioms for the set \mathbb{F} of representable reals
 * \mathbb{F} is a countable set dense subset of \mathbb{R}
 * \mathbb{F} is a ring extension of \mathbb{Z}
 * \mathbb{F} can be represented efficiently
 * Comparisons and Ring operations are polynomial-time in this representation

• E.g., \mathbb{F} can be taken to be \mathbb{Q} or bigfloats

• PRINCIPLE: all output and input of our
Representable Reals

• Representation of reals is critical starting point
 * cf. Analytic or Algebraic Approaches

• Axioms for the set F of representable reals
 * F is a countable set dense subset of \mathbb{R}
 * F is a ring extension of \mathbb{Z}
 * F can be represented efficiently
 * Comparisons and Ring operations are polynomial-time in this representation

• E.g., F can be taken to be \mathbb{Q} or bigfloats

• PRINCIPLE: all output and input of our
Representable Reals

- Representation of reals is critical starting point
 - cf. Analytic or Algebraic Approaches

- Axioms for the set F of representable reals
 - F is a countable set dense subset of \mathbb{R}
 - F is a ring extension of \mathbb{Z}
 - F can be represented efficiently
 - Comparisons and Ring operations are polynomial-time in this representation

- E.g., F can be taken to be \mathbb{Q} or bigfloats

- PRINCIPLE: all output and input of our
Representable Reals

- Representation of reals is critical starting point
 - cf. Analytic or Algebraic Approaches

- Axioms for the set \mathbb{F} of representable reals
 - \mathbb{F} is a countable set dense subset of \mathbb{R}
 - \mathbb{F} is a ring extension of \mathbb{Z}
 - \mathbb{F} can be represented efficiently
 - Comparisons and Ring operations are polynomial-time in this representation

- E.g., \mathbb{F} can be taken to be \mathbb{Q} or bigfloats

- PRINCIPLE: all output and input of our
computation must be representable numbers

* HENCE: We can use Turing machines for our real computations
* HENCE: We can only talk about approximating a real function f
* HENCE: we do not worry about behavior of f at non-representable inputs
* Unlike the analytic or algebraic approach, we deliberately avoid representing all real numbers!
computation must be representable numbers

* HENCE: We can use Turing machines for our real computations
* HENCE: We can only talk about approximating a real function f
* HENCE: we do not worry about behavior of f at non-representable inputs
* Unlike the analytic or algebraic approach, we deliberately avoid representing all real numbers!
NOTATION: given \(f : \mathbb{R} \to \mathbb{R} \)

\begin{itemize}
 \item let \(A_f \) denote any function \(A_f : \mathbb{F} \times \mathbb{F} \to \mathbb{F} \) such that
 \[|A_f(x, p) - f(x)| \leq 2^{-p} \]
 \item let \(R_f \) denote any function \(R_f : \mathbb{F} \times \mathbb{F} \to \mathbb{F} \) such that
 \[|R_f(x, p) - f(x)| \leq 2^{-p} |f(x)| \]
\end{itemize}

DEFINE: a real function \(f \) is absolutely approximable if \(A_f \) is computable by a Turing Machine

\begin{itemize}
 \item Similarly, define relatively approximable if \(R_f \) is computable by a Turing machine
\end{itemize}

DEFINE: \(\text{Zero}(f) = \{ x \in \mathbb{F} : f(x) = 0 \} \)
Theory of Real Approximation

- **NOTATION**: given $f : \mathbb{R} \to \mathbb{R}$
 * let $A f$ denote any function $A f : F \times F \to F$ such that $|A f(x, p) - f(x)| \leq 2^{-p}$
 * let $R f$ denote any function $R f : F \times F \to F$ such that $|R f(x, p) - f(x)| \leq 2^{-p} |f(x)|$

- **DEFINE**: a real function f is **absolutely approximable** if $A f$ is computable by a Turing Machine
 * Similarly, define **relatively approximable** if $R f$ is computable by a Turing machine

- **DEFINE**: $\text{Zero}(f) = \{ x \in F : f(x) = 0 \}$
Theory of Real Approximation

• NOTATION: given $f : \mathbb{R} \to \mathbb{R}$
 * let A_f denote any function $A_f : F \times F \to F$ such that
 $|A_f(x, p) - f(x)| \leq 2^{-p}$
 * let R_f denote any function $R_f : F \times F \to F$ such that
 $|R_f(x, p) - f(x)| \leq 2^{-p}|f(x)|$

