The role of the parsing process is to reconstruct a derivation of a given input string by a given Context Free Grammar. Equivalently, construct a parsing tree which represents a given input string. Parsing

Each recognizing function returns a tree fragment.
- Each terminal
 - expected terminal
 - lexicial scanner failure if the resulting token is not the terminal
- Each non-terminal in the R.H.S. is translated into a call to the function (procedure) that recognizes that non-terminal
- Each non-terminal on the R.H.S. is translated into a call to the body of the function
- Each right-hand side of a production provides part of the deriviation process.
- Each recognizing function returns a tree fragment.

Recursive Descent Parsing

General Structure

We consider first an ad-hoc manual method, called the derivation. Equivalently, construct the parsing tree which represents

The parsing process

The role of the parsing process is to reconstruct a derivation of a given input string by a given Context Free Grammar. Equivalently, construct a parsing tree which represents a given input string.
Example: Parsing a Declaration

FULL TYPE DECLARATION ::= type DEFINING IDENTIFIER is TYPE DEFINITION ;

Translates into

gettoken type
Find a defining-identifier — function call
get token is type-definition
Next token is type-definition
Translates into

FOR-TYPE-DEFINITION := "" ;

Example: Parsing a Loop

FOR STATEMENT ::= ITERATION SCHEME loop STATEMENTS endloop ;

Translates into

Node1 := functioncall gettoken loop
List1 := functioncall gettoken loop
gettoken semicolon
Result := build-loop-node with Node1 and List1
return Result

Example: Factor Grammar

If several productions have the same prefix, rewrite as a single production:

IF-STAT :: = if COND then Stats [ELSE PART] endif ;

Problem now reduces to recognizing whether an optional component (ELSE PART) is present.

Solution: Factor Grammar

Induction.
Collect functions returning a failure, this function returns a failure in case we fail to find any of the expected tokens or one of the

return result
result := build-loop-node with Node1 and List1
gettoken semicolon
gettoken loop
gettoken end loop
call functioncall
sequence-of-statements
gettoken semicolon
node1 := build-iteration-node with

Translation scheme loop statements end loop ;
Consider rule if cond then stats [else stats] end if;

The grammar:

Non-Terminals

Left Recursion Involving Several

Informally: $E \rightarrow + T E$ is a possibly empty sequence of terms

Original scheme leads to an infinite loop: grammar is inappropriate for recursive descent.

Problem: to find an E, start by finding an T...

Informally: $E \rightarrow T + T$ means that eventually E

End get-if

if token=end then
	return 0;
endif

if token=if then
	if get-stat()=0 then return 0;
	if get-cond()=0 then return 0;
	if get-stat()=1 then return 0;

boolean function get-if() =

Consider rule

Informally: $E \rightarrow + T E$ can be rewritten as

Rewrite as $E \rightarrow TE$ $E_0 \rightarrow + TE \leftrightarrow TE$ $E_0 \rightarrow + TE$

Informally: E_0 is a possibly empty sequence of terms (T) each preceded by a +.

Informally: $A \rightarrow BC$ $A \rightarrow BC$ $B \rightarrow AE$ $B \rightarrow AF$

Can be rewritten as

The grammar:

and then apply previous method

A | RC | AEC | E_0 A | RC | AEC | E_0
Lecture 3: Parsing
A. Pnueli

Honors Compilers, NYU, Fall, 2009

The General Case

Further Complications

Table-Driven Parsing

Honors Compilers, NYU, Fall, 2009
A PDA is defined by a tuple \((Q, \Sigma, \Gamma, \delta, q_0, Z_0, F)\), where:

- **States** \(Q\) — A finite set of states
- **Input alphabet** \(\Sigma\) — The input alphabet
- **Stack alphabet** \(\Gamma\) — The stack alphabet
- **Initial state** \(q_0 \in Q\) — The initial state
- **Initial stack symbol** \(Z_0 \in \Gamma\) — The initial stack symbol
- **Set of accepting states** \(F \subseteq Q\) — The set of accepting states

Formally

The transition function \(\delta: Q \times (\Sigma \cup \{\epsilon\}) \times \Gamma \rightarrow \mathcal{P}(Q \times \Gamma^*)\) is a non-deterministic transition function.

