Lecture 3

Algebraic Computation

Chee Yap

Courant Institute of Mathematical Sciences
New York University
Overview

We introduce some basic concepts of algebraic computation.

• 0. Review

• I. Algebraic Preliminaries

• II. Resultants and Algebraic Numbers

• III. Sturm Theory
0. REVIEW
ANSWERS and DISCUSSIONS

• Your experience with CORE so far?

• It did not print 11 digits of $\sqrt{2}$ because...
 * To fix it, you do ...

• Exercise on Implementation of Convex Hull
 * Send to Sung-il Pae (T.A.) your solutions, and he will reply with the answers.
ANSWERS and DISCUSSIONS

• Your experience with CORE so far?

• It did not print 11 digits of $\sqrt{2}$ because...
 ✴ To fix it, you do ...

• Exercise on Implementation of Convex Hull
 ✴ Send to Sung-il Pae (T.A.) your solutions, and he will reply with the answers.
ANSWERS and DISCUSSIONS

- Your experience with CORE so far?

- It did not print 11 digits of $\sqrt{2}$ because...
 - To fix it, you do ...

- Exercise on Implementation of Convex Hull
 - Send to Sung-il Pae (T.A.) your solutions, and he will reply with the answers.
ANSWERS and DISCUSSIONS

• Your experience with CORE so far?

• It did not print 11 digits of $\sqrt{2}$ because...
 * To fix it, you do ...

• Exercise on Implementation of Convex Hull
 * Send to Sung-il Pae (T.A.) your solutions, and he will reply with the answers.
• Your experience with CORE so far?

• It did not print 11 digits of $\sqrt{2}$ because...
 * To fix it, you do ...

• Exercise on Implementation of Convex Hull
 * Send to Sung-il Pae (T.A.) your solutions, and he will reply with the answers.
What is EGC? Now you know…

- Numerical Nonrobustness is widespread

- It has many negative impact on productivity and automation

- EGC prescribes that we compute the exact geometric relations to ensure consistency
 - Just take the right branch!

- It is the most successful approach
 - Can duplicate results of any other approach!

- EGC principles can be achieved by using a general library like CORE
What is EGC? Now you know...

- Numerical Nonrobustness is widespread
- It has many negative impact on productivity and automation
- EGC prescribes that we compute the exact geometric relations to ensure consistency
 * Just take the right branch!
- It is the most successful approach
 * Can duplicate results of any other approach!
- EGC principles can be achieved by using a general library like CORE
What is EGC? Now you know...

• Numerical Nonrobustness is widespread

• It has many negative impact on productivity and automation

• EGC prescribes that we compute the exact geometric relations to ensure consistency
 * Just take the right branch!

• It is the most successful approach
 * Can duplicate results of any other approach!

• EGC principles can be achieved by using a general library like CORE
What is EGC? Now you know...

- Numerical Nonrobustness is widespread

- It has many negative impact on productivity and automation

- EGC prescribes that we compute the exact geometric relations to ensure consistency
 * Just take the right branch!

- It is the most successful approach
 * Can duplicate results of any other approach!

- EGC principles can be achieved by using a general library like CORE
What is EGC? Now you know...

- Numerical Nonrobustness is widespread
- It has many negative impact on productivity and automation
- EGC prescribes that we compute the exact geometric relations to ensure consistency
 - Just take the right branch!
- It is the most successful approach
 - Can duplicate results of any other approach!
- EGC principles can be achieved by using a general library like CORE
What is EGC? Now you know...

- Numerical Nonrobustness is widespread
- It has many negative impact on productivity and automation
- EGC prescribes that we compute the exact geometric relations to ensure consistency
 - *Just take the right branch!*
- It is the most successful approach
 - *Can duplicate results of any other approach!*
- EGC principles can be achieved by using a general library like CORE
EGC can be expensive, but an effective technique is the use of filters and generalization

* For bounded-depth rational problems, this is a small constant factor
* E.g., convex hulls, line arrangements, etc, in low dimensions

The center piece of any EGC libraries is an approximate evaluation algorithm for expressions

The center of this algorithm is a Zero Detector
EGC can be expensive, but an effective technique is the use of filters and generalization

- For bounded-depth rational problems, this is a small constant factor
- E.g., convex hulls, line arrangements, etc, in low dimensions

The center piece of any EGC libraries is an approximate evaluation algorithm for expressions

The center of this algorithm is a Zero Detector
• EGC can be expensive, but an effective technique is the use of filters and generalization
 * For bounded-depth rational problems, this is a small constant factor
 * E.g., convex hulls, line arrangements, etc, in low dimensions

• The center piece of any EGC libraries is an approximate evaluation algorithm for expressions

• The center of this algorithm is a Zero Detector
• EGC can be expensive, but an effective technique is the use of filters and generalization
 ∗ For bounded-depth rational problems, this is a small constant factor
 ∗ E.g., convex hulls, line arrangements, etc, in low dimensions

• The center piece of any EGC libraries is an approximate evaluation algorithm for expressions

• The center of this algorithm is a Zero Detector
● EXERCISE
EXERCISE
• EXERCISE
EXERCISE
EXERCISE
Many challenges of EGC remain:

- efficiency issues (zero bounds, filters and beyond)
- geometric rounding
- theory of EGC
- transcendental computation, ...

EXERCISE
Many challenges of EGC remain:

* efficiency issues (zero bounds, filters and beyond)
* geometric rounding
* theory of EGC
* transcendental computation, ...

EXERCISE
Let the point p be given as the intersection of two lines, $p = L \cap L'$ where L, L' are given by their equations. If we want to compute \tilde{p} to s-bits of relative precision, what is the precision necessary in the coefficients of L and L'?
Let the point \(p \) be given as the intersection of two lines, \(p = L \cap L' \) where \(L, L' \) are given by their equations. If we want to compute \(\tilde{p} \) to \(s \)-bits of relative precision, what is the precision necessary in the coefficients of \(L \) and \(L' \)?
Algebraic Preliminaries

• What is between \(\mathbb{Q} \) and \(\mathbb{R} \)?

• \(\mathbb{N} \subseteq \mathbb{Z} \subseteq \mathbb{Q} \subseteq \mathbb{A} \subseteq \mathbb{R} \subseteq \mathbb{C} \)
 * Ring has +, −, × and 0, 1. E.g., \(\mathbb{Z} \)
 * Field is a ring with ÷. E.g., \(\mathbb{Q} \)
 * Domain: a ring where \(xy = 0 \) implies \(x = 0 \) or \(y = 0 \)
 (no zero divisor)
 * Ring is commutative if \(xy = yx \). Assume this unless otherwise noted!

• Some Constructions in Algebra
 * Field \(F \subseteq \) Domain \(D \subseteq \) Ring \(R \)
 * Ring \(R \subseteq R[X] \subseteq R[X, Y] \subseteq \ldots \)
Algebraic Preliminaries

• What is between \mathbb{Q} and \mathbb{R}?