• DEFINE: a real function f is absolutely approximable if A_f is computable by a Turing Machine
 * Similarly, define relatively approximable if R_f is computable by a Turing machine

• DEFINE: $Zero(f) = \{x \in F : f(x) = 0\}$
Theory of Real Approximation

• NOTATION: given $f : \mathbb{R} \rightarrow \mathbb{R}$

 * let $A f$ denote any function $A f : F \times F \rightarrow F$ such that
 $$|A f(x, p) - f(x)| \leq 2^{-p}$$

 * let $R f$ denote any function $R f : F \times F \rightarrow F$ such that
 $$|R f(x, p) - f(x)| \leq 2^{-p} |f(x)|$$

• DEFINE: a real function f is absolutely approximable if $A f$ is computable by a Turing Machine

 * Similarly, define relatively approximable if $R f$ is computable by a Turing machine

• DEFINE: $Zero(f) = \{ x \in F : f(x) = 0 \}$
Theory of Real Approximation

- **NOTATION**: given $f : \mathbb{R} \to \mathbb{R}$
 - let $A f$ denote any function $A f : F \times F \to F$ such that $|A f(x, p) - f(x)| \leq 2^{-p}$
 - let $R f$ denote any function $R f : F \times F \to F$ such that $|R f(x, p) - f(x)| \leq 2^{-p}|f(x)|$

- **DEFINE**: a real function f is absolutely approximable if $A f$ is computable by a Turing Machine
 - Similarly, define relatively approximable if $R f$ is computable by a Turing machine

- **DEFINE**: $\text{Zero}(f) = \{x \in F : f(x) = 0\}$
* The Zero Problem for f is to decide the set $\text{Zero}(f)$

- Computation of partial functions
 - We assume that the Turing machine detect undefined inputs
• The Zero Problem for f is to decide the set $\text{Zero}(f)$

• Computation of partial functions
 * We assume that the Turing machine detect undefined inputs
The Zero Problem for f is to decide the set $\text{Zero}(f)$

- **Computation of partial functions**
 - We assume that the Turing machine detect undefined inputs
Basic Properties

• **THEOREM A:**

 ∗ f is relatively approximable iff f is absolutely approximable and $\text{Zero}(f)$ is decidable.

• **THEOREM B:**

 ∗ There is a function f_0 that is absolutely approximable in polynomial time, but f_0 is not relatively approximable.

• **THEOREM C [with C.O’Dunlaing]:**

 ∗ There exist functions g_0, h_0 that are relatively approximable in polynomial time, but $g_0 \circ h_0$ is not absolutely approximable.
Basic Properties

• **THEOREM A:**
 * f is relatively approximable iff f is absolutely approximable and $\text{Zero}(f)$ is decidable.

• **THEOREM B:**
 * There is a function f_0 that is absolutely approximable in polynomial time, but f_0 is not relatively approximable.

• **THEOREM C [with C.O’Dunlaing]:**
 * There exist functions g_0, h_0 that are relatively approximable in polynomial time, but $g_0 \circ h_0$ is not absolutely approximable.
Basic Properties

- **THEOREM A:**
 * f is relatively approximable iff f is absolutely approximable and $\text{Zero}(f)$ is decidable.

- **THEOREM B:**
 * There is a function f_0 that is absolutely approximable in polynomial time, but f_0 is not relatively approximable.

- **THEOREM C [with C.O’Dunlaing]:**
 * There exist functions g_0, h_0 that are relatively approximable in polynomial time, but $g_0 \circ h_0$ is not absolutely approximable.
Basic Properties

- **THEOREM A:**
 * f is relatively approximable iff f is absolutely approximable and $\text{Zero}(f)$ is decidable.

- **THEOREM B:**
 * There is a function f_0 that is absolutely approximable in polynomial time, but f_0 is not relatively approximable.

- **THEOREM C [with C.O’Dunlaing]:**
 * There exist functions g_0, h_0 that are relatively approximable in polynomial time, but $g_0 \circ h_0$ is not absolutely approximable.
• Whiteboard Aside: Do Proofs.
• Whiteboard Aside: Do Proofs.
THEOREM A:

* Let f be relatively approximable. Then $x \in \text{Zero}(f)$ iff $\mathcal{R}f(x, 1) = 0$. Also, $\mathcal{A}f(x, p)$ can be computed by computing $y = \mathcal{R}f(x, 1)$, $z = \lceil \log y \rceil$ and finally set $\mathcal{A}f(x, p) \leftarrow \mathcal{R}f(x, z + p + 1)$.