Runs and Acceptance

An instantaneous description (ID) is an \(A\)-successor of the ID \((p; ax; X)\), written \((p; ax; X) \xrightarrow{\delta} (q; x; \alpha)\), if \((q, x, \alpha) \in \delta(p, a, X)\).

An alternate definition is provided by the notion of the word accepted by an empty stack.

PDA’s Can Accept Languages Beyond FSM’s

For example, the language of balanced parentheses expressions. This language can be generated by the following grammar:

\[
S ::= () \mid (S) \mid SS
\]

A PDA which accepts this language is given as follows:

\[
\delta(q_0, \epsilon, Z_0) = (q_1, Z_0, Z_0) = (q_2, \epsilon)
\]

The transition function for this automaton can be given by:

\[
\delta(q_0, Z_0, Z_0) = (q_1, Z_0, Z_0) = (q_2, \epsilon)
\]
A PDA is defined to be deterministic (DPDA) if it has no -moves, and for every \(b \in \Sigma \), \(a \in \Sigma \) and \(X \in \Sigma \) and \(X \not\in I \),

\[
\{(I < \ell | \sigma_{q,0}) \} \cap \{(I < \ell | \sigma_{q,0}) \}
\]

DPDA (deterministic PDA). For example, there exist CFLs which cannot be recognized by a DPDA.

A language \(I \) is recognized by a (possibly non-deterministic) PDA if it is a CFL (can be generated by a CFG) and for every \(b \in \Sigma \), \(a \in \Sigma \) and \(X \in \Sigma \) and \(X \not\in I \),

\[
|X, a, b) \}
\]

no -moves

A PDA is defined to be deterministic (DPDA) if it has no -moves.

Semantic Action

When choosing a production, build the node for non-terminal, attach to parent \(T \).

If stack and input string are both empty, apply the accept.

Do not consume \(a \).

Otherwise, choose a grammar production \(T \rightarrow \alpha \). Replace \(T \) by \(\alpha \) and consume input. This is called a match action.

If \(T \) is a terminal symbol, then \(T \) must equal \(a \). Replace stack and the next input token.

At each step, let \(T \) be the symbol at top of the stack and \(a \) be the next input token.

Initially, stack contains Grammar start symbol \(S \).

\[
\text{Stack} \quad \text{Input} \quad \text{Action}
\]

\[
\begin{align*}
(_)(_)
\rightarrow (s)(_)
\rightarrow (ss)
\rightarrow (s)
\rightarrow s
\end{align*}
\]
We Need Deterministic Parsing

Claim 5. Every PD is equivalent to a single-state PDA.

What about multi-state PDAs?

Claim 6. No PDA accepts an empty stack.

Proof: Let A be a PD accepting a language L. Then no PD accepts a language L which includes \{e\}.

Correspondence of PDAs to CFGs

A CFG corresponds to a PD if

For every CFG G, there exists a PD A which accepts by top-down parsing the language L(G).

For every PD A, there exists a CFG G which accepts by top-down parsing the language L(A).

For every PD A, there exists a CFG G which accepts by leftmost derivation the string x.

For every CFG G, there exists a PD A which accepts by leftmost derivation the string x.

The transition function is defined as the smallest relation satisfying

Acceptance is by empty stack.

The grammar start symbol Z0 is a single-state PDA.

The grammar start symbol Z0 is a single-state PDA.

The grammar start symbol Z0 is a single-state PDA.

The grammar start symbol Z0 is a single-state PDA.

The grammar start symbol Z0 is a single-state PDA.

The grammar start symbol Z0 is a single-state PDA.

The grammar start symbol Z0 is a single-state PDA.

The grammar start symbol Z0 is a single-state PDA.

The grammar start symbol Z0 is a single-state PDA.

The grammar start symbol Z0 is a single-state PDA.

The grammar start symbol Z0 is a single-state PDA.

The grammar start symbol Z0 is a single-state PDA.

The grammar start symbol Z0 is a single-state PDA.

The grammar start symbol Z0 is a single-state PDA.