• $\mathbb{N} \subseteq \mathbb{Z} \subseteq \mathbb{Q} \subseteq \mathbb{A} \subseteq \mathbb{R} \subseteq \mathbb{C}$
 * Ring has $+$, $-$, \times and 0, 1. E.g., \mathbb{Z}
 * Field is a ring with \div. E.g., \mathbb{Q}
 * Domain: a ring where $xy = 0$ implies $x = 0$ or $y = 0$ (no zero divisor)
 * Ring is commutative if $xy = yx$. Assume this unless otherwise noted!

• Some Constructions in Algebra
 * Field $F \subseteq$ Domain $D \subseteq$ Ring R
 * Ring $R \subseteq R[X] \subseteq R[X,Y] \subseteq \ldots$
Algebraic Preliminaries

• What is between \mathbb{Q} and \mathbb{R}?

• $\mathbb{N} \subseteq \mathbb{Z} \subseteq \mathbb{Q} \subseteq \mathbb{A} \subseteq \mathbb{R} \subseteq \mathbb{C}$
 * Ring has \pm, \times and 0, 1. E.g., \mathbb{Z}
 * Field is a ring with \div. E.g., \mathbb{Q}
 * Domain: a ring where $xy = 0$ implies $x = 0$ or $y = 0$
 (no zero divisor)
 * Ring is commutative if $xy = yx$. Assume this unless otherwise noted!

• Some Constructions in Algebra
 * Field $F \subseteq$ Domain $D \subseteq$ Ring R
 * Ring $R \subseteq R[X] \subseteq R[X, Y] \subseteq \ldots$
Algebraic Preliminaries

• What is between \mathbb{Q} and \mathbb{R}?

• $\mathbb{N} \subseteq \mathbb{Z} \subseteq \mathbb{Q} \subseteq \mathbb{A} \subseteq \mathbb{R} \subseteq \mathbb{C}$

 * Ring has $+, -, \times$ and $0, 1$. E.g., \mathbb{Z}
 * Field is a ring with \div. E.g., \mathbb{Q}
 * Domain: a ring where $xy = 0$ implies $x = 0$ or $y = 0$ (no zero divisor)
 * Ring is commutative if $xy = yx$. Assume this unless otherwise noted!

• Some Constructions in Algebra

 * Field $F \subseteq$ Domain $D \subseteq$ Ring R
 * Ring $R \subseteq R[X] \subseteq R[X,Y] \subseteq \ldots$
Algebraic Preliminaries

• What is between \(\mathbb{Q} \) and \(\mathbb{R} \)?

• \(\mathbb{N} \subseteq \mathbb{Z} \subseteq \mathbb{Q} \subseteq \mathbb{A} \subseteq \mathbb{R} \subseteq \mathbb{C} \)

 * Ring has +, −, \(\times \) and 0, 1. E.g., \(\mathbb{Z} \)

 * Field is a ring with \(\div \). E.g., \(\mathbb{Q} \)

 * Domain: a ring where \(xy = 0 \) implies \(x = 0 \) or \(y = 0 \)
 (no zero divisor)

 * Ring is commutative if \(xy = yx \). Assume this unless otherwise noted!

• Some Constructions in Algebra

 * Field \(F \subseteq \text{Domain} \ D \subseteq \text{Ring} \ R \)

 * Ring \(R \subseteq R[X] \subseteq R[X, Y] \subseteq \ldots \)
Algebraic Preliminaries

• What is between \(\mathbb{Q} \) and \(\mathbb{R} \)?

• \(\mathbb{N} \subseteq \mathbb{Z} \subseteq \mathbb{Q} \subseteq \mathbb{A} \subseteq \mathbb{R} \subseteq \mathbb{C} \)
 * Ring has \(+, -, \times \) and 0, 1. E.g., \(\mathbb{Z} \)
 * Field is a ring with \(\div \). E.g., \(\mathbb{Q} \)
 * Domain: a ring where \(xy = 0 \) implies \(x = 0 \) or \(y = 0 \) (no zero divisor)
 * Ring is commutative if \(xy = yx \). Assume this unless otherwise noted!

• Some Constructions in Algebra
 * Field \(F \subseteq \text{Domain} \ D \subseteq \text{Ring} \ R \)
 * Ring \(R \subseteq R[X] \subseteq R[X, Y] \subseteq \ldots \)
* Domain $D \subseteq$ Quotient field $Q_D \subseteq$ Algebraic closure \overline{D}

* Special case: $R[X] \Rightarrow R(X)$
* Ring R to matrix ring $R^{n \times n}$

Polynomial $A(X) \in R[X]$ of degree m:
* $A(X) = \sum_{i=0}^{m} a_i X^i$, $(a_m \neq 0)$
* Leading coefficient, $a_m \neq 0$
* $A(X)$ is monic if $a_m = 1$
* Zero or root of $A(X)$: any $\alpha \in R$ such that $A(\alpha) = 0$

Size measures for $A(X) \in \mathbb{C}[X]$
* $\|A\|_k := \sqrt[k]{\sum_{i=0}^{m} |a_i|^k}$
* Height of A is $\|A\|_\infty$
* Domain $D \subseteq$ Quotient field $Q_D \subseteq$ Algebraic closure \overline{D}

* Special case: $R[X] \Rightarrow R(X)$

* Ring R to matrix ring $R^{n \times n}$

** Polynomial $A(X) \in R[X]$ of degree m:

* $A(X) = \sum_{i=0}^{m} a_i X^i$, $(a_m \neq 0)$

* Leading coefficient, $a_m \neq 0$

* $A(X)$ is monic if $a_m = 1$

* Zero or root of $A(X)$: any $\alpha \in R$ such that $A(\alpha) = 0$

** Size measures for $A(X) \in \mathbb{C}[X]$

* $\|A\|_k := k^{\sqrt[\kappa]{\sum_{i=0}^{m} |a_i|^k}}$

* Height of A is $\|A\|_\infty$
* Domain $D \subseteq$ Quotient field $Q_D \subseteq$ Algebraic closure \overline{D}

* Special case: $R[X] \Rightarrow R(X)$

* Ring R to matrix ring $R^{n \times n}$

- Polynomial $A(X) \in R[X]$ of degree m:
 * $A(X) = \sum_{i=0}^{m} a_i X^i$, ($a_m \neq 0$)
 * Leading coefficient, $a_m \neq 0$
 * $A(X)$ is monic if $a_m = 1$
 * Zero or root of $A(X)$: any $\alpha \in R$ such that $A(\alpha) = 0$

- Size measures for $A(X) \in \mathbb{C}[X]$
 * $\|A\|_k := \sqrt[k]{\sum_{i=0}^{m} |a_i|^k}$
 * Height of A is $\|A\|_\infty$
* Domain $D \subseteq \text{Quotient field } Q_D \subseteq \text{Algebraic closure } \overline{D}$

* Special case: $R[X] \Rightarrow R(X)$
* Ring R to matrix ring $R^{n \times n}$

- **Polynomial** $A(X) \in R[X]$ of degree m:
 * $A(X) = \sum_{i=0}^{m} a_i X^i$, ($a_m \neq 0$)
 * Leading coefficient, $a_m \neq 0$
 * $A(X)$ is monic if $a_m = 1$
 * Zero or root of $A(X)$: any $\alpha \in R$ such that $A(\alpha) = 0$

