
Chapter 8

Stochastic Choices

April 24, 2002
We continue investigating the choice-mode of computation. This chapter focuses on the stochastic choices, viz.,

coin-tossing f, probabilistic-and ⊗ and probabilistic-or ⊕. In contrast to alternation, we see that a rich theory
arises when we restrict computational errors in stochastic computation.

In this chapter, it is essential to revert to the use of intervals when discussing valuations. For convenience, an
appendix on basic probabilistic vocabulary is included.

8.1 Errors in Stochastic Computation

Two new phenomena arise with stochastic choices:

• Infinite loops in stochastic computation is an essential feature, rather than one we seek to eliminate (cf. al-
ternation). This will be evident when we study space-bounded computations in section 3.

• An extremely rich theory arises from quantifying the forms of computational error. We think of error as a
new computational resource.

Forms of computational error. Let M be a choice machine and suppose ValM (w) = [b, c] where w is
an input word. If M accepts w (i.e., b > 1

2 ) then both 1 − b and 1 − c are useful measures of error. Since
1
2 > 1−b ≥ 1−c ≥ 0, we may call 1−b and 1−c (respectively) the pessimistic acceptance error and optimistic
acceptance error. Similarly, if M rejects w, then b and c are (respectively) the optimistic rejection error and
pessimistic rejection error. We have two basic paradigms for classifing errors: for optimistic errors, we say M
has “zero error” if for all inputs, its optimistic error is 0. For pessimistic errors, we say M has “bounded-error” if
its pessimistic errors are bounded away from 1

2 by a positive constant.
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Figure 8.1: Forms of Error.

Stochastic computation has been studied since the early days of automata theory [9]. One original motivation1

is the fundamental question of synthesizing reliable components from unreliable ones [22]. Stochastic computation
in complexity theory started with the work of Gill [12].

Example 1 Gill was in turn motivated by some surprising probabilistic algorithms for primality testing algorithms
due to Rabin [23] and Solovay-Strassen [33]. These primality testing algorithms share a common property: every
computation path terminates and at each terminal configuration C,

1Modern computer hardware is remarkably reliable (compared to software). In the early days of computing, this reliability could
not be taken for granted.
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1) if C answers YES (i.e., claims that the input is prime) then there is a “small probability” that it made an error;

2) if C answers NO (i.e., claims that the input is composite) then it is surely correct.

The algorithm does not have YO-answers. It is not so easy to quantify the “small probability” of the YES
answers. But we may rephrase this property, taking the viewpoint of the inputs:

1′) if the input is prime then all local answers are YES;

2′) if the input is composite then the local answer is NO with “high probability”.

The reader should verify that 1′) and 2′) (the global perspective) are just reformulations of 1) and 2) (the local
perspective). We elaborate on this because it is easy to become confused by a mixture of these two perspectives.
The global formulation is more useful because we can explicitly quantify the “high probability” in it: it means with
probability more than 3/4. We see that these primality algorithms make no errors whenever they (globally) accept.

To remember which way the primality algorithms may have errors, it is helpful to know this: the algorithms
answers NO (i.e., claims that an input is composite) only if it finds a “witness” of compositeness. Hence
NO-answers are never wrong by virtue of such witnesses. In contrast, the algorithm answers YES (i.e., claims
an input is prime) based on its failure to find a witness – such a YES answer could be wrong because an
individual path does not exhaustively search for witnesses. In fact the algorithm looks for witnesses by randomly
picking candidate witnesses and then checking each for the witness property. An example of a witness of the
compositeness of a number n is a factor m (1 < m < n) of n. It is easy to check if any proposed witness m
is a factor. Unfortunately, there may be as few as two witnesses for some composite numbers; in this case,
the method of randomly selecting candidate witnesses for testing is unreliable. The algorithms of Rabin and
of Solovay-Strassen solve this by using more sophisticated concepts of “witnesses” where it can be shown that
each composite number has a positive fraction of witnesses among the candidates, and a prime number has no
witness.

This example will be used again to illustrate error concepts.

We now classify Turing machines according to their error properties.

Definition 1
(i) A non-empty interval g containing the value 1

2 is called an error gap. Thus g has one of the forms

[a, b], (a, b], [a, b), (a, b)

where 0 ≤ a ≤ 1
2 ≤ b ≤ 1. We call a and b (respectively) the lower and upper bounds of g.

(ii) A choice machine M accepts with error gap g if for all accepted inputs w,

ValM (w) ∩ g = ∅.

Nothing is assumed if w is rejected or undecided. Similarly, we define rejection with error gap g. Finally, M
has error gap g if for all input w, it accepts w or rejects with error gap g. Thus M is decisive.
(iii) We say M accepts with bounded-error if there exists e (0 < e ≤ 1

2 such that for all accepted inputs w,
ValM (w) ∩ [12 − e, 1

2 + e] = ∅. Similarly, M rejects with bounded-error if for all rejected inputs w, ValM (w) ∩
[ 12 − e, 1

2 + e] = ∅. Also, M has bounded-error if for all inputs, ValM (w) ∩ [12 − e, 1
2 + e] = ∅. Say M has

unbounded-error if it does not have have bounded-error.

While bounded error focuses on pessimistic errors, the next set of definitions focus on optimistic errors.

Definition 2 (Continued)
(iv) We say M accepts with zero-error if for all accepted w, the upper bound of ValM (w) is 1. Similarly, M
rejects with zero-error if for all rejected w, the lower bound of ValM (w) is 0. We say 2 M has zero-error if it
is decisive, and it has zero-error acceptance and zero-error rejection.
(v) We combine bounded-error and zero-error: M has bounded zero-error rejection if it has bounded-error
and zero-error rejection. Bounded zero-error rejection is also called one-sided error. By symmetry, we say M
has bounded zero-error acceptance it has bounded-error and zero-error acceptance. Finally, M has bounded
zero-error if it has bounded-error and zero-error.

2We emphasize that “zero-error” does not imply the absence of all errors: it only refers to the optimistic errors. It also seems that
“errorless” would be preferable to “zero-error” in this set of terminology.
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Let us briefly discuss the significance of these forms of error and their motivations. Although our error concepts
treat acceptance and rejection with an even hand, we still favor acceptance when it comes to defining languages
and complexity classes: for any machine M , the notation

L(M)

continues to refer to the language accepted by M . So a word w 6∈ L(M) is either rejected or undecided by M .