The grammar start symbol Z0 is a single-state PDA.

The grammar start symbol Z0 is a single-state PDA.

The grammar start symbol Z0 is a single-state PDA.

The grammar start symbol Z0 is a single-state PDA.

The grammar start symbol Z0 is a single-state PDA.

The grammar start symbol Z0 is a single-state PDA.

The grammar start symbol Z0 is a single-state PDA.

The grammar start symbol Z0 is a single-state PDA.

The grammar start symbol Z0 is a single-state PDA.

The grammar start symbol Z0 is a single-state PDA.

The grammar start symbol Z0 is a single-state PDA.

The grammar start symbol Z0 is a single-state PDA.

The grammar start symbol Z0 is a single-state PDA.

The grammar start symbol Z0 is a single-state PDA.

The grammar start symbol Z0 is a single-state PDA.

The grammar start symbol Z0 is a single-state PDA.

The grammar start symbol Z0 is a single-state PDA.

The grammar start symbol Z0 is a single-state PDA.

The grammar start symbol Z0 is a single-state PDA.

The grammar start symbol Z0 is a single-state PDA.

The grammar start symbol Z0 is a single-state PDA.

The grammar start symbol Z0 is a single-state PDA.

The grammar start symbol Z0 is a single-state PDA.

The grammar start symbol Z0 is a single-state PDA.

The grammar start symbol Z0 is a single-state PDA.

The grammar start symbol Z0 is a single-state PDA.

The grammar start symbol Z0 is a single-state PDA.

The grammar start symbol Z0 is a single-state PDA.

The grammar start symbol Z0 is a single-state PDA.

The grammar start symbol Z0 is a single-state PDA.

The grammar start symbol Z0 is a single-state PDA.

The grammar start symbol Z0 is a single-state PDA.

The grammar start symbol Z0 is a single-state PDA.

The grammar start symbol Z0 is a single-state PDA.

The grammar start symbol Z0 is a single-state PDA.

The grammar start symbol Z0 is a single-state PDA.

The grammar start symbol Z0 is a single-state PDA.

The grammar start symbol Z0 is a single-state PDA.

The grammar start symbol Z0 is a single-state PDA.

The grammar start symbol Z0 is a single-state PDA.

The grammar start symbol Z0 is a single-state PDA.

The grammar start symbol Z0 is a single-state PDA.

The grammar start symbol Z0 is a single-state PDA.

The grammar start symbol Z0 is a single-state PDA.

The grammar start symbol Z0 is a single-state PDA.

The grammar start symbol Z0 is a single-state PDA.

The grammar start symbol Z0 is a single-state PDA.

The grammar start symbol Z0 is a single-state PDA.

The grammar start symbol Z0 is a single-state PDA.

The grammar start symbol Z0 is a single-state PDA.

The grammar start symbol Z0 is a single-state PDA.

The grammar start symbol Z0 is a single-state PDA.

The grammar start symbol Z0 is a single-state PDA.

The grammar start symbol Z0 is a single-state PDA.

The grammar start symbol Z0 is a single-state PDA.

The grammar start symbol Z0 is a single-state PDA.

The grammar start symbol Z0 is a single-state PDA.

The grammar start symbol Z0 is a single-state PDA.

The grammar start symbol Z0 is a single-state PDA.

The grammar start symbol Z0 is a single-state PDA.

The grammar start symbol Z0 is a single-state PDA.

The grammar start symbol Z0 is a single-state PDA.

The grammar start symbol Z0 is a single-state PDA.

The grammar start symbol Z0 is a single-state PDA.

The grammar start symbol Z0 is a single-state PDA.

The grammar start symbol Z0 is a single-state PDA.

The grammar start symbol Z0 is a single-state PDA.

The grammar start symbol Z0 is a single-state PDA.

The grammar start symbol Z0 is a single-state PDA.

The grammar start symbol Z0 is a single-state PDA.

The grammar start symbol Z0 is a single-state PDA.

The grammar start symbol Z0 is a single-state PDA.

The grammar start symbol Z0 is a single-state PDA.

The grammar start symbol Z0 is a single-state PDA.

The grammar start symbol Z0 is a single-state PDA.