- **Size measures for** $A(X) \in \mathbb{C}[X]$
 * $\|A\|_k := \sqrt[k]{\sum_{i=0}^{m} |a_i|^k}$
 * Height of A is $\|A\|_\infty$
* Domain \(D \subseteq \) Quotient field \(Q_D \subseteq \) Algebraic closure \(\overline{D} \)

* Special case: \(R[X] \Rightarrow R(X) \)
* Ring \(R \) to matrix ring \(R^{n \times n} \)

Polynomial

\(A(X) \in R[X] \) of degree \(m \):

* \(A(X) = \sum_{i=0}^{m} a_i X^i, (a_m \neq 0) \)
* Leading coefficient, \(a_m \neq 0 \)
* \(A(X) \) is monic if \(a_m = 1 \)
* Zero or root of \(A(X) \): any \(\alpha \in R \) such that \(A(\alpha) = 0 \)

Size measures for \(A(X) \in \mathbb{C}[X] \)

* \(\| A \|_k := k^{\frac{1}{k}} \sum_{i=0}^{m} |a_i|^k \)
* Height of \(A \) is \(\| A \|_\infty \)
* Length of A is $\|A\|_2$

- **Fundamental Theorem of Algebra:**
 * A polynomial $A(X) \in \mathbb{C}[X]$ of degree m has exactly m zeros
 * i.e., $A(X) = a_m \prod_{i=1}^{m} (X - \alpha_i)$

- **UFD: Unique factorization domain**
 * $u \in D$ is a unit if if u has an inverse
 * Two elements $a, b \in D$ are associates if $a = ub$ for some unit u
 * a is irreducible if the only element that divides a is a unit or an associate of a
 * D is UFD if all non-zero $a \in D$ is equal to a product of
Fundamental Theorem of Algebra:

* A polynomial $A(X) \in \mathbb{C}[X]$ of degree m has exactly m zeros

* i.e., $A(X) = a_m \prod_{i=1}^{m} (X - \alpha_i)$

UFD: Unique factorization domain

* $u \in D$ is a unit if u has an inverse

* Two elements $a, b \in D$ are associates if $a = ub$ for some unit u

* a is irreducible if the only element that divides a is a unit or an associate of a

* D is UFD if all non-zero $a \in D$ is equal to a product of
* Length of A is $\|A\|_2$

* **Fundamental Theorem of Algebra:**
 * A polynomial $A(X) \in \mathbb{C}[X]$ of degree m has exactly m zeros
 * i.e., $A(X) = a_m \prod_{i=1}^{m} (X - \alpha_i)$

* **UFD: Unique factorization domain**
 * $u \in D$ is a unit if if u has an inverse
 * Two elements $a, b \in D$ are associates if $a = ub$ for some unit u
 * a is irreducible if the only element that divides a is a unit or an associate of a
 * D is UFD if all non-zero $a \in D$ is equal to a product of
irreducibles, up to associates

- **Fundamental Theorem of Arithmetic:** \(\mathbb{Z} \) is a UFD
 - **GAUSS LEMMA:** if \(D \) is a UFD then so is \(D[X] \)

NOTE: A field is always a UFD

- **GCD:** Greatest Common Divisor
 - In a UFD, we can define \(\text{GCD}(a, b) \)
 - We compute GCD’s in \(\mathbb{Z} \) and in \(\mathbb{Q}[X] \) by Euclid’s algorithm
 - GCD over \(\mathbb{Z}[X] \) is slightly trickier

- **QUESTIONS**
 - From the above examples, show a ring that is not a domain.
irreducibles, up to associates

- **Fundamental Theorem of Arithmetic:** \(\mathbb{Z} \) is a UFD
 - **GAUSS LEMMA:** if \(D \) is a UFD then so is \(D[X] \)

NOTE: A field is always a UFD

- **GCD:** Greatest Common Divisor
 - In a UFD, we can define \(\text{GCD}(a, b) \)
 - We compute GCD’s in \(\mathbb{Z} \) and in \(\mathbb{Q}[X] \) by Euclid’s algorithm
 - GCD over \(\mathbb{Z}[X] \) is slightly trickier

- **QUESTIONS**
 - From the above examples, show a ring that is not a domain.
irreducibles, up to associates

• **Fundamental Theorem of Arithmetic:** \(\mathbb{Z} \) is a UFD
 * **GAUSS LEMMA:** if \(D \) is a UFD then so is \(D[X] \)

NOTE: A field is always a UFD

• **GCD:** Greatest Common Divisor
 * In a UFD, we can define \(\text{GCD}(a, b) \)
 * We compute GCD’s in \(\mathbb{Z} \) and in \(\mathbb{Q}[X] \) by Euclid’s algorithm
 * GCD over \(\mathbb{Z}[X] \) is slightly trickier

• **QUESTIONS**
 * From the above examples, show a ring that is not a domain.
irreducibles, up to associates

- **Fundamental Theorem of Arithmetic**: \(\mathbb{Z} \) is a UFD
 - GAUSS LEMMA: if \(D \) is a UFD then so is \(D[X] \)

NOTE: A field is always a UFD

- **GCD**: Greatest Common Divisor
 - In a UFD, we can define \(\gcd(a, b) \)
 - We compute GCD’s in \(\mathbb{Z} \) and in \(\mathbb{Q}[X] \) by Euclid’s algorithm
 - GCD over \(\mathbb{Z}[X] \) is slightly trickier

- **QUESTIONS**
 - From the above examples, show a ring that is not a domain.
irreducibles, up to associates

- **Fundamental Theorem of Arithmetic:** \mathbb{Z} is a UFD
 - **GAUSS LEMMA:** if D is a UFD then so is $D[X]$

NOTE: A field is always a UFD

- **GCD:** Greatest Common Divisor
 - In a UFD, we can define $\text{GCD}(a, b)$
 - We compute GCD’s in \mathbb{Z} and in $\mathbb{Q}[X]$ by Euclid’s algorithm
 - GCD over $\mathbb{Z}[X]$ is slightly trickier

- **QUESTIONS**
 - From the above examples, show a ring that is not a domain.
∗ From the above examples, show a non-commutative ring.
∗ Prove that $\sqrt{x} + \sqrt{y}$ is an algebraic integer if x, y are positive integers
∗ What are the units in a field?
Algebraic Numbers

• The zero α of an integer polynomial $A(X) \in \mathbb{Z}[X]$ is called an algebraic number
 * If $A(X)$ is monic, α is an algebraic integer
 * NOTE: If $\alpha \in \mathbb{Q}$ is an algebraic integer, then $\alpha \in \mathbb{Z}$

• Let $A(X) \in \mathbb{Z}[X]$
 * $A(X)$ is primitive if the coefficients of $A(X)$ have no common factor except ± 1
 * Can always write $A(X) = c \cdot B(X)$ where $c \in \mathbb{Z}$ and $B(X) \in \mathbb{Z}[X]$ is primitive

• The minimal polynomial of α is the primitive polynomial in $\mathbb{Z}[X]$ of minimal degree.
 * It is basically unique
Algebraic Numbers