Bounded Errors. Note that undecided intervals in INT are error gaps. Clearly a machine has error gap if and
only it has the minimal error gap [12 , 1

2 ], if and only if it is decisive. In this sense, bounded-error is a strengthening of
halting deterministic computations (which are decisive). Students sometimes confuse the definition of “decisiveness”
(a global condition) with the local condition that every path gives a YES or NO answer (and hence each path is
finite). For instance, a decisive Turing machine could have infinite computation trees on each of its inputs.

To understand the significance of bounded-error, note that in general, acceptance and rejection errors can get
arbitrarily close to 1

2 . This behavior is forbidden by bounded-error. The next section shows that with bounded-
error we can modify a machine to yield error gaps of the form [ε, 1 − ε] for any desired constant 0 < ε < 1

2 , at
a cost of increasing the computational time by a constant factor depending on ε. This yields a very important
conclusion: assuming we can tolerate constant factor slowdowns, bounded-error algorithms are practically as good as
deterministic algorithms. This is because any physical realization of a deterministic algorithm will still be subject
to a small ε∗ > 0 probability of error, from quantum effects, manufacturing imperfections, etc. Thus, all real
computer programs are bounded error algorithms.

Nondeterministic vs. probabilistic machines. Let N be a nondeterministic machine. The valuation function
ValN has values in {0, 1,⊥}. It follows that N accepts with no pessimistic error. Next, let us see what happens
when N is converted into a probabilistic machine M , simply by declaring each state a toss-state. If N does not
accept an input, M also does not accept. Hence we have

L(M) ⊆ L(N).

A further modification to M yields a probabilistic machine M ′ that accepts the same language as N : let M ′ begin
by tossing a coin in the start state, and on one outcome it immediately answers YES, and with the other outcome
it simulates N . So M ′ is undecided on input w 6∈ L(N), since the lower bound of ValM ′(w) is exactly 1

2 . This
shows

NTIME (t) ⊆ PrTIME (t + 1). (1)

A simple modification to M ′ will ensure that it has zero-error acceptance: simply make all terminal which answer
NO to answer YO instead. Notice that N , M and M ′ are not decisive in general.

Zero-error computation. The primality testing algorithms above accept with zero-error. The concept of zero-
error is best understood in terms of stochastic machines with no negation states: in this case acceptance with zero-
error means that if an input is accepted then no computation path leads to a NO-configuration. Similarly, “rejecting
with zero-error” means that if an input is rejected, then no computation path leads to a YES-configuration. In
either case, YO-configuration (or looping) is not precluded. Because of monotonicity properties, if a complete
computation tree TM (w) accepts with zero-error then any prefix T ′ of TM (w) also accepts with zero-error, if T ′

accepts at all.

One-sided error. One-sided error is also motivated by the primality algorithms. These algorithms have no
pessimistic errors on prime inputs, by virtue of property 1′), and have bounded error on composite inputs, by
property 2′). Thus such an algorithm has bounded zero-error acceptance. Now with a trivial change, we can regard
the same algorithm as a recognizer of composite numbers: it answers YES iff it finds a witness of compositeness.
This new algorithm has bounded zero-error rejection, i.e., it has one-sided error.

This begs the question as to why we define one-sided error in favor of “zero-error rejection” over “zero-error
acceptance”. We suggest that the (non-mathematical) reason has to do with our bias towards nondeterministic
machines: a probabilistic machine M with one-sided error can be regarded as a nondeterministic machine N . Let
us clarify this remark. For, if M accepts w then some terminal configuration gives a YES-answer, and so N accepts
w. Conversely, if M does not accept w, there is no YES-configuration because M has zero-error rejection. Hence,
N does not accept w. We conclude that L(M) = L(N). This proves

PrTIME 1(t) ⊆ NTIME (t). (2)



4 CHAPTER 8. STOCHASTIC CHOICES

The subscript “1” in “PrTIME 1(t)” refers to one-sided error (the general convention is described below).
The literature often discuss errors in the context of probabilistic machines that run in time t(n) for some time-

constructible t (e.g., t is a polynomial). In this case, we can simplify. For instance, we need not deal with intervals:
if a stochastic machine does not terminate within t steps, we simply answer NO. This avoids the value ⊥ and
the pessimistic and optimistic errors coincide. This approach does not work in space-bounded computations, for
instance.

Error-Restricted Complexity. Since error is viewed as another computational resource, we combine error
bounds with other resource bounds. The number of logical possibilities is large, but happily, only a few forms are
important. For instance, we exclusively use constant gap functions in complexity characteristics.

The following illustrates the combination of acceptance time with bounded-error or with zero-error:

Definition 3 Let t be a complexity function. A choice machine M accepts in time t with bounded-error if
there is an error gap g = [a, b], a < 1

2 < b such that for all accepted inputs w, there is an accepting computation
tree T such that ValT (w) ∩ g = ∅ and each path in T has length at most t(|w|).

Note that the time bound and error gap are simultaneously achieved in a single computation tree T . To
appreciate this, suppose another computation tree T ′ of height t′ < t is a prefix of T . Because of monotonicity,
we have ValT ′(w) v ValT (w). So it is possible that ValT ′(w) ∩ g is non-empty and yet T ′ is accepting. So M
accepts in time t′ but not necessary with the same gap g. In general, all complexity characteristics we specify for
a machine are assume to be simultaneous unless otherwise stated.

We can add any of the error restrictions (bounded-error, zero-error, one-sided error, etc) to any of the usual
complexity resource (time, space, reversal, simultaneous time-space, etc) bounds. Thus we can speak of M accepting
in polynomial space with one-sided error.

We can also extend acceptance complexity to “rejection complexity” and to “running complexity”. For rejection
complexity, just replace acceptance by rejection. For running complexity, we make decisiveness a pre-requisite. Then
a running complexity bound is simply a common bound on both accepting complexity and rejecting complexity.

Notation for error-restricted complexity classes. For simplity, we assume that the machines used in defining
error-restricted classes must be decisive and that running complexity is used. However, we do not assume our
machines to be halting (i.e., halts on all computation paths). A machine can be decisive without being halting;
conversely, it can be halting without being decisive. Indeed, in space bounded computation, halting is not necessarily
desirable. To refer to such classes, it is sufficient to augment our previous convention for complexity classes, simply
by introducing new subscripts. Until now, we have only one kind of subscript, ‘r’, denoting running complexity.
We now introduce three new subscript z,

z ∈ {b, 0, 1},
to indicate the following restrictions: bounded-error (z = b) or one-sided error (z = 1) or bounded zero-error (z = 0).
Note a linear hierarchy in these subscripts: for instance, for most complexity functions t, we have

PrTIME 0(t) ⊆ PrTIME 1(t) ⊆1 PrTIME b(t + 2) ⊆ PrTIME r(t + 2) ⊆ PrTIME (t + 2).