The grammar start symbol Z0 is a single-state PDA.

The grammar start symbol Z0 is a single-state PDA.

The grammar start symbol Z0 is a single-state PDA.

The grammar start symbol Z0 is a single-state PDA.

The grammar start symbol Z0 is a single-state PDA.

The grammar start symbol Z0 is a single-state PDA.

The grammar start symbol Z0 is a single-state PDA.

The grammar start symbol Z0 is a single-state PDA.

The grammar start symbol Z0 is a single-state PDA.

The grammar start symbol Z0 is a single-state PDA.

The grammar start symbol Z0 is a single-state PDA.

The grammar start symbol Z0 is a single-state PDA.

The grammar start symbol Z0 is a single-state PDA.

The grammar start symbol Z0 is a single-state PDA.

The grammar start symbol Z0 is a single-state PDA.

The grammar start symbol Z0 is a single-state PDA.

The grammar start symbol Z0 is a single-state PDA.

The grammar start symbol Z0 is a single-state PDA.

The grammar start symbol Z0 is a single-state PDA.

The grammar start symbol Z0 is a single-state PDA.

The grammar start symbol Z0 is a single-state PDA.

The grammar start symbol Z0 is a single-state PDA.

The grammar start symbol Z0 is a single-state PDA.

The grammar start symbol Z0 is a single-state PDA.

The grammar start symbol Z0 is a single-state PDA.

The grammar start symbol Z0 is a single-state PDA.

The grammar start symbol Z0 is a single-state PDA.

The grammar start symbol Z0 is a single-state PDA.

The grammar start symbol Z0 is a single-state PDA.

The grammar start symbol Z0 is a single-state PDA.

The grammar start symbol Z0 is a single-state PDA.

The grammar start symbol Z0 is a single-state PDA.

The grammar start symbol Z0 is a single-state PDA.

The grammar start symbol Z0 is a single-state PDA.

The grammar start symbol Z0 is a single-state PDA.

The grammar start symbol Z0 is a single-state PDA.

The grammar start symbol Z0 is a single-state PDA.

The grammar start symbol Z0 is a single-state PDA.

The grammar start symbol Z0 is a single-state PDA.

The grammar start symbol Z0 is a single-state PDA.

The grammar start symbol Z0 is a single-state PDA.

The grammar start symbol Z0 is a single-state PDA.

The grammar start symbol Z0 is a single-state PDA.

The grammar start symbol Z0 is a single-state PDA.

The grammar start symbol Z0 is a single-state PDA.

The grammar start symbol Z0 is a single-state PDA.

The grammar start symbol Z0 is a single-state PDA.

The grammar start symbol Z0 is a single-state PDA.

The grammar start symbol Z0 is a single-state PDA.

The grammar start symbol Z0 is a single-state PDA.
The following grammar for balanced parentheses expressions is not $LL(k)$ for any k:

\[
S \::= (| (S) | SS
\]

A 2-lookahead is sufficient in order to distinguish between $()$ and (S). However, no bounded lookahead is sufficient in order to distinguish between (S) and SS.

The following grammar is $LL(1)$:

\[
S \::= (| (S) | SS
\]

If the next input character is ϵ we choose $(S)S$. Otherwise we choose ϵ.

Computing First(X)

- If X is terminal, then $\text{First}(X) = \{ X \}$.
- For each non-terminal X and production $X \rightarrow \alpha_1 \cdots \alpha_k$:
 - Add α_i to $\text{First}(X)$ if, for some i, $\alpha_i \in \text{First}(\alpha_j)$; for all $j \in [i+1,k]$.
 - Add ϵ to $\text{First}(X)$ if $\alpha_i \notin \text{First}(\alpha_j)$ for all $j \in [i+1,k]$.

Examples

- Let $k > 0$ be a positive integer. The grammar G is called an $LL(k)$ grammar if, for every leftmost derivation $A \rightarrow_1 \beta_1 \cdots \beta_k \rightarrow_1 xy$, the production $A \rightarrow \alpha_1 \cdots \alpha_k$ is uniquely determined by A, and the first k characters of y.