• The zero α of an integer polynomial $A(X) \in \mathbb{Z}[X]$ is called an algebraic number
 * If $A(X)$ is monic, α is an algebraic integer
 * NOTE: If $\alpha \in \mathbb{Q}$ is an algebraic integer, then $\alpha \in \mathbb{Z}$

• Let $A(X) \in \mathbb{Z}[X]$
 * $A(X)$ is primitive if the coefficients of $A(X)$ have no common factor except ± 1
 * Can always write $A(X) = c \cdot B(X)$ where $c \in \mathbb{Z}$ and $B(X) \in \mathbb{Z}[X]$ is primitive

• The minimal polynomial of α is the primitive polynomial in $\mathbb{Z}[X]$ of minimal degree.
 * It is basically unique
Algebraic Numbers

- The zero α of an integer polynomial $A(X) \in \mathbb{Z}[X]$ is called an algebraic number
 - If $A(X)$ is monic, α is an algebraic integer
 - NOTE: If $\alpha \in \mathbb{Q}$ is an algebraic integer, then $\alpha \in \mathbb{Z}$

- Let $A(X) \in \mathbb{Z}[X]$
 - $A(X)$ is primitive if the coefficients of $A(X)$ have no common factor except ± 1
 - Can always write $A(X) = c \cdot B(X)$ where $c \in \mathbb{Z}$ and $B(X) \in \mathbb{Z}[X]$ is primitive

- The **minimal polynomial** of α is the primitive polynomial in $\mathbb{Z}[X]$ of minimal degree.
 - It is basically unique
Degree and height of α is the degree and height of this minimal polynomial.
Degree and height of α is the degree and height of this minimal polynomial.
Resultants

- Resultants is a very important constructive tool for manipulation of algebraic numbers

- Let D be any UFD (e.g., $D = \mathbb{Z}$ or $D = \mathbb{Q}[X]$)

- Let $A(X) \in \sum_{i=0}^{m} a_i X^i, B(X) \in \sum_{j=0}^{n} b_j X^j$ be polynomials in $D[X]$, $a_m b_n \neq 0$

- The resultant $\text{res}(A, B)$ of A, B is the determinant of the Sylvester matrix of A, B:
 * This is a $(m + n) \times (m + n)$ matrix $\text{Syl}(A, B)$
Resultants

- Resultants is a very important constructive tool for manipulation of algebraic numbers

- Let D be any UFD (e.g., $D = \mathbb{Z}$ or $D = \mathbb{Q}[X]$)

- Let $A(X) \in \sum_{i=0}^{m} a_i X^i$, $B(X) \in \sum_{j=0}^{n} b_i X^j$ be polynomials in $D[X]$, $a_m b_n \neq 0$

- The resultant $\text{res}(A, B)$ of A, B is the determinant of the Sylvester matrix of A, B:
 \[\text{This is a } (m + n) \times (m + n) \text{ matrix } Syl(A, B) \]
Resultants

- Resultants is a very important constructive tool for manipulation of algebraic numbers.

- Let D be any UFD (e.g., $D = \mathbb{Z}$ or $D = \mathbb{Q}[X]$).

- Let $A(X) \in \sum_{i=0}^{m} a_i X^i, B(X) \in \sum_{j=0}^{n} b_i X^i$ be polynomials in $D[X], a_m b_n \neq 0$.

- The resultant $\text{res}(A, B)$ of A, B is the determinant of the Sylvester matrix of A, B:

 * This is a $(m + n) \times (m + n)$ matrix $Syl(A, B)$.
Resultants

1. Resultants is a very important constructive tool for manipulation of algebraic numbers

2. Let D be any UFD (e.g., $D = \mathbb{Z}$ or $D = \mathbb{Q}[X]$)

3. Let $A(X) = \sum_{i=0}^{m} a_i X^i$, $B(X) = \sum_{j=0}^{n} b_j X^j$ be polynomials in $D[X]$, $a_m b_n \neq 0$

4. The resultant $\text{res}(A, B)$ of A, B is the determinant of the Sylvester matrix of A, B:
 * This is a $(m + n) \times (m + n)$ matrix $\text{Syl}(A, B)$
Resultants

- Resultants is a very important constructive tool for manipulation of algebraic numbers

- Let D be any UFD (e.g., $D = \mathbb{Z}$ or $D = \mathbb{Q}[X]$)

- Let $A(X) \in \sum_{i=0}^{m} a_i X^i, B(X) \in \sum_{j=0}^{n} b_i X^i$ be polynomials in $D[X], a_m b_n \neq 0$

- The resultant $\text{res}(A, B)$ of A, B is the determinant of the Sylvester matrix of A, B:

 * This is a $(m + n) \times (m + n)$ matrix $Syl(A, B)$
\[Syl(A, B) = \begin{bmatrix}
 a_m & a_{m-1} & \cdots & a_0 \\
 a_m & a_{m-1} & \cdots & a_0 \\
 \vdots & \vdots & \ddots & \vdots \\
 b_n & b_{n-1} & \cdots & b_0 \\
 b_n & b_{n-1} & \cdots & b_0 \\
 \vdots & \vdots & \ddots & \vdots \\
 b_n & b_{n-1} & \cdots & b_0
\end{bmatrix} \]

Lemma: \(\text{GCD}(A, B) \notin D \) iff \(\text{res}(A, B) = 0 \)

* Sketch: Set up "\(\text{GCD}(A, B) \notin D \)" as a system of equations involving \(Syl(A, B) \)

Now assume \(D = \mathbb{C} \)

* So \(A(X) = a \prod_{i=1}^{m} (X - \alpha_i) \) and \(B(X) = b \prod_{j=1}^{n} (X - \beta_j) \)
\[
Syl(A, B) = \begin{bmatrix}
 a_m & a_{m-1} & \cdots & a_0 \\
 a_m & a_{m-1} & \cdots & a_0 \\
 \vdots & \vdots & \ddots & \vdots \\
 b_n & b_{n-1} & \cdots & b_0 \\
 b_n & b_{n-1} & \cdots & b_0 \\
 \vdots & \vdots & \ddots & \vdots \\
 b_n & b_{n-1} & \cdots & b_0 \\
\end{bmatrix}
\]

- **LEMMA:** \(\text{GCD}(A, B) \notin D \) iff \(\text{res}(A, B) = 0 \)

 * Sketch: Set up “\(\text{GCD}(A, B) \notin D \)” as a system of equations involving \(Syl(A, B) \)

- **Now assume** \(D = \mathbb{C} \)

 * So \(A(X) = a \prod_{i=1}^{m} (X - \alpha_i) \) and \(B(X) = b \prod_{j=1}^{n} (X - \beta_j) \)
\[
\begin{bmatrix}
 a_m & a_{m-1} & \cdots & a_0 \\
 a_m & a_{m-1} & \cdots & a_0 \\
 \vdots & \ddots & \ddots & \vdots \\
 b_n & b_{n-1} & \cdots & b_1 & b_0 \\
 b_n & b_{n-1} & \cdots & b_1 & b_0 \\
 \vdots & & & \ddots & \ddots \\
 b_n & b_{n-1} & \cdots & b_1 & b_0
\end{bmatrix}
\]