* Let $\mathcal{A}f$ be computable and $\text{Zero}(f)$ decidable. To compute $\mathcal{R}f(x, p)$, we output 0 iff $x \in \text{Zero}(f)$. Otherwise we compute $\mathcal{A}f(x, i)$ in the ith step, stopping when $\mathcal{A}f(x, i) \geq 2^{-i+1}$. This implies $|f(x)| \geq 2^i$. We then set $\mathcal{R}f(x, p) \leftarrow \mathcal{A}f(x, i + p)$. The correctness follows from $|f(x)| \geq 2^{-i}$ and hence $|\mathcal{A}f(x, i + p) - f(x)| \leq 2^{-i-p} \leq |f(x)|2^{-p}$.

THEOREM B:

* Let $t(n)$ be the number of steps that the nth Turing machine M_n takes, on input n. So $t(n) = \infty$ if when $M_n(n)$ does not halt.

* DEFINE $f_0(n) = 1/t(n)$ where $1/\infty = 0$. NOTE that $\text{Zero}(f_0)$ is the diagonal set in recursive function theory,
usually denoted \(K \).

- **CLAIM:** \(f_0 \) is absolutely approximable
 - **Proof:** on input \(n, p \), check that \(n \in \mathbb{N} \) and then simulate \(M_n(n) \) for \(\lceil p \rceil \) steps. If \(M_n(n) \) halt in \(k \leq \lceil p \rceil \) steps, we output \(1/k \) (with absolute error at most \(2^{-p} \)). Else we output 0.

- **CLAIM:** \(f_0 \) is not relatively approximable
 - **Proof:** if it is, then \(\text{Zero}(f_0) = K \) would be decidable. Contradiction

- **LEMMA:**
 - If a function \(f : \mathbb{R} \to \mathbb{R} \) is never 0, then then \(\mathcal{A}f \) is computable iff \(\mathcal{R}f \) is computable
 - **Proof:** One direction is immediate from Theorem A. In the other direction, suppose \(\mathcal{A}f \) is computable. Then we can compute \(\mathcal{R}f(x, p) \) using \(\mathcal{A}f \) as in theorem A, because we know \(f(x) \neq 0 \).

- **THEOREM C:**
 - Define \(g_0 \) and \(h_0 \) via \(g_0(x) = \text{sign}(x - 1) \) and \(h_0(x) = 1 + f_0(x) \) where \(f_0 \) is from proof of Theorem A.
 - The function \(g_0(x) \) is relatively approximable
 - The function \(h_0 \) is relatively approximable, by above
LEMMA

* But \(g_0 \circ h_0(x) = \text{sign}(f_0(x)) \) is not absolutely approximable:

* If it were absolutely approximable by some function \(F \), then we can decide \(K \): if \(x \in K \) iff \(AF(x, 2) \leq 1/2 \)
Transfer Theorem

• THEOREM D: The following are equivalent:
 * (I) \(\text{Val}_\Omega \) is relatively approximable over \(\Omega \)
 * (II) For all problems \(F \), if \(F \) is \(\Omega \)-computable (ideal model!) then \(F \) is relative \(\Omega \)-approximable (implementation model!).

• Thus \(\text{Val}_\Omega \) is “universal” (or “complete”).
 * Our computational scientist ought to choose his set \(\Omega \) carefully

• Rest of talk is to formalize this theorem!
THEOREM D: The following are equivalent:

* (I) Val_Ω is relatively approximable over Ω

* (II) For all problems F, if F is Ω-computable (ideal model!) then F is relative Ω-approximable (implementation model!).

Thus Val_Ω is "universal" (or "complete").

* Our computational scientist ought to choose his set Ω carefully

Rest of talk is to formalize this theorem!
THEOREM D: The following are equivalent:

*(I) Val_{Ω} is relatively approximable over Ω

*(II) For all problems F, if F is Ω-computable (ideal model!) then F is relative Ω-approximable (implementation model!).

Thus Val_{Ω} is “universal” (or “complete”).

* Our computational scientist ought to choose his set Ω carefully.