- The name is based on the fact that parsing according to such a grammar reads the input from left to right while constructing a leftmost derivation with a lookahead of k characters.

- The unique determination means that we have two derivations of the form $S \rightarrow_1 x_1 \beta_1 \alpha_1 \rightarrow_1 x_1 \beta_1 \beta_2 \alpha_2 \rightarrow_1 x_1 \beta_1 \beta_2 \beta_3 \alpha_3 \rightarrow_1 \cdots \rightarrow_1 x_1 \beta_1 \beta_2 \cdots \beta_k \alpha_k$, then $\beta_1 = \beta_2 = \cdots = \beta_k$.

Constructing $LL(1)$ Tables

- Define two functions on the symbols of the grammar:
 - First and Follow.
- For a non-terminal $A \in N$, $\text{First}(A)$ is the set of terminals that can appear as the first character in a string derived from A.
- For a string $X_1 \cdots X_k$, and terminal a, we say that $a \in \text{First}(X)$ if and only if $a \in \text{First}(X_1) \cap \cdots \cap \text{First}(X_k)$.
- $\text{Follow}(A) = \{ \epsilon \in T \mid S \rightarrow \epsilon \Rightarrow * \}
- For a string $X_1 \cdots X_k$, and terminal a, we say that $a \in \text{Follow}(X)$ if and only if $a \in \text{First}(X_2) \cap \cdots \cap \text{First}(X_k)$ for some $i \in [1,k]$.

- $\text{Follow}(A) = \{ \epsilon \in T \mid S \rightarrow \epsilon \Rightarrow * \}
- For a string $X_1 \cdots X_k$, and terminal a, we say that $a \in \text{Follow}(X)$ if and only if $a \in \text{First}(X_2) \cap \cdots \cap \text{First}(X_k)$ for some $i \in [1,k]$.
leading to the following parsing table:

```
First/Follow

Non-Terminal   FIRST   FOLLOW

E              
T              
L              

<table>
<thead>
<tr>
<th>Input</th>
<th>Action</th>
<th>Stack</th>
</tr>
</thead>
<tbody>
<tr>
<td>$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>p</td>
<td></td>
<td>$L</td>
</tr>
<tr>
<td>p</td>
<td></td>
<td>$L*</td>
</tr>
<tr>
<td>$L*</td>
<td></td>
<td>L</td>
</tr>
<tr>
<td>L</td>
<td></td>
<td>$</td>
</tr>
<tr>
<td>p</td>
<td></td>
<td>$L</td>
</tr>
<tr>
<td>$L</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
```

We can parse the following inputs:

```
Parsing of Arithmetic Expressions

Example: Parsing Table 1
```

This is the parsing table for the grammar:

```
A       B       C

A       B

A       B

A       B

A       B
```

Such that \(\beta \in \text{Follow}(A) \) and \(A \rightarrow \alpha \) to \(\alpha \rightarrow A \) if \(\alpha \in \text{First}(A) \), then for each terminal \(\alpha \in \text{First}(A) \), add \(\alpha \rightarrow A \), where \(\alpha \) is terminal or non-terminal.

If there is a production \(A \rightarrow B \) and all symbols in \(B \) are in \(\text{Follow}(A) \) \(\beta \), where \(\beta \in \text{First}(A) \), then add all symbols in \(\{ \beta \} \) to \(\text{Follow}(B) \). If there is a production \(A \rightarrow B \) and all symbols in \(B \) are in \(\text{Follow}(A) \) \(\beta \), then add all symbols in \(\{ \beta \} \) to \(\text{Follow}(B) \). If there is a production \(A \rightarrow B \) and all symbols in \(B \) are in \(\text{Follow}(A) \) \(\beta \), then add all symbols in \(\{ \beta \} \) to \(\text{Follow}(B) \). If there is a production \(A \rightarrow B \) and all symbols in \(B \) are in \(\text{Follow}(A) \) \(\beta \), then add all symbols in \(\{ \beta \} \) to \(\text{Follow}(B) \).
Correctness of the Construction

Claim 6. A grammar \(G \) is an \(LL(1) \) grammar if the parsing table \(M[A,a] \) contains at most one production in each entry.