- **LEMMA:** \(\text{GCD}(A, B) \notin D \) iff \(\text{res}(A, B) = 0 \)

 * Sketch: Set up "\(\text{GCD}(A, B) \notin D \)" as a system of equations involving \(Syl(A, B) \)

- Now assume \(D = \mathbb{C} \)

 * So \(A(X) = a \prod_{i=1}^{m} (X - \alpha_i) \) and \(B(X) = b \prod_{j=1}^{n} (X - \beta_j) \)
THEOREM A: The resultant \(\text{res}(A, B) \) is equal to each of the following

- (A) \(a^n \prod_{i=1}^{m} B(\alpha_i) \)
- (B) \((-1)^{mn} b^m \prod_{j=1}^{n} A(\beta_j) \)
- (C) \(a^n b^m \prod_{i=1}^{m} \prod_{j=1}^{n} (\alpha_i - \beta_j) \)

COROLLARY:

- (D) \(\beta_j \pm \alpha_i \) is a zero of \(D(X) = \text{res}_Y(A(Y), B(X \mp Y)) \)
- (E) \(\alpha_i / \beta_j \) is a zero of \(E(X) = \text{res}_Y(A(Y), Y^n B(X/Y)) \)
- (F) \(1/\alpha_i \) is a zero of \(F(X) = X^m A(1/X) \)

COROLLARY:

- The algebraic integers form a ring
- The algebraic numbers form a field

THEOREM: If \(\alpha_0, \ldots, \alpha_m \) are algebraic numbers, then any root of \(\sum_{i=0}^{m} \alpha_i X^i \) is also algebraic
• **THEOREM A:** The resultant \(\text{res}(A, B) \) is equal to each of the following

\[
\begin{align*}
&\text{(A)} \quad a^n \prod_{i=1}^{m} B(\alpha_i) \\
&\text{(B)} \quad (-1)^{mn} b^m \prod_{j=1}^{n} A(\beta_j) \\
&\text{(C)} \quad a^n b^m \prod_{i=1}^{m} \prod_{j=1}^{n} (\alpha_i - \beta_j)
\end{align*}
\]

• **COROLLARY:**

\[
\begin{align*}
&\text{(D)} \quad \beta_j \pm \alpha_i \text{ is a zero of } D(X) = \text{res}_Y(A(Y), B(X \pm Y)) \\
&\text{(E)} \quad \alpha_i \beta_j \text{ is a zero of } E(X) = \text{res}_Y(A(Y), Y^n B(X/Y)) \\
&\text{(F)} \quad 1/\alpha_i \text{ is a zero of } F(X) = X^m A(1/X)
\end{align*}
\]

• **COROLLARY:**

\[
\begin{align*}
&\text{The algebraic integers form a ring} \\
&\text{The algebraic numbers form a field}
\end{align*}
\]

• **THEOREM:** If \(\alpha_0, \ldots, \alpha_m \) are algebraic numbers, then any root of \(\sum_{i=0}^{m} \alpha_i X^i \) is also algebraic
THEOREM A: The resultant \(\text{res}(A, B) \) is equal to each of the following

\[
\begin{align*}
(A) & \quad a^n \prod_{i=1}^{m} B(\alpha_i) \\
(B) & \quad (-1)^{mn b_m} \prod_{j=1}^{n} A(\beta_j) \\
(C) & \quad a^n b_m \prod_{i=1}^{m} \prod_{j=1}^{n} (\alpha_i - \beta_j)
\end{align*}
\]

COROLLARY:

\[
\begin{align*}
(D) & \quad \beta_j \pm \alpha_i \text{ is a zero of } D(X) = \text{res}_Y(A(Y), B(X \mp Y)) \\
(E) & \quad \alpha_i \beta_j \text{ is a zero of } E(X) = \text{res}_Y(A(Y), Y^n B(X/Y)) \\
(F) & \quad 1/\alpha_i \text{ is a zero of } F(X) = X^m A(1/X)
\end{align*}
\]

COROLLARY:

- The algebraic integers form a ring
- The algebraic numbers form a field

THEOREM: If \(\alpha_0, \ldots, \alpha_m \) are algebraic numbers, then any root of \(\sum_{i=0}^{m} \alpha_i X^i \) is also algebraic
• THEOREM A: The resultant \(\text{res}(A, B) \) is equal to each of the following
 \[
 \begin{align*}
 \ast & (A) \ a^n \prod_{i=1}^{m} B(\alpha_i) \\
 \ast & (B) \ (-1)^{mn} b^m \prod_{j=1}^{n} A(\beta_j) \\
 \ast & (C) \ a^n b^m \prod_{i=1}^{m} \prod_{j=1}^{n} (\alpha_i - \beta_j)
 \end{align*}
 \]

• COROLLARY:
 \[
 \begin{align*}
 \ast & (D) \ \beta_j \pm \alpha_i \text{ is a zero of } D(X) = \text{res}_Y(A(Y), B(X \mp Y)) \\
 \ast & (E) \ \alpha_i/\beta_j \text{ is a zero of } E(X) = \text{res}_Y(A(Y), Y^n B(X/Y)) \\
 \ast & (F) \ 1/\alpha_i \text{ is a zero of } F(X) = X^m A(1/X)
 \end{align*}
 \]

• COROLLARY:
 \[
 \begin{align*}
 \ast & \text{The algebraic integers form a ring} \\
 \ast & \text{The algebraic numbers form a field}
 \end{align*}
 \]

• THEOREM: If \(\alpha_0, \ldots, \alpha_m \) are algebraic numbers, then any root of \(\sum_{i=0}^{m} \alpha_i X^i \) is also algebraic
The proof uses theory of symmetric functions
The proof uses theory of symmetric functions
Zero Bounds and Separation Bounds

- **Cauchy Bound:** Suppose α is the zero of $A(X) = \sum_{i=0}^{m} a_i X^i \in \mathbb{Z}[X]$
 - Then $|\alpha| \leq (1 + H)$ where $H = \|A\|_\infty$

- **Pf:** If $|\alpha| \leq 1$, the result is true. Assume otherwise.
 - Then $|a_m| \cdot |\alpha|^m \leq H \sum_{i=0}^{m-1} |\alpha|^i = H(|\alpha|^m - 1)/(|\alpha| - 1) < H|\alpha|^m/(|\alpha| - 1)$.
 - The claim follows. QED

- **Corollary:** $|\alpha| \geq 1/(1 + H)$
 - **Pf:** Note that $1/|\alpha|$ is the zero of $B(X) = X^m A(1/X)$.
 - But the height of $B(X)$ is also H. QED

- **Constructive Zero Bounds**
 - Based on the structure of the expression (see Exercise)
Zero Bounds and Separation Bounds

- **Cauchy Bound**: Suppose α is the zero of $A(X) = \sum_{i=0}^{m} a_i X^i \in \mathbb{Z}[X]$
 - Then $|\alpha| \leq (1 + H)$ where $H = \|A\|_\infty$