The only case in the above inclusions where t must be restricted is PrTIME 1(t) ⊆1 PrTIME b(t + 2) where we
require t be to time-constructible. This inclusion follows from the following general result:

We could replace PrTIME here by other suitable mode-resource pairs. These notations are illustrated in the
last column of the following table.

The table below lists some important time-feasible (i.e., polynomial time) complexity classes, under the various
choice and error modes:

Some Polynomial Time Stochastic Classes
Error Mode Choice Mode Common Symbol Generic Notation
Unbounded error { f} PP PrTIME (nO(1))
Bounded error { f} BPP PrTIME b(nO(1))
One-sided error { f} RP (also denoted VPP or R) PrTIME 1(nO(1))
Bounded zero-error { f} ZPP PrTIME 0(nO(1))
Bounded error { f,∨} IP , IpTIME b(nO(1))
Bounded error { f,∨} AM IpTIME -(nO(1), O(1))

Remark: PP is the only class in this table that is not error-restricted. Hence PP -machines are not á priori
required to be decisive, and such machines have polynomial acceptance (not running) time.
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Relationships Among Feasible Time Stochastic Classes. Let us show some known inclusions among these
classes and the connection to canonical classes such P and NP . The following are trivial relationships.

P ⊆ ZPP ⊆ RP ⊆ BPP ⊆ PP ⊆ PSPACE ,

BPP ⊆ IP ∩ PP .

We also have
RP ⊆1 NP ⊆2 PP .

The inclusion (⊆2) follows from equation (1) while inclusion (⊆1) follows from equation (2).
From the previous chapter (corollary 25), we have:

PP ⊆ IP ⊆ PSPACE .

However, we shall see that IP = PSPACE . Recall that Primes ∈ co-RP .
We now show the following, attributed to Rabin:

ZPP = RP ∩ co-RP . (3)

Some preliminary remarks are in order: recall that f-operator (see Section 7.1) satisfies De Morgan’s law: (1 −
x) f(1− y) = 1− (x fy). This means that if M is a halting probabilistic machine, and we negate its local answers
(interchanging YES and NO), then we obtain a machine M such that L(M) ∩ L(M) = ∅. If M is decisive, then
L(M) = co-L(M). Moreover, if M has 1-sided error, then M has bounded zero-error acceptance.

One direction of (3) is clear: ZPP ⊆ RP ∩ co-RP . Conversely, suppose L ∈ RP ∩ co-RP . By the preceding
remarks, L is accepted by bounded error polynomial-time probabilistic machines M and N where M has 1-sided
error and N has bounded zero-error acceptance. We may assume that M and N are halting. We then construct a
probabilistic machine that dovetails the computation of M and N in a step-for-step fashion until one of the following
two events: (a) if N answers YES, we answer YES; (b) if M answers NO, we answer NO. If N answers NO or M
answers YES, we simply continue simulation of the other machine. If both machines halt without events (a) or
(b) occurring, we loop. This dovetail process essentially gives us a computation tree whose paths can be made to
correspond in a bijective fashion with the set of all pairs of paths (p, p′) where p comes from M and p′ from N.
Then it is not hard to see that the simulation runs in polynomial time with zero-error (Exercise).

Figure 8.2 summarizes the relationship of the main feasible-time classes based on stochastic choices with the
canonical classes:

NP ∩ co-NP

IP = PSPACE

PP

ZPP

P

NP co-NPBPP

RP co-RP

Figure 8.2: Feasible classes in the stochastic mode

Remark: The “error” terminology can be confusing but it is unfortunately well-established in the literature.
We have attempted to systematize these concepts in the light of interval values. Our classification of errors into
pessimistic versus optimistic may be helpful: thus, “error gap” and “bounded-error” always refers to pessimistic
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errors, and “zero-error” always refers to optimistic errors. Since pessimistic and optimistic errors are independent
constraints on a computation, the two concepts can be distinguished in our terminology: the word “error” is always
accompanied by key words such as “bounded”, “gap” or “zero” which unambiguously indicate the form of error.
Most of the literature do not discuss these concepts in the generality given here, mostly focusing on polynomial-time
classes. Indeed, while BPP is standard notation, there is no standard notation for classes such as PrTIME b(t(n)).

Exercise

Exercise 8.1.1: Consider an alternative approach that distinguishes YO-answers from looping: assign the value
1
2 to YO-configurations. (Thus, basis sets B for choice machines are required to the new constant function,
1
2 in addition to the others. Also, the function 1

2 adds nothing new if the toss-function f is already in B.)
In the standard treatment of YO-configurations, it is not hard to see that a {⊗,⊕}-machine amounts to an
alternating machine. In what sense does the alternative treatment of YO-configurations apparently increase
the power of such machines? Is this apparent increase real?

Exercise 8.1.2: Suppose a stochastic machine is not decisive. Prove that if it accepts in time bound t(n) where
t is time-constructible, then we can convert it into one accepting in time O(t) with the minimal error gap
[12 , 1

2 ]. Prove the same for space bounded acceptance.

Exercise 8.1.3: Let t(n) be any complexity function and K1 = PrTIME 1(t(n)). Also let K2 be the class of
languages accepted by probabilistic choice machines with bounded error and zero-error acceptance, running
in time t(n). Under what conditions on t would we obtain K1 = co-K2?

Exercise 8.1.4: Complete the arguments showing ZPP = RP ∩ co-RP .

Exercise 8.1.5: (Gill)
(i) Show that PP and BPP are closed under complementation.
(ii) Show that BPP and RP are closed under union and intersection.

Exercise 8.1.6: (Gill)

We consider probabilistic transducers. For any probabilistic transducer M and input w, we may talk of
the probability that M on w produces x as output. Let this (least fixed point) probability be denoted
Pr{M(w) = x}. Let tM be the partial transformation such that for all w, tM (w) = x if Pr{M(w) = x} > 1/2;
and tM (w) ↑ if there is no such x. Clearly tM is uniquely determined by M and is called the transformation
computed by M. Show that if M is s(n)-space bounded then x = tM (w) implies |x| ≤ f(s(|w|)) where f(n) is
the number of configurations of M using space at most n.

