Assignment 5

1. 2. 3. Problem 8.1, 8.3, 8.4; due April 5. The next problem due April 12

4. Denote by \(J_0(z) \) the Bessel \(J \) function of order 0; in Matlab it is specified by \(\text{nu}=0; \)
\(\text{b} = \text{besselj(\text{nu},z)} \). Let
\[
 u_j(z) = c_j \cos(a_j z + b_j),
\]
and let \(a = [a_1, a_2, \ldots, a_m]' \) be a column vector. Define the column vectors \(b \) and \(c \) the same way. The purpose of this exercise is to approximate \(J_0(z) \) in \([\alpha, \beta] = [0, 2\pi] \) by \(u_j(z) \) for \(j = 1 : m \) by solving the so-called (nonlinear) least-squares problem formulated as
\[
 \min F(a, b, c) = \int_{\alpha}^{\beta} \left(J_0(z) - \sum_{j=1}^{m} u_j(z) \right)^2 dz,
\]
which is an unconstrained nonlinear optimization problem. Here we’ll consider only the cases of \(m = 1 \) and \(m = 2 \). We’ll also replace the integral by a Gaussian quadrature of \(n = 10 \) nodes \(\{z_i\} \) and weights \(\{w_i\} \), scaled and translated to \([\alpha, \beta]\), so that the optimization problem (2) becomes
\[
 \min f(a, b, c) = \sum_{i=1}^{n} w_i \left(J_0(z_i) - \sum_{j} u_j(z_i) \right)^2,
\]

Remark. See Problem 4 of HW4 for the calculation of the roots \(\{x_i\} \) of Legendre polynomial, then \(z_i = x_i \cdot (\beta - \alpha)/2 + (\beta + \alpha)/2 \) are the Gaussian nodes. The weights are given by the formula \(w_i = 2/(1 - x_i^2) [p_n'(x_i)]^2 \); see Abramowitz and Stegun, page 887, section 25.4.29, where \(p \) is the Legendre polynomial of degree \(n \) and with \(p_n(1) = 1 \) — the one we used in Problem 4 of HW4.

a. Plot the function \(J_0(z) \) in \([\alpha, \beta]\).

b. For \(m = 1 \), only one function \(u_1(z) = c_1 \cos(a_1 z + b_1) \) is used to approximate \(J_0(z) \) in \([\alpha, \beta]\). Find \(a_1, b_1, c_1 \) to solve the optimization problem (3) by finding the zeros of the gradient of \(f \). Namely, solve the three equations \(\nabla f(a_1, b_1, c_1) = 0 \) by Newton’s iteration (denote a zero by \((\tilde{a}_1, \tilde{b}_1, \tilde{c}_1) \), a point in 3-D)

c. Provide the residual \(f \) and the gradient \(\nabla f \) at \((\tilde{a}_1, \tilde{b}_1, \tilde{c}_1) \). Plot the error function
\[
 e_1(z) = J_0(z) - u_1(z).
\]

d. How do you make sure that the zero you find corresponds the global minimum of the error function.

e. Extra. Fix \((a_1, b_1, c_1) = (\tilde{a}_1, \tilde{b}_1, \tilde{c}_1) \) and repeat steps (b), (c) and (d) with \(J_0(z) \) replaced by \(e(z) \), \(u_1(z) \) replaced by \(u_2(z) \), and \(e_1 \) replaced by
\[
 e_2(z) = J_0(z) - u_1(z) - u_2(z).
\]

Hint. For each optimization problem, it is important to find a good initial guess to start the Newton’s iteration, particularly for \(a_1 \), and \(a_2 \) if you do the last part (e). Experiment by looking at the plots of \(J_0(z) \) v.s. that of \(u_1(z) \), and the plots of the error function (4).