- **Pf**: If $|\alpha| \leq 1$, the result is true. Assume otherwise.
 - Then $|a_m| \cdot |\alpha|^m \leq H \sum_{i=0}^{m-1} |\alpha|^i = H(|\alpha|^m - 1)/(|\alpha| - 1) < H|\alpha|^m/(|\alpha| - 1)$.
 - The claim follows. QED

- **Corollary**: $|\alpha| \geq 1/(1 + H)$
 - Pf: Note that $1/|\alpha|$ is the zero of $B(X) = X^m A(1/X)$.
 - But the height of $B(X)$ is also H. QED

- **Constructive Zero Bounds**
 - Based on the structure of the expression (see Exercise)
Zero Bounds and Separation Bounds

- Cauchy Bound: Suppose \(\alpha \) is the zero of \(A(X) = \sum_{i=0}^{m} a_i X^i \in \mathbb{Z}[X] \)
 - Then \(|\alpha| \leq (1 + H) \) where \(H = \|A\|_\infty \)

- Pf: If \(|\alpha| \leq 1 \), the result is true. Assume otherwise.
 - Then \(|a_m| \cdot |\alpha|^m \leq H \sum_{i=0}^{m-1} |\alpha|^i = H(|\alpha|^m - 1)/(|\alpha| - 1) < H|\alpha|^m/(|\alpha| - 1) \).
 - The claim follows. QED

- Corollary: \(|\alpha| \geq 1/(1 + H) \)
 - Pf: Note that \(1/|\alpha| \) is the zero of \(B(X) = X^m A(1/X) \).
 - But the height of \(B(X) \) is also \(H \). QED

- Constructive Zero Bounds
 - Based on the structure of the expression (see Exercise)
Zero Bounds and Separation Bounds

• Cauchy Bound: Suppose α is the zero of $A(X) = \sum_{i=0}^{m} a_i X^i \in \mathbb{Z}[X]$
 * Then $|\alpha| \leq (1 + H)$ where $H = \|A\|_{\infty}$

• Pf: If $|\alpha| \leq 1$, the result is true. Assume otherwise.
 * Then $|a_m| \cdot |\alpha|^m \leq H \sum_{i=0}^{m-1} |\alpha|^i = H(|\alpha|^m - 1)/(|\alpha| - 1) < H|\alpha|^m/(|\alpha| - 1)$.
 * The claim follows. QED

• Corollary: $|\alpha| \geq 1/(1 + H)$
 * Pf: Note that $1/|\alpha|$ is the zero of $B(X) = X^m A(1/X)$.
 * But the height of $B(X)$ is also H. QED

• Constructive Zero Bounds
 * Based on the structure of the expression (see Exercise)
Zero Bounds and Separation Bounds

- **Cauchy Bound**: Suppose α is the zero of $A(X) = \sum_{i=0}^{m} a_i X^i \in \mathbb{Z}[X]$.
 * Then $|\alpha| \leq (1 + H)$ where $H = \|A\|_{\infty}$

- **Pf**: If $|\alpha| \leq 1$, the result is true. Assume otherwise.
 * Then $|a_m| \cdot |\alpha|^m \leq H \sum_{i=0}^{m-1} |\alpha|^i = H(|\alpha|^m - 1)/(|\alpha| - 1) < H|\alpha|^m/(|\alpha| - 1)$.
 * The claim follows. QED

- **Corollary**: $|\alpha| \geq 1/(1 + H)$
 * Pf: Note that $1/|\alpha|$ is the zero of $B(X) = X^m A(1/X)$.
 * But the height of $B(X)$ is also H. QED

- **Constructive Zero Bounds**
 * Based on the structure of the expression (see Exercise)
• Root Separation Bounds
 * Define $\text{Sep}(A)$ to be the minimum of $|\alpha - \beta|$ where α, β range over all pairs of distinct zeros of $A(X)$

• Discriminant of $A(X)$ is defined as $a^{-1}\text{res}(A, A')$ where a is A’s leading coefficient
 * Check: If $A(X) \in D[X]$ then $\text{Disc}(A) \in D[X]$

• THEOREM: Let $\alpha_1, \ldots, \alpha_m$ are all the complex roots of $A \in \mathbb{C}[X]$, not necessarily distinct. Up to sign, the following three quantities are equal:
 * (A) $a^{-1}\text{res}(A, A')$ where a is A’s leading coefficient
 * (B) $\prod_{1 \leq i < j \leq m}(\alpha_i - \alpha_j)^2$
 * (C) the square of the determinant of the Vandermonde
• Root Separation Bounds
 ∗ Define $\text{Sep}(A)$ to be the minimum of $|\alpha - \beta|$ where α, β range over all pairs of distinct zeros of $A(X)$

• Discriminant of $A(X)$ is defined as $a^{-1}\text{res}(A, A')$ where a is A’s leading coefficient
 ∗ Check: If $A(X) \in D[X]$ then $\text{Disc}(A) \in D[X]$

• THEOREM: Let $\alpha_1, \ldots, \alpha_m$ are all the complex roots of $A \in \mathbb{C}[X]$, not necessarily distinct. Up to sign, the following three quantities are equal:
 ∗ (A) $a^{-1}\text{res}(A, A')$ where a is A’s leading coefficient
 ∗ (B) $\prod_{1 \leq i < j \leq m} (\alpha_i - \alpha_j)^2$
 ∗ (C) the square of the determinant of the Vandermonde
- **Root Separation Bounds**
 * Define $\text{Sep}(A)$ to be the minimum of $|\alpha - \beta|$ where α, β range over all pairs of distinct zeros of $A(X)$

- **Discriminant of $A(X)$** is defined as $a^{-1}\text{res}(A, A')$ where a is A's leading coefficient
 * Check: If $A(X) \in D[X]$ then $\text{Disc}(A) \in D[X]$

- **THEOREM**: Let $\alpha_1, \ldots, \alpha_m$ are all the complex roots of $A \in \mathbb{C}[X]$, not necessarily distinct. Up to sign, the following three quantities are equal:
 * (A) $a^{-1}\text{res}(A, A')$ where a is A’s leading coefficient
 * (B) $\prod_{1 \leq i < j \leq m} (\alpha_i - \alpha_j)^2$
 * (C) the square of the determinant of the Vandermonde
matrix,

\[V_m(\alpha_1, \alpha_2, \ldots, \alpha_m) := \begin{bmatrix}
1 & 1 & \cdots & 1 \\
\alpha_1 & \alpha_2 & \cdots & \alpha_m \\
\alpha_1^2 & \alpha_2^2 & \cdots & \alpha_m^2 \\
\vdots & \vdots & \ddots & \vdots \\
\alpha_1^{m-1} & \alpha_2^{m-1} & \cdots & \alpha_m^{m-1}
\end{bmatrix} \]

- **THEOREM (Mahler)**
 - Then \(\text{Sep}(A) > \sqrt{|\text{disc}(A)|} \cdot m^{-(m/2)+1} M(A)^{1-m} \)

 where \(M(A) \) is Mahler measure.