End Exercise

8.2 How to Amplify Error Gaps

In this section, we seek techniques to convert a machine with error gap G into one with a strictly larger error gap
G′, G ⊂ G′. We now describe three such techniques, depending on the form of error and type of machine. The
importance of such techniques is clear: if we can make such error gaps approach (0, 1) (while keeping the running
time feasible) then probabilistic algorithms may become indistinguishable from deterministic ones. For instance, a
“theoretical” algorithm with a error probability of less than 2−1000 is much more reliable than any implemented
algorithm will ever be, since implemented algorithms will contain many other (non-mathematical) sources of error
such as the unreliability of hardware, not to speak of software.
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(I) Halting Zero-error Rejection Machines. Let M be a halting probabilistic machine with zero-error re-
jection. Suppose M accepts3 if with error gap [0, b]. We can boost the error gap very easily as follows. Fix some
k ≥ 1. Let N be the following machine:

On any input w, simulate M on w for k times. This yields k answers, since M is halting. If any of the
simulation answers YES, N answers YES. If all the k answers are NO or YO, N answers NO.

If w is rejected by M , then N always answer NO (this is because N has zero-error rejection). If w is accepted by
M , the probability of a YES-computation path of M is at least b. Hence the probability that N accepts is at least
1− (1− b)k. So N accepts with error gap

[0, 1− (1− b)k]

which strictly includes [0, b]. Thus, halting zero-error rejection implies bounded-error acceptance. The technique
will not work if M can have pessimistic errors in rejection.

(II) Bounded-error Probabilistic Machines. For bounded-error machines, we can use the “majority voting”
scheme: repeat for an odd number of times an experiment with binary outcome; we take the majority outcome
(i.e., the outcome occurring more than half the time) as output. We justify this procedure with a lemma [29]:

Lemma 1 (a) Consider an experiment in which an event E occurs with probability

p ≥ 1
2

+ e

for some 0 < e < 1
2 . Then in 2t + 1 independent trials of the experiment, the probability that E is the majority

outcome is greater than

1− 1
2
(1− 4e2)t.

(b) Similarly, if E occurs with probability

p ≤ 1
2
− e

then the probability that E is the majority outcome is less than

1
2
(1− 4e2)t.

Proof. (a) Let q = 1 − p and i = 0, . . . , t. Then the probability pi that E occurs exactly i times out of 2t + 1 is
given by the binomial distribution,

pi =
(

2t + 1
i

)
piq2t+1−i

=
(

2t + 1
i

)
(
1
2

+ e)i(
1
2
− e)2t+1−i

[
p

1
2 + e

]i [
q

1
2 − e

]2t+1−i

=
(

2t + 1
i

)
(
1
2

+ e)i(
1
2
− e)2t+1−i

[
pq

(1
2 + e)(1

2 − e)

]i [
q

1
2 − e

]2t+1−2i

∗≤
(

2t + 1
i

)
(
1
2

+ e)i(
1
2
− e)2t+1−i

≤
(

2t + 1
i

)
(
1
2

+ e)i(
1
2
− e)2t+1−i

[ 1
2 + e
1
2 − e

]t−i

=
(

2t + 1
i

)
(
1
2

+ e)t(
1
2
− e)t+1

<

(
2t + 1

i

)
(
1
4
− e2)t 1

2
.

3By definition, b ≥ 1/2. But in some sense, this technique works as long as b > 0.
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Note that our derivation is careful to justify the transition (
∗≤) from p to 1

2 + e. Therefore the probability that E
occurs in more than t trials is at least

1−
t∑

i=0

pi > 1−
t∑

i=0

(
2t + 1

i

)
(
1
4
− e2)t 1

2

= 1− 22t(
1
4
− e2)t 1

2

= 1− 1
2
(1− 4e2)t.

(b) Similarly, if p ≤ 1
2 − e then for i ≥ t + 1 we have

pi ≤
(

2t + 1
i

)
(
1
4
− e2)t 1

2

and hence the probability that E occurs in more than t trials will be at most

2t+1∑
i=t+1

pi ≤ 22t(
1
4
− e2)t 1

2
(4)

=
1
2
(1− 4e2)t. (5)

Q.E.D.

Using this, we can boost an error gap Ge = [12 − e, 1
2 + e] (0 < 1

2 < e) to [12 − e′, 1
2 + e′] where

e′ =
1
2
(1− 4e2)t

if we do the majority vote for 2t + 1 trials. For instance, with e = 1/4 and t = 8, we have e′ = 1
2 (3/4)t < 0.051.

An error gap function G assigns an error gap G(n) to each n ∈ N. A machine M has error gap G if for all
inputs w, ValM (w) ∩G(|w|) = ∅. Let G0 be the error gap function given by

G0(n) = [2−n, 1− 2−n].

We have the following useful lemma:

Lemma 2 Each language in BPP is accepted by a probabilistic acceptor that runs in polynomial time with error
gap G0.

Proof. We may assume that the language is accepted by some M that runs in time nd with error gap G = [12−e, 1
2+e]

for some d ≥ 1 and 0 < e < 1
2 . Applying the lemma, we want to choose t satisfying

2−n ≥ (1 − 4e2)t

2

2n−1 ≤ 1
(1 − 4e2)t

n− 1 ≤ t log
(

1
1− 4e2

)

t ≥ n− 1
log(1/(1− 4e2))

.

The desired machine N, on each computation path, simulates M for at most 2t + 1 = O(n) times and outputs the
majority outcome. Clearly N runs in time Oe(nd+1) with error gap G0. Q.E.D.

Let us give an application of this lemma:

Theorem 3 (Ko, 1982) If NP ⊆ BPP then NP = RP.
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Proof. Since RP ⊆ NP , it suffices to show inclusion in the other direction. It is easy to see that RP is closed
under polynomial-time many-one reducibility, and hence we only have to show that the NP -complete language SAT
belongs to RP . Suppose we want to check if a given CNF formula F = F (x1, . . . , xn) on n variables is satisfiable.
For any sequence of Boolean values b1, . . . , bk (k ≤ n), let Fb1b2···bk

denote the formula F with xi replaced by bi,
for i = 1, . . . , k. We show how to construct a sequence b1, . . . , bn such that if F is satisfiable then Fb1···bn is true
with very high probability. By our assumption that NP ⊆ BPP , there is a bounded-error probabilistic machine
M accepting SAT in polynomial time. Moreover, by the preceding lemma, we may assume that M has error gap
function G0 and that M halts on every path in polynomial time.

We shall operate in n stages. At the start of stage k (k = 1, . . . , n), inductively assume that we have computed
a sequence of Boolean values b1, . . . , bk−1. It will be shown that Fb1,...,bk−1 is probably satisfiable. In stage k, we
compute bk:

1. Call M on input Fb1···bk−10.
2. If M answers YES, then set bk = 0 and go to DONE.
3. Else call M on input Fb1···bk−11.
4. If M answers NO again, we answer NO and return.
5. Else set bk = 1.
6. DONE: If k < n we go to stage k + 1.
7. Else answer YES if Fb1,...,bn = 1, otherwise answer NO.