Rest of talk is to formalize this theorem!
Transfer Theorem

• THEOREM D: The following are equivalent:
 * (I) Val_Ω is relatively approximable over Ω
 * (II) For all problems F, if F is Ω-computable (ideal model!) then F is relative Ω-approximable (implementation model!).

• Thus Val_Ω is “universal” (or “complete”).
 * Our computational scientist ought to choose his set Ω carefully

• Rest of talk is to formalize this theorem!
Transfer Theorem

- **THEOREM D**: The following are equivalent:
 - (I) \(Val_\Omega \) is relatively approximable over \(\Omega \)
 - (II) For all problems \(F \), if \(F \) is \(\Omega \)-computable (ideal model!) then \(F \) is relative \(\Omega \)-approximable (implementation model!).

- Thus \(Val_\Omega \) is “universal” (or “complete”).
 - Our computational scientist ought to choose his set \(\Omega \) carefully

- Rest of talk is to formalize this theorem!
THEOREM D: The following are equivalent:

- (I) Val_Ω is relatively approximable over Ω
- (II) For all problems F, if F is Ω-computable (ideal model!) then F is relative Ω-approximable (implementation model!).

Thus Val_Ω is “universal” (or “complete”).

- Our computational scientist ought to choose his set Ω carefully

Rest of talk is to formalize this theorem!
Transfer Theorem

THEOREM D: The following are equivalent:

- (I) Val_Ω is relatively approximable over Ω
- (II) For all problems F, if F is Ω-computable (ideal model!) then F is relative Ω-approximable (implementation model!).

Thus Val_Ω is “universal” (or “complete”).

- Our computational scientist ought to choose his set Ω carefully.

Rest of talk is to formalize this theorem!
Pointer Machine

• Schönhage’s storage modification machine (1978)

• Fix a finite set Δ of “colors”

• A Δ-graph $G = (V, E)$ is a finite digraph of out-degree $|\Delta|$, where each the edges out of each node has a unique color. One node is the origin.

• So any word $w \in \Delta^*$ identifies a unique node $[w]_G$ of G. Call edges of G a “pointer”

• Pointer Assignment: $w \leftarrow w'$

 * This transforms G to G' by making at most one pointer modification so that $[w]_{G'} = [w']_G$
Pointer Machine

- Schönhage’s storage modification machine (1978)
- Fix a finite set Δ of “colors”
- A Δ-graph $G = (V, E)$ is a finite digraph of out-degree $|\Delta|$, where each the edges out of each node has a unique color. One node is the origin.
- So any word $w \in \Delta^*$ identifies a unique node $[w]_G$ of G. Call edges of G a “pointer”
- Pointer Assignment: $w \leftarrow w'\quad$ (*) This transforms G to G' by making at most one pointer modification so that $[w]_{G'} = [w']_G$
• Schönhage’s storage modification machine (1978)

• Fix a finite set Δ of “colors”

• A Δ-graph $G = (V, E)$ is a finite digraph of out-degree $|\Delta|$, where each the edges out of each node has a unique color. One node is the origin.

• So any word $w \in \Delta^*$ identifies a unique node $[w]_G$ of G. Call edges of G a “pointer”

• Pointer Assignment: $w \leftarrow w'$

 * This transforms G to G' by making at most one pointer modification so that $[w]_{G'} = [w']_G$
Pointer Machine

- Schönhage’s storage modification machine (1978)
- Fix a finite set Δ of “colors”
- A Δ-graph $G = (V, E)$ is a finite digraph of out-degree $|\Delta|$, where each the edges out of each node has a unique color. One node is the origin.
- So any word $w \in \Delta^*$ identifies a unique node $[w]_G$ of G. Call edges of G a “pointer”
- Pointer Assignment: $w \leftarrow w'$
 - This transforms G to G' by making at most one pointer modification so that $[w]_{G'} = [w']_G$
Pointer Machine

- Schönhage’s storage modification machine (1978)
- Fix a finite set Δ of “colors”
- A Δ-graph $G = (V, E)$ is a finite digraph of out-degree $|\Delta|$, where each the edges out of each node has a unique color. One node is the origin.
- So any word $w \in \Delta^*$ identifies a unique node $[w]_G$ of G. Call edges of G a “pointer”
- Pointer Assignment: $w \leftarrow w'$
 - This transforms G to G' by making at most one pointer modification so that $[w]_{G'} = [w']_G$
 Pointer Machine