PROOF: Result is trivial when \(A \) has multiple roots, for then \(\text{Disc}(A) = 0 \). Else, assume \(\text{Sep}(A) = |\alpha_1 - \alpha_2| \) where \(|\alpha_1| \geq |\alpha_2| \).

Starting with the Vandermonde matrix, we may subtract the second column from the first column, preserving the
matrix,

\[V_m(\alpha_1, \alpha_2, \ldots, \alpha_m) := \begin{bmatrix} 1 & 1 & \cdots & 1 \\ \alpha_1 & \alpha_2 & \cdots & \alpha_m \\ \alpha_1^2 & \alpha_2^2 & \cdots & \alpha_m^2 \\ \vdots & \vdots & \ddots & \vdots \\ \alpha_1^{m-1} & \alpha_2^{m-1} & \cdots & \alpha_m^{m-1} \end{bmatrix} \]

- **THEOREM (Mahler)**

 \[\text{Then } \text{Sep}(A) > \sqrt{|\text{disc}(A)|} \cdot m^{-(m/2)+1} M(A)^{1-m} \]

 where \(M(A) \) is Mahler measure.

PROOF: Result is trivial when \(A \) has multiple roots, for then \(\text{Disc}(A) = 0 \). Else, assume \(\text{Sep}(A) = |\alpha_1 - \alpha_2| \) where \(|\alpha_1| \geq |\alpha_2| \).

Starting with the Vandermonde matrix, we may subtract the second column from the first column, preserving the
matrix,

\[V_m(\alpha_1, \alpha_2, \ldots, \alpha_m) := \begin{bmatrix}
1 & 1 & \cdots & 1 \\
\alpha_1 & \alpha_2 & \cdots & \alpha_m \\
\alpha_1^2 & \alpha_2^2 & \cdots & \alpha_m^2 \\
\vdots & \vdots & \ddots & \vdots \\
\alpha_1^{m-1} & \alpha_2^{m-1} & \cdots & \alpha_m^{m-1}
\end{bmatrix} \]

- **THEOREM (Mahler)**
 * Then \(\text{Sep}(A) > \sqrt{\text{disc}(A)} \cdot m^{-(m/2)+1} M(A)^{1-m} \)

where \(M(A) \) is Mahler measure.

PROOF: Result is trivial when \(A \) has multiple roots, for then \(\text{Disc}(A) = 0 \). Else, assume \(\text{Sep}(A) = |\alpha_1 - \alpha_2| \) where \(|\alpha_1| \geq |\alpha_2| \).

Starting with the Vandermonde matrix, we may subtract the second column from the first column, preserving the
determinant.
The first column (transposed) is now
\[(0, \alpha_1 - \alpha_2, \alpha_1^2 - \alpha_2^2, \ldots, \alpha_1^{m-1} - \alpha_2^{m-1}) = (\alpha_1 - \alpha_2)(0, 1, \alpha_1 + \alpha_2, \ldots, \sum_{i=0}^{m-2} \alpha_1^i \alpha_2^{m-2-i}).\]
The 2-norm of \((0, 1, \alpha_1 + \alpha_2, \ldots, \sum_{i=0}^{m-2} \alpha_1^i \alpha_2^{m-2-i})\) is at most \(\sqrt{\sum_{i=0}^{m-2} (i + 1)^2 |\alpha_1|^i}\).

Hence this 2-norm is at most \(h_1 := \sqrt{m^3/3} \max\{1, |\alpha_1|\}^{m-1}\).

By Hadamard’s bound, the Vandermonde determinant is at most \(\Sep(A) \prod_{i=1}^{m} h_i\) where \(h_i\) is any upper bound on 2-norm of the \(i\)th column.

We have already computed \(h_1\). For \(i \geq 2\), we can choose \(h_i = \sqrt{m} \max\{1, |\alpha_i|\}^{m-1}\).

The product of these bounds yields \(\sqrt{|\Disc(A)|} < \Sep(A)m^{(m/2)+1} \prod_{i=1}^{m} \max\{1, |\alpha_i|\}^{m-1} = \Sep(A)m^{(m/2)+1}M(A)\).

The conclusion of the theorem is now clear.
• **EXERCISE**

 * Using Theorem A above, give height bounds for $\alpha \beta$ and $\alpha \pm \beta$, assuming we know heights and degree bounds for α, β.
EXERCISE

Using Theorem A above, give height bounds for $\alpha \beta$ and $\alpha \pm \beta$, assuming we know heights and degree bounds for α, β.
Now assume \(A, B \in \mathbb{R}[X] \) and \(\deg A > \deg B > 0 \)

* The generalized Sturm sequence for \((A, B)\) is \((A_0, A_1, \ldots, A_h)\) where \((A_0, A_1) = (A, B)\) and \(A_{i+1} = -(A_{i-1} \mod A_i)\), with \(A_{h+1} = 0\)

Let \(a = (a_0, \ldots, a_h)\) where \(a_i \in \mathbb{R}\)

* Let \(\text{Var}(a)\) be the number of sign variations in \(a\)

* E.g., \(\text{Var}(1, 0, -1, 0, 3) = 2\) and \(\text{Var}(0, 8, 1, 0, 4, -3, 0) = 1\)

* Write \(\text{Var}_{A,B}(a)\) for \(\text{Var}(A_0(a), A_1(a), \ldots, A_h(a))\)

THEOREM (Sturm): If \(B = A'\), then for all \(a < b\) such that \(A(a)A(b) \neq 0\)

* Then \(\text{Var}_{A,B}(a) - \text{Var}_{A,B}(b)\) is equal to the number of
Sturm Theory

• Now assume $A, B \in \mathbb{R}[X]$ and $\deg A > \deg B > 0$
 * The generalized Sturm sequence for (A, B) is (A_0, A_1, \ldots, A_h) where $(A_0, A_1) = (A, B)$ and $A_{i+1} = -(A_{i-1} \mod A_i)$, with $A_{h+1} = 0$

• Let $a = (a_0, \ldots, a_h)$ where $a_i \in \mathbb{R}$
 * Let $\text{Var}(a)$ be the number of sign variations in a
 * E.g., $\text{Var}(1, 0, -1, 0, 3) = 2$ and $\text{Var}(0, 8, 1, 0, 4, -3, 0) = 1$
 * Write $\text{Var}_{A,B}(a)$ for $\text{Var}(A_0(a), A_1(a), \ldots, A_h(a))$

• THEOREM (Sturm): If $B = A'$, then for all $a < b$ such that $A(a)A(b) \neq 0$
 * Then $\text{Var}_{A,B}(a) - \text{Var}_{A,B}(b)$ is equal to the number of
Now assume $A, B \in \mathbb{R}[X]$ and $\deg A > \deg B > 0$

* The generalized Sturm sequence for (A, B) is (A_0, A_1, \ldots, A_h) where $(A_0, A_1) = (A, B)$ and $A_{i+1} = -(A_i - 1 \mod A_i)$, with $A_{h+1} = 0$

Let $a = (a_0, \ldots, a_h)$ where $a_i \in \mathbb{R}$

* Let $\text{Var}(a)$ be the number of sign variations in a
* E.g., $\text{Var}(1, 0, -1, 0, 3) = 2$ and $\text{Var}(0, 8, 1, 0, 4, -3, 0) = 1$

* Write $\text{Var}_{A, B}(a)$ for $\text{Var}(A_0(a), A_1(a), \ldots, A_h(a))$

THEOREM (Sturm): If $B = A'$, then for all $a < b$ such that $A(a)A(b) \neq 0$

* Then $\text{Var}_{A, B}(a) - \text{Var}_{A, B}(b)$ is equal to the number of
real roots of A in $[a, b]$.