Let us analyze this procedure. It is clearly polynomial time.
If k < n, we either terminate in stage k with a NO answer, or we proceed to stage k +1. If k = n, we will surely

terminate in stage k with answer YES or NO, and this answer is never in error. Thus our YES answers are never
wrong. So if F is unsatisfiable, we answer NO on every path. Thus we have zero-error rejection.

Finally, let us prove that if F is satisfiable, then our procedure answer YES with probability > 1/2. Write Fk

for Fb1,...,bk
, assuming that b1, . . . , bk are defined. Let the event Ak correspond to “ no mistakes up to stage k”, i.e.,

Fk is defined and satisfiable. Similarly, let event Ek correspond to “first mistake at stage k”, i.e., Ek = Ak−1 ∩Ak.
CLAIM: Pr(Ek) ≤ 2 · 2−|F |+1).

Proof: Note that Pr(Ek) ≤ Pr(Ek|Ak−1). We will bound Pr(Ek|Ak−1). Assuming Ak−1, we consider 2 cases: (A)
CASE Fb1···bk−10 is not satisfiable. Then Fb1···bk−11 is satisfiable. With probability ≥ (1−2−|F |), M will (correctly)
answer NO the first time we invoke M . Then with probability ≥ (1 − 2−|F |), M will (correctly) answer YES the
second time. So Pr(Ak|Ak−1) ≥ (1− 2−|F |)2 and

Pr(Ek|Ak−1) ≤ 1− (1− 2−|F |)2 ≤ 2−|F |+1).

(B) CASE Fb1···bk−10 is satisfiable. This case is even easier, and yields Pr(Ek|Ak−1) ≤ 2−|F |. This proves the claim.
To conclude the theorem, the probability of making mistake at any stage is at most

n∑
k=1

Pr(Ek) ≤ 2n · 2−|F | ≤ 2n · 2−2n.

This is less than 1/2 for n large enough. Hence F will be accepted. Q.E.D.

See Exercise for another proof.

(III) Stochastic machines. We now introduce a third technique that is applicable to stochastic machines.
Motivated by a paper of Valiant, we introduce the following probability functions:

• P (x) := x⊗ x = x2

• Q(x) := x⊕ x = x(2− x).

• A(x) := Q(P (x)) fP (Q(x)).

Thus,

A(x) =
x2(2− x2) + x2(2 − x)2

2
= x2(3− 2x).

These operators are extended to INT in the usual way: thus, A([u, v]) = [A(u), A(v)]. The exercises show other
properties of these functions. We show that A(x) has the following “amplification property”:
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xxx x

⊗
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xx
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A(x)

Figure 8.3: The operator A(x)

Lemma 4 If 0 ≤ e ≤ 1
2 , then

x 6∈ [
1
2
− e,

1
2

+ e] ⇒ A(x) 6∈ [
1
2
− e′,

1
2

+ e′]

where
e′ = e(

3
2
− 2e2) ≥ e.

Proof. Since dA
dx = 6x(1−x), A(x) is monotone increasing for 0 ≤ x ≤ 1. The lemma then follows from a calculation,

A(
1
2

+ e) =
1
2

+ e[
3
2
− 2e2]

A(
1
2
− e) =

1
2
− e[

3
2
− 2e2].

Q.E.D.

Note that the error gap has an “amplification factor” α(e) = 3
2 − 2e2 which decreases monotonically from 3/2

to 1 as e increases from 0 to 1/2. Note that

α(1/4) =
11
8

.

So if the error bound e for a value x is less than 1/4, then the error bound for A(x) is at least 11e/8. We conclude:

Theorem 5

Let t(n) be a time-constructible function. Then

PrTIME (t) ⊆ StTIME b(O(t)).

In particular,
PP ⊆ StTIME b(nO(1)).

Proof. Suppose M is a probabilistic machine that decides its inputs in running time t. Since t is time-constructible,
we can modify it always halt in time O(t) and have error gap

G(n) = [
1
2
− 2−t,

1
2

+ 2−t].

Let s = t
log(11/8) . We construct a stochastic machine N that, on input w, operates by first “computing the iterated

function As(x)” (the meaning should be clear) and then simulating M on w. One checks that N has gap at least
[ 14 , 3

4 ]. Note that N still runs in time O(t). Q.E.D.

Exercise

Exercise 8.2.1: This is a slight variation on boosting error gaps for machines with zero-error rejection. Let M be
a machine with error gap G = (0, b]. We construct the following machine N to boost the error gap G:
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1. Simulate M on input from beginning until it halts.
(If M loops then we loop)

2. If M answers YES then answer YES; else toss a coin.
3. If coin-toss is heads then answer NO; else go to 1.

(i) Show that N has error gap G′ = (0, b′] where b′ = 2b
1+b .

(ii) For any ε > 0, show how to modify step 3 so that 1− b′ ≤ ε.

Exercise 8.2.2: Let M be a bounded-error halting probabilistic machine. We construct a probabilistic machine N
that keeps simulating M on its input until the “running score” reaches +2 or −2. The running score (at any
moment) is defined to be the number of YES answers minus the number of NO answers up to that moment.
If we reach +2, we answer YES, and if we reach −2, we answer NO.
(i) What is the language accepted by N?
(ii) Analyze the complexity and errors of N.

Exercise 8.2.3: Give another proof of Ko’s theorem that NP ⊆ BPP implies NP = RP in §2. Recall the event
Ak in the first proof.
(i) Show that Pr(An) ≥ (1− 2−2n)2n.
(ii) Show that (1− 2−n)n ≥ 1

2 for large enough n. HINT: you may use the following facts:

• et ≥ 1 + t for all t ∈ R with equality iff t = 0.

• (1 + t
n

)n ≥ et
(
1− t2

n

)
for all t, n ∈ R, n ≥ 1 and |t| ≤ n.

Exercise 8.2.4:
(i) Redraw the class inclusion diagram in Figure 8.2 assuming that NP ⊆ BPP .
(ii) What consequences for the diagram of Figure 8.2 can you draw if we assume that BPP ⊆ NP?

Exercise 8.2.5: Let g = [1/3 − e, 1/3 + e] for some 0 < e < 1/3. Give an analog of majority voting to amplify
this gap.