- Schönhage’s storage modification machine (1978)
- Fix a finite set Δ of “colors”
- A Δ-graph $G = (V, E)$ is a finite digraph of out-degree $|\Delta|$, where each the edges out of each node has a unique color. One node is the origin.
- So any word $w \in \Delta^*$ identifies a unique node $[w]_G$ of G. Call edges of G a “pointer”
- Pointer Assignment: $w \leftarrow w'$
 * This transforms G to G' by making at most one pointer modification so that $[w]_{G'} = [w']_G$
A pointer machine M is specified by a sequence of instructions of the form

- **Assignment**: $w \leftarrow w'$
- **Test**: IF $(w \equiv w')$ GOTO(L) where L is a label
- **Termination**: HALT

Clearly, a pointer machine can simulate each step of a multitape Turing machine in $O(1)$ steps

- Need to encode the contents of Turing machine tape cell

Input/Output: all are conventions

- What does a pointer machine compute? Let G_Δ be set of Δ-graphs
• A pointer machine M is specified by a sequence of instructions of the form
 - Assignment: $w \leftarrow w'$
 - Test: IF ($w \equiv w'$) GOTO(L) where L is a label
 - Termination: HALT

• Clearly, a pointer machine can simulate each step of a multitape Turing machine in $O(1)$ steps
 - Need to encode the contents of Turing machine tape cell

• Input/Output: all are conventions
 - What does a pointer machine compute? Let G_Δ be set of Δ-graphs
• A pointer machine M is specified by a sequence of instructions of the form
 * Assignment: $w \leftarrow w'$
 * Test: IF ($w \equiv w'$) GOTO(L) where L is a label
 * Termination: HALT

• Clearly, a pointer machine can simulate each step of a multitape Turing machine in $O(1)$ steps
 * Need to encode the contents of Turing machine tape cell

• Input/Output: all are conventions
 * What does a pointer machine compute? Let G_Δ be set of Δ-graphs
* It computes $f : G_\Delta \rightarrow G_\Delta$ (partial)

- Discussion: pointer machines are more robust than Turing machines
 * Cf: evaluation problem, bigfloat number truncation
* It computes $f : \mathcal{G}_\Delta \rightarrow \mathcal{G}_\Delta$ (partial)

- Discussion: pointer machines are more robust than Turing machines
 * Cf: evaluation problem, bigfloat number truncation
• It computes $f : \mathcal{G}_\Delta \rightarrow \mathcal{G}_\Delta$ (partial)

• Discussion: pointer machines are more robust than Turing machines
 • Cf: evaluation problem, bigfloat number truncation
Algebraic Pointer Machine

- Let Ω be a set of real operators

- Let a real Δ-graph be a Δ-graph where each node u stores a real number $Val(u)$

- Algebraic assignment instruction:
 - $w := \omega(w_1, \ldots, w_n)$ where $\omega \in \Omega$ is an n-ary operator

- Numerical comparison instruction:
 - IF ($w = w'$) GOTO(L) where L is a label

- Let $G_{\Delta}(\mathbb{R})$ be the set of real Δ graphs
 - Then an Ω-pointer machine computes a function f:
Let Ω be a set of real operators

Let a real Δ-graph be a Δ-graph where each node u stores a real number $Val(u)$

Algebraic assignment instruction:
* $w := \omega(w_1, \ldots, w_n)$ where $\omega \in \Omega$ is an n-ary operator

Numerical comparison instruction:
* IF ($w = w'$) GOTO(L) where L is a label

Let $\mathcal{G}_\Delta(\mathbb{R})$ be the set of real Δ graphs
* Then an Ω-pointer machine computes a function f:
Algebraic Pointer Machine

- Let Ω be a set of real operators

- Let a real Δ-graph be a Δ-graph where each node u stores a real number $Val(u)$

- Algebraic assignment instruction:
 - $w := \omega(w_1, \ldots, w_n)$ where $\omega \in \Omega$ is an n-ary operator

- Numerical comparison instruction:
 - IF $(w = w')$ GOTO(L) where L is a label

- Let $G_\Delta(\mathbb{R})$ be the set of real Δ graphs
 - Then an Ω-pointer machine computes a function f:
Let Ω be a set of real operators

Let a real Δ-graph be a Δ-graph where each node u stores a real number $Val(u)$

Algebraic assignment instruction:

$w := \omega(w_1, \ldots, w_n)$ where $\omega \in \Omega$ is an n-ary operator

Numerical comparison instruction:

IF ($w = w'$) GOTO(L) where L is a label

Let $\mathcal{G}_\Delta(\mathbb{R})$ be the set of real Δ graphs

Then an Ω-pointer machine computes a function f:

Algebraic Pointer Machine

• Let Ω be a set of real operators

• Let a real Δ-graph be a Δ-graph where each node u stores a real number $Val(u)$

• Algebraic assignment instruction:
 * $w := \omega(w_1, \ldots, w_n)$ where $\omega \in \Omega$ is an n-ary operator

• Numerical comparison instruction:
 * IF $(w = w')$ GOTO(L) where L is a label

• Let $G_\Delta(R)$ be the set of real Δ graphs
 * Then an Ω-pointer machine computes a function f:
$\mathcal{G}_\Delta(\mathbb{R}) \rightarrow \mathcal{G}_\Delta(\mathbb{R})$

* DEFINITION: we say f is Ω-computable if there is an Ω-pointer machine that computes it.

- These are what Knuth calls “semi-numerical problems” Why a numeric model of computation? Turing machines are too unstructured
\[G_\Delta(\mathbb{R}) \rightarrow G_\Delta(\mathbb{R}) \]

• **DEFINITION:** we say \(f \) is \(\Omega \)-computable if there is an \(\Omega \)-pointer machine that computes it.

- These are what Knuth calls “semi-numerical problems” Why a numeric model of computation? Turing machines are too unstructured
\[G_\Delta(\mathbb{R}) \rightarrow G_\Delta(\mathbb{R}) \]

* DEFINITION: we say \(f \) is \(\Omega \)-computable if there is an \(\Omega \)-pointer machine that computes it.

- These are what Knuth calls “semi-numerical problems” Why a numeric model of computation?
 Turing machines are twoo unstructured
Numerical Pointer Machine

- Let a numeric Δ-graph be a Δ-graph where each node u stores a $Val(u) \in F$

- Replace each $\omega \in \Omega$ be a relative approximation $\tilde{\omega}$ taking an extra precision parameter

- Numeric assignment instruction:

 $w := \tilde{\omega}(w_1, \ldots, w_n, p)$ where $\tilde{\omega}$ is an relative approximation of ω

- Let $G_\Delta(F)$ be the set of numeric Δ graphs

 Then an Ω-pointer machine computes a function \tilde{f}:
Numerical Pointer Machine

• Let a numeric Δ-graph be a Δ-graph where each node u stores a $Val(u) \in F$

• Replace each $\omega \in \Omega$ be a relative approximation $\tilde{\omega}$ taking an extra precision parameter

• Numeric assignment instruction:
 * $w := \tilde{\omega}(w_1, \ldots, w_n, p)$ where $\tilde{\omega}$ is an relative approximation of ω

• Let $\mathcal{G}_\Delta(F)$ be the set of numeric Δ graphs
 * Then an Ω-pointer machine computes a function \tilde{f}:
Numerical Pointer Machine

• Let a numeric Δ-graph be a Δ-graph where each node u stores a $\text{Val}(u) \in \mathbb{F}$

• Replace each $\omega \in \Omega$ be a relative approximation $\tilde{\omega}$ taking an extra precision parameter

• Numeric assignment instruction:
 * $w := \tilde{\omega}(w_1, \ldots, w_n, p)$ where $\tilde{\omega}$ is an relative approximation of ω

• Let $\mathcal{G}_\Delta(\mathbb{F})$ be the set of numeric Δ graphs
 * Then an Ω-pointer machine computes a function \tilde{f}:
Numerical Pointer Machine

• Let a numeric Δ-graph be a Δ-graph where each node u stores a $Val(u) \in F$

• Replace each $\omega \in \Omega$ be a relative approximation $\tilde{\omega}$ taking an extra precision parameter

• Numeric assignment instruction:

 $w := \tilde{\omega}(w_1, \ldots, w_n, p)$ where $\tilde{\omega}$ is an relative approximation of ω

• Let $G_\Delta(F)$ be the set of numeric Δ graphs

 * Then an Ω-pointer machine computes a function \tilde{f}:
$G_\Delta(F) \times F \rightarrow G_\Delta(F)$