PROOF: First assume (A, B) has no common zero. Let $c \in [a, b]$ and $v_i(c) := \text{Var}(A_{i-1}(c), A_i(c), A_{i+1}(c))$ for $i = 0, \ldots, h$.

(a) $V_{i-1}(c) = V_i(c) = 0$ implies $V_{i-2}(c) = V_{i+1}(c) = 0$

(b) So $A_h(c) \neq 0$ (otherwise c is common zero of A, B)

(c) From (a), $V_{i-1}(c)^2 + V_{i+1}(c)^2 \neq 0$ for $1 < i < h$.

(d) This implies $2\text{Var}_{A,B}(c) = \sum_{i=0}^{h} v_i(c)$

(e) If $i > 0$ and $A_i(c) = 0$ then $v_i(c^-) = v_i(c^+)$. (f) Hence $v_i(c)$, and so $\text{Var}_{A,B}(c)$ does not change when c passes through a zero of A_i ($i > 0$)

(g) If $A_0(c)$ then $v_0(c)$ decreases by 1 (use the fact that $B = A'$)

(h) Thus, $\text{Var}_{A,B}(c)$ decreases by 1 each time as c passes over a zero of A, but does not change otherwise.

(i) This implies $\text{Var}_{A,B}(a) - \text{Val}_{A,B}(c)$ equals the number
real roots of A in $[a, b]$.

PROOF: First assume (A, B) has no common zero.

Let $c \in [a, b]$ and $v_i(c) := \text{Var}(A_{i-1}(c), A_i(c), A_{i+1}(c))$ for $i = 0, \ldots, h$.

(a) $V_{i-1}(c) = V_i(c) = 0$ implies $V_{i-2}(c) = V_{i+1}(c) = 0$

(b) So $A_h(c) \neq 0$ (otherwise c is common zero of A, B)

(c) From (a), $V_{i-1}(c)^2 + V_{i+1}(c)^2 \neq 0$ for $1 < i < h$.

(d) This implies $2\text{Var}_{A, B}(c) = \sum_{i=0}^{h} v_i(c)$

(e) If $i > 0$ and $A_i(c) = 0$ then $v_i(c^-) = v_i(c^+)$.

(f) Hence $v_i(c)$, and so $\text{Var}_{A, B}(c)$ does not change when c passes through a zero of A_i ($i > 0$)

(g) If $A_0(c)$ then $v_0(c)$ decreases by 1 (use the fact that $B = A'$)

(h) Thus, $\text{Var}_{A, B}(c)$ decreases by 1 each time as c passes over a zero of A, but does not change otherwise.

(i) This implies $\text{Var}_{A, B}(a) - \text{Val}_{A, B}(c)$ equals the number
of real zeros of A in $[a, b]$.
Finally, suppose $C = \gcd(A, B)$ has degree > 0. The sequence $(A_0/C, A_1/C, \ldots, A_h/C)$ has the same properties as what we proved in (i).

- We can now isolate all the real zeros of a polynomial $A(X)$ using an obvious bisection
 * **Note**: All real zeros lies in the interval $[-1 - H, 1 + H]$ where H is the height of $A(X)$ Can extend Sturm sequence to find all complex roots (See Chapter 7 [Yap-Fundamental])
of real zeros of A in $[a, b]$.
Finally, suppose $C = \text{GCD}(A, B)$ has degree > 0. The sequence $(A_0/C, A_1/C, \ldots, A_h/C)$ has the same properties as what we proved in (i).

- We can now isolate all the real zeros of a polynomial $A(X)$ using an obvious bisection
 - Note: All real zeros lies in the interval $[-1 - H, 1 + H]$ where H is the height of $A(X)$ Can extend Sturm sequence to find all complex roots (See Chapter 7 [Yap-Fundamental])

KAIST/JAIST Summer School of Algorithms Lectures on Exact Computation. Aug 8-12, 2005
Conclusions

- Arithmetic on algebraic numbers are possible via resultant methods, but such methods are inefficient

- Algebraic numbers can be manipulated numerically and compared exactly if you know root bounds
Conclusions

- Arithmetic on algebraic numbers are possible via resultant methods, but such methods are inefficient.

- Algebraic numbers can be manipulated numerically and compared exactly if you know root bounds.
Conclusions

- Arithmetic on algebraic numbers are possible via resultant methods, but such methods are inefficient.

- Algebraic numbers can be manipulated numerically and compared exactly if you know root bounds.
EXERCISES

- Isolating Interval Representation (IIR):

 - A real algebraic number α can be represented by a pair $(A(X), [a, b])$ such that α is the only zero of $A(X) \in \mathbb{Z}[X]$ in $[a, b]$

- Show how to perform the four arithmetic operations on IIR's
- Show how to do comparisons on IIR's
- Compare the efficiency of IIR's to our expression approach
EXERCISES

- Isolating Interval Representation (IIR):
 - A real algebraic number α can be represented by a pair $(A(X), [a, b])$ such that α is the only zero of $A(X) \in \mathbb{Z}[X]$ in $[a, b]$

- Show how to perform the four arithmetic operations on IIR's
- Show how to do comparisons on IIR's
- Compare the efficiency of IIR's to our expression approach
EXERCISES

- Isolating Interval Representation (IIR):
 * A real algebraic number α can be represented by a pair $(A(X), [a, b])$ such that α is the only zero of $A(X) \in \mathbb{Z}[X]$ in $[a, b]$

- Show how to perform the four arithmetic operations on IIR's

- Show how to do comparisons on IIR's

- Compare the efficiency of IIR's to our expression approach
EXERCISES

- Isolating Interval Representation (IIR):
 - A real algebraic number \(\alpha \) can be represented by a pair \((A(X), [a, b])\) such that \(\alpha \) is the only zero of \(A(X) \in \mathbb{Z}[X] \) in \([a, b]\)

- Show how to perform the four arithmetic operations on IIR's
- Show how to do comparisons on IIR's
- Compare the efficiency of IIR's to our expression approach
EXERCISES

- Isolating Interval Representation (IIR):
 - A real algebraic number α can be represented by a pair $(A(X), [a, b])$ such that α is the only zero of $A(X) \in \mathbb{Z}[X]$ in $[a, b]$
- Show how to perform the four arithmetic operations on IIR's
- Show how to do comparisons on IIR's
- Compare the efficiency of IIR's to our expression approach
Chapter 6 of [Yap-FundamentalProblems], on roots of polynomials.

“A rapacious monster lurks within every computer, and it dines exclusively on accurate digits.”
THE END