Exercise 8.2.6: Let P (x) and Q(x) be as defined for boosting error gaps in stochastic machines. For all n =
0, 1, 2, . . ., let

Pn(x) :=


x if n = 0
P (Pn−1(x)) if n = odd
Q(Pn−1(x)) if n = even

Qn(x) :=


x if n = 0
Q(Qn−1(x)) if n = odd
P (Qn−1(x)) if n = even

For example, P2(x) = Q(P (x)) = x2(2 − x2), and Q2(x) = P (Q(x)) = x2(2 − x)2. The function Q2(x)
was used by Valiant to give a non-constructive proof that the majority function for Boolean functions has a
monotone formula of size O(n log n). The amplification function in the text is just A(x) = P2(x) fQ2(x).
Now write p+

n (e) for Pn(1
2 +e), p−n (e) for Pn(1

2−e), and similarly for q+
n (e), q−n (e) relative to Qn. For example,

p+
1 (e) =

1
4

+ e + e2

q+
1 (e) =

3
4

+ e− e2
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p−1 (e) =
1
4
− e + e2

q−1 (e) =
3
4
− e− e2

p+
2 (e) =

7
16

+
3e

2
+

e2

2
− 2e3 − e4

q+
2 (e) =

9
16

+
3e

2
− e2

2
− 2e3 + e4

p−2 (e) =
7
16
− 3e

2
+

e2

2
+ 2e3 − e4

q−2 (e) =
9
16
− 3e

2
− e2

2
+ 2e3 + e4

p+
3 (e) =

49
256

+
21e

16
+

43e2

16
− e3

4
− 53e4

8
− 5e5 + 3e6 + 4e7 + e8

q+
3 (e) =

207
256

+
21e

16
− 43e2

16
− e3

4
+

53e4

8
− 5e5 − 3e6 + 4e7 − e8

Show
(i) p+

n (e) + q−n (e) = 1
(ii) p−n (e) + q+

n (e) = 1
(iii) p+

n (e)− p−n (e) = q+
n (e)− q−n (e)

(iv) x = 1
2 is a fixed point of An(x) = Pn(x) fQn(x), i.e., An(1

2 ) = 1
2 . Are there other fixed points?

(v) The exact relationships between the coefficients of p+
n (e), q+

n (e), p−n (e) and q−n (e).

Exercise 8.2.7: Show that RP = NP iff some NP -complete language is in RP .

Exercise 8.2.8: Another proof that NP ⊆ BPP implies NP = RP . Recall the event Ak in the first proof.
(i) Show that Pr(An) ≥ (1− 2−2n)2n.
(ii) Show that (1− 2−n)n ≥ 1

2 for large enough n. HINT: you may use the following facts:

• et ≥ 1 + t for all t ∈ R with equality iff t = 0.

• (1 + t
n

)n ≥ et
(
1− t2

n

)
for all t, n ∈ R, n ≥ 1 and |t| ≤ n.

End Exercise

8.3 Probabilistic Feasible Time

Feasible time simply means polynomial time, of course. Here we consider two versions of feasible time, depending
on the error concept: unbounded error (the class PP) and bounded error (the class BPP ).

8.3.1 Unbounded Error Polynomial Time

We derive some basic properties of the class PP .

Lemma 6 For any PP-machine M , there exists another PP-machine N such that L(N) = L(M) where N is
halting, decisive, and always answers YES or NO.

Proof. (Sketch) The machine N simulates M . To make N halting, we clock the machine M for a polynomial number
of steps and answer NO if M does not answer YES by the time the clock runs out. This means an YO answer
is also turned into a NO answer. To ensure that N is decisive, we “shift” the gap (1

2 , 1
2 + e) to some error gap

(1
2 − e′, 1

2 + e′). Here e = e(n) depends on the length n of the input, and can be assumed to be a binary rational
which is polynomial time computable. Q.E.D.

The class PP satisfies the following remarkable closure property:
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Lemma 7 If A, B ∈ PP then the symmetric difference A⊕B ∈ PP.

Proof. Let MA, MB be PP -machines that accept A and B (resp.). By the previous lemma, assume MA and MB

are halting and decisive and always answer YES or NO. Consider the machine N that, on any input x, simulates
MA on x and then MB on x. N will answer YES if exactly one of MA and MB answers YES, otherwise N answers
NO. We note that

• If both MA and MB answered correctly (answers YES iff the global answer is ACCEPT), then N ’s answer is
correct.

• If both MA and MB answered incorrectly then N ’s answer is (still) correct.

• If exactly one of MA or MB answered incorrectly, then N ’s answer is incorrect.

Assume that the probability of MA (resp., MB) being correct on any input x is exactly (1/2) + εA (resp.,
(1/2) + εB). Notice that εA > 0 and εB > 0 exists since the machines are decisive. Moreover εA and εB does not
depend on x. Then the probability of N being correct on input x is exactly

(
1
2

+ εA)(
1
2

+ εB) + (
1
2
− εA)(

1
2
− εB) =

1
2

+ 2εAεB.

Q.E.D.

An alternative argument is as follows: if probability of MA (MB) answering YES is a (b), then the probability
of N answering YES is c = a(1− b)+(1−a)b. Note that we can add a(1− b) and (1−a)b because these correspond
to disjoint events. We see that

1
2
− c =

1
2

(
1
4
− a + b

2
+ ab

)
=

1
2
(
1
2
− a)(

1
2
− b).

Since the machines are decisive, a 6= 1/2 and b 6= 1/2, and so 1/2− c 6= 0. Moreover, 1/2− c < 0 iff exactly one of
the inequalities, a < 1/2 and b < 1/2, hold. This is exactly what we want to show.

The following is left as an exercise.

Lemma 8 PP is closed under complementation.

The next result is from Beigel, Reingold and Spielman [3].

Theorem 9 PP is closed under intersection.

The proof uses an interesting property of polynomials, omitted here.
We now investigate complete languages for PP . It should be noted that among the stochastic feasible classes

(ZPP ,RP ,BPP ,PP), only PP has known complete languages. For any Boolean formula F , let #(F ) denote the
number of satisfying assignments to variables that occur in F . Consider three related languages (we include the
standard SAT in this table for comparision):

MAJ := {〈F 〉 : #(F ) > 2m−1 where m is the number of variables in F}
#SAT := {〈F, k〉 : F is 3CNF and #(F ) ≥ k}

#SAT0 := {〈F, k〉 : F is 3CNF and #(F ) = k}
SAT := {〈F 〉 : F is 3CNF and #(F ) ≥ 1}

Here 〈F 〉 and 〈F, k〉 denote any reasonable encoding of F and (F, k) as binary strings.