* We say \tilde{f} is numeric Ω-computable

- We say \tilde{f} is an absolute/relative approximation of $f : G_\Delta(R) \rightarrow G_\Delta(R)$
 * if the value at each node of $\tilde{f}(G, p)$ are p-bit absolute/relative approximations of the corresponding values of $f(G)$

* DEFINITION: we say f is Ω-approximable if if \tilde{f} is numeric Ω-computable

NOTE: This corresponds to EGC
\[G_\Delta(\mathbb{F}) \times \mathbb{F} \to G_\Delta(\mathbb{F}) \]

* We say \(\tilde{f} \) is numeric \(\Omega \)-computable

- We say \(\tilde{f} \) is an absolute/relative approximation of \(f : G_\Delta(\mathbb{R}) \to G_\Delta(\mathbb{R}) \)
 * if the value at each node of \(\tilde{f}(G, p) \) are \(p \)-bit absolute/relative approximations of the corresponding values of \(f(G) \)

* DEFINITION: we say \(f \) is \(\Omega \)-approximable if \(\tilde{f} \) is numeric \(\Omega \)-computable

\textbf{NOTE:} This corresponds to EGC
\[\mathcal{G}_\Delta(F) \times F \to \mathcal{G}_\Delta(F) \]

* We say \(\tilde{f} \) is numeric \(\Omega \)-computable

• We say \(\tilde{f} \) is an absolute/relative approximation of \(f : \mathcal{G}_\Delta(\mathbb{R}) \to \mathcal{G}_\Delta(\mathbb{R}) \)

 * if the value at each node of \(\tilde{f}(G, p) \) are \(p \)-bit absolute/relative approximations of the corresponding values of \(f(G) \)

* DEFINITION: we say \(f \) is \(\Omega \)-approximable if \(\tilde{f} \) is numeric \(\Omega \)-computable

NOTE: This corresponds to EGC
Proof of Transfer Theorem

• One direction is easy: suppose Val_Ω is not relatively Ω-approximable
 * Then not every Ω-computable functions are relatively Ω-approximable. This is because Val_Ω is Ω-computable.

• Conversely, suppose Val_Ω is relatively Ω-approximable
 * Suppose f is a Ω-computable by some Ω-machine M. We just simulate M by a numeric Ω-machine in a step by step fashion. Whenever a branch step is taken, we call the relative approximation function for Val_Ω
Proof of Transfer Theorem

• One direction is easy: suppose Val_{Ω} is not relatively Ω-approximable
 * Then not every Ω-computable functions are relatively Ω-approximable. This is because Val_{Ω} is Ω-computable.

• Conversely, suppose Val_{Ω} is relatively Ω-approximable
 * Suppose f is a Ω-computable by some Ω-machine M. We just simulate M by a numeric Ω-machine in a step by step fashion. Whenever a branch step is taken, we call the relative approximation function for Val_{Ω}
Proof of Transfer Theorem

• One direction is easy: suppose Val_{Ω} is not relatively Ω-approximable
 * Then not every Ω-computable functions are relatively Ω-approximable. This is because Val_{Ω} is Ω-computable.

• Conversely, suppose Val_{Ω} is relatively Ω-approximable
 * Suppose f is a Ω-computable by some Ω-machine M. We just simulate M by a numeric Ω-machine in a step by step fashion. Whenever a branch step is taken, we call the relative approximation function for Val_{Ω}
Conclusions

- **Our theory of real approximation**
 - Conforms to practice, and to the usual assumptions of theoretical algorithms

- **Complexity theory of real approximation**
 - Let PF be the class PF of polynomial-time approximable functions
 - It is not closed under composition!
 - Need continuity conditions (e.g., Lipschitz functions)
Conclusions

- Our theory of real approximation
 - Conforms to practice, and to the usual assumptions of theoretical algorithms

- Complexity theory of real approximation
 - Let PF be the class PF of polynomial-time approximable functions
 - It is not closed under composition!
 - Need continuity conditions (e.g., Lipschitz functions)
Conclusions

- Our theory of real approximation
 - Conforms to practice, and to the usual assumptions of theoretical algorithms

- Complexity theory of real approximation
 - Let PF be the class PF of polynomial-time approximable functions
 - It is not closed under composition!
 - Need continuity conditions (e.g., Lipschitz functions)
“A rapacious monster lurks within every computer, and it dines exclusively on accurate digits.”
THE END