Lemma 10 MAJ and #SAT are both PP-hard under Karp reducibility.

Proof. (a) It is easy to see that MAJ ∈ PP : construct a PP machine which accepts a Boolean formula F with
probability equal to #(F )/2m (if F has m variables. Thus the machine accepts precisely the formulas of MAJ.
(b) We show that MAJ is PP -hard. If M is a PP -machine and x is an input, we want a 3CNF formula F such
that #(F ) is equal to the number of YES-paths in the computation tree for x. But we note that the proof of the
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NP -hardness of SAT (Cook’s Theorem in Chapter 3) produces such a formula. See Exercise.
(c) Clearly #SAT is PP -hard since we can reduce MAJ to #SAT.
(d) Finally, to show #SAT ∈ PP it is sufficient to construct a transformation t : 〈F, k〉 7→ t(F, k) such that
〈F, k〉 ∈ #SAT iff t(F, k) ∈ MAJ. Suppose F has m + 1 free variables. If k = 0, then clearly 〈F, k〉 ∈ #SAT1.
Hence we may assume 1 ≤ k ≤ 2m+1. We construct a CNF forumula Ck with these m + 1 variables of F such that
exactly 2m+1 + 1− k assignments satisfy Ck. Let z be a new variable. Then

t(〈F, k〉) = (z ∧ F ) ∨ (z ∧ Ck).

It is easy to see that 〈F, k〉 ∈ #SAT iff t(〈F, k〉) ∈ SAT0. The result is not quite CNF yet. Assuming F and Ck are
CNF, then z ∧ F and z ∧ Ck are each CNF. In general, to create a CNF formula G from the disjunction G1 ∨G1

of two CNF formulas G1, G2, we let each clause of G be written as the disjunct of a clause of G1 with a clause of
G2. Of course, G need not be 3-CNF (it is a bit more work to achieve this, while ensuring that G ∈ SAT0).

If k = 1, then Ck can be taken to be 1 (always true). Otherwise k ≥ 2 and we consider the binary expansion of
2m+1 + 1− k =

∑m
j=0 bj2j (bj = 0 or 1). We leave the details to the reader. Q.E.D.

The above techniques do not work with #SAT0, and we also do not know any complete languages for any
error-limited complexity classes such as RP or BPP .

Exercise

Exercise 8.3.1: Prove lemma 8.

Exercise 8.3.2: The proof of Cook’s theorem in Chapter 3 reduces any language A ∈ NP to SAT. If M is an
NP-machine for A, for any input w, the proof constructs a 3CNF formula Fw such that Fw is satisfiable iff
w ∈ A. We claim that something stronger is true: #Fw is equal to the number of accepting computations of
M on input w. Actually, this claim needs a mild condition on M . What is it? Prove this claim under this
mild condition. Hint: if you do not see what this condition might be, we suggest the strategy of ignoring it
at first, and trying to prove the claim unconditionally.

Exercise 8.3.3*: Does ZPP , RP or BPP have complete languages under any reasonable reducibilities?

End Exercise

8.3.2 Bounded Error Polynomial Time

See Balcazar’ book.
This should go to Constructive Hierarchies Chapter:
(1) BPP is in Σ2 ∩Π2.
(I think the current results here are not the most general... see the proof)
(2) Approximate Counting
(3) NTIME (n) 6= DTIME (n).
(4) BPP has polynomial size circuits
We use the following fact:

Lemma 11 Let M be a choice machine with only binary choices, L(M) ⊆ B∗, and M runs in time t(n). Then
there is a polynomial p(n) such that for all n, there is a Boolean circuit Cn on n + t(n) inputs such that
(1) Cn has size p(t(n)), and
(2) for all x ∈ Bn and all y ∈ Bt(n), Cn(x, y) = 1 iff M on input x and making the choices specified by y leads to a
YES answer.

Proof. Sketch proof: There is a fixed size circuit that computes the “local transition” function, as given in Pa-
padimitriou’s book (theorem 8.1, p.168). Note: this function does not depend on M having only one worktape.

Q.E.D.

Theorem 12 Every binary language in BPP has a polynomial size circuit.
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Proof. [As in Papadimitriou] Let L ⊆ B∗ be accepted by a BPP -machine M . We will construct for each n, a
Boolean circuit C∗

n of polynomial size such that x ∈ L iff C∗
n(x) = 1.

We may assume that for any input x, Pr{M(x) = error} ≤ 1/4. As in the previous lemma, assume M runs
in time t(n) and there are circuits Cn of size p(t(n)) which simulates M on any input x ∈ Bn and any path
choice y ∈ Bt(n). Let Tn = B12(n+1)t(n). We consider a string Y ∈ Tn as a (12(n + 1)-tuple (y1, . . . , y12(n+1) of
choices for a computation on an input of length n. We say that Y is “good” for x ∈ Bn if more than half of the
{Cn(x, yi) : i = 1, . . . , 12(n + 1)} is correct. Here, Cn(x, y) is correct if Cn(x, y) = 1 iff x ∈ L. For any x, and for a
random choice of Y , the probability that y ∈ Bt(n) is incorrect for x is ≤ 1/4. Hence the probability that Y ∈ Tn

is not good for x is, by Chernoff’s bound at most e−(n+1).
[See Papadimitriou, or my lecture notes]
Now the probability that Y is bad for more any x ∈ Bn is therefore at more 2ne−(n+1) < 1/2. Hence, there

exists Y ∗ ∈ Tn that is good for all x ∈ Bn. We now construct a circuit C∗
n(x) to be simply 12(n + 1) copies of

Cn in which each Cn has the form Cn(x, y∗
i ) where Y ∗ = (y∗

1 , . . . , y∗
12(n+1)). Finally, the output of C∗

n is just the
majority output of all the Cn’s. Q.E.D.

Note: a random construction of C∗
n will succeed with probability more than 1/2. So there is a BPP algorithm

for this construction? Not yet: you need to check if a given choice of Y is good for all x.

8.4 Average Time for Probabilistic Machines

So far, we have not discussed the very natural concept of “average time” for probabilistic machines. We sys-
tematically develop the concept as follows (the appendix contains the probabilistic terms used here). Let M be
a probabilistic machine and TM (w) denotes the usual complete computation tree on input w. Without loss of
generality, assume TM (w) is a full binary tree, i.e., a binary tree in which every internal node has two children.
Let T any prefix of TM (w).

We construct associate with T a probability space

(ΩT , ΣT , PrT )

in which the sample space ΩT comprises all complete paths of T . A subset of ΩT is a basic set if it is the collection
of complete paths of T all sharing some common initial prefix π; denote this set by BT (π). In particular, ΩT is the
basic set BT (ε) where π = ε is the empty path. Any singleton set consisting of a complete path is also a basic set.
Let Σ0

T comprise all finite union and complement of basic sets: clearly Σ0
T forms a field. Let ΣT be the Borel field

generated by Σ0
T . The probability measure PrT assigns to each basic set BT (π) the probability PrT (BT (π)) = 2−|π|

where |π| is the length of the path π. E.g., PrT (ΩT ) = 20 = 1, as expected. Notice that every element of Σ0
T is

a finite union of disjoint basic sets. Extend the definition of PrT to sets in Σ0
T so as to preserve finite additivity

of pairwise disjoint unions. One checks that the extension does not depend on how we partition sets in Σ0
T into a

countable union of basic sets. Finally, a theorem of Carathéodory (appendix) gives us a unique extension of PrT
to all of ΣT .

Definition 4 (i) We introduce three random variables for ΩT . For any complete paths of T ,

TimeT (π) = |π| possibly infinite,
AcceptT (π) = 1iff π ends in a YES-node in T,

HaltT (π) = 1iff π is a finite path.

When T is the complete computation tree for input w, we write

Timew, Acceptw, Haltw, Ωw, etc,

for TimeT , AcceptT , etc.

(ii) The average time of T is the expected value of TimeT . A machine M accepts/rejects in average time
t(n) if for all accepted/rejects inputs w of length n,

Pr{Timew ≤ t(n), Acceptw = 1} >
1
2
.

It runs in average time t(n) if it is decisive and accepts and also rejects in average time t(n).
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An equivalent definition of average time is this: the average time of a computation tree T is equal to the sum
over the weights of each edge in T where an edge from level ` − 1 to level ` (the root is level 0) has weight 2−`.
Naturally, the probability that M halts on w is the expected value of the random variable Haltw. If M is
halting (i.e., there are no infinite computation paths) then it halts with probability 1; the converse is false. When
we use running complexity for probabilistic machines, they are sometimes designated ‘Monte Carlo algorithms’;
when average complexity is used, they are designated ‘Las Vegas algorithms’.

We first note an observation of Gill: Every recursively enumerable language can be accepted by a probabilistic
machine with constant average time. In proof, suppose M is a deterministic Turing machine. Without loss of
generality assume that M accepts whenever it halts. We construct N to simulate M as follows:

repeat
Simulate one step of M ;
if the simulated step halts, we answer YES or NO following M ;

until head = cointoss();
if head = cointoss() then answer YES else answer NO.

Here cointoss() is a random function that returns head or tail and there are two separate invocations of this
function above. We note that if the input word is not accepted by M then N can only reject (since the probability
of N saying YES is equal to the probability of saying NO). Hence N has zero-error rejection. If an input word is
accepted by M , then we see that the probability of its acceptance by N is more than 1

2 since each NO path can be
uniquely paired with an YES path of the same length, but there is one YES path that is not paired with any NO
path. These remarks are easy to see once we unroll the computation tree of N as shown in Figure 8.4.

= YES

= NO

= YES or NO

Figure 8.4: Computation Tree of N , simulating a deterministic Turing acceptor M .

The average time t̄ spent in the repeat-loop satisfy the inequality

t̄ ≤ 2 +
t̄

2

where the term ‘2+’ comes from simulating a step of M and tossing a coin to decide on continuing inside the loop
(it takes no time to decide to say YES if M says YES). Thus t̄ ≤ 4. The average time of N is at most 1 + t̄ ≤ 5
(where the ‘1’ for the final cointoss).

Gill notes that such pathological behaviour does not happen with bounded-error machines:

Lemma 13 Let M be a probabilistic machine accepting/rejecting with bounded-error. There is a constant c > 0
such that if M accepts/rejects in average time t̄(n) and accepts/rejects in time t(n) then

t̄(n) ≥ t(n)
c

.

Proof. Suppose M accepts with probability at least 1
2 + e for some 0 < e < 1

2 . (The proof if M rejects with
probability at most 1

2 − e is similar.) Fix any input of length n and let t̄ = t̄(n). If t̄ =∞ there is nothing to prove.
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Otherwise, let T be the complete computation tree. Since TimeT is non-negative, Markov’s inequality yields

Pr{TimeT ≥ ct̄} ≤ 1
c

for any c > 0. Choosing c = 2
e ,

Pr{TimeT < ct̄, AcceptT = 1} ≥ Pr{TimeT < ct̄} − Pr{AcceptT = 0}
≥ (1− 1

c
)− (

1
2
− e)

≥ 1
2

+
e

2
.

This proves that T , truncated below ct̄, accepts with bounded error. Q.E.D.

In view of this lemma, let
AvgTIME (t(n))

denote the class of languages accepted by probabilistic machines M where M has bounded-error and M runs in
average time t(n). Note that both properties here are independently defined for the entire computation tree. We
have thus proved:

Corollary 14 For any t(n),
AvgTIME (t) ⊆ PrTIME b(O(t)). (6)

As further example, we provide deterministic time upper bounds for languages accepted in average time t(n)
with bounded-error.

Corollary 15 If a bounded-error probabilistic machine M accepts with average time t̄(n) then L(M) ∈ DTIME (O(1)t̄(n)).

Proof. We can simulate M by computing the least fixed point of a computation tree of depth O(t̄(n)). Q.E.D.

Lemma 16 Let s(n) ≥ log n be space constructible. Let M be any nondeterministic machine that accepts in space
s. Then there is a probabilistic machine N with zero-error that accepts L(M) in space s.

Proof. Choose c > 0 such that there are at most cs(n) configurations using space at most s(n). Fix any input
of length n and let s = s(n). First we mark out exactly s cells. The probabilistic machine N proceeds as follows:

repeat forever
1. Initialize M to its initial configuration.
2. Simulate M for cs steps. Nondeterministic choices of M

become coin-tossing choices of N .
3. If M answers YES in this simulation, we answer YES.

(If M answers NO or YO or does not
halt in cs steps, then we go to back to 1.)

end

Clearly N loops if M does not accept. If M accepts then the probability of N answering YES is easily seen to
be 1. Q.E.D.

This lemma implies that probabilistic space-bounds with zero-error is as powerful as nondeterministic space:

Theorem 17 For any space-constructible s(n) ≥ log n,

NSPACE (s) = PrSPACE0(s) = PrSPACE1(s).

Proof. The above lemma shows that NSPACE (s) ⊆ PrSPACE0(s). The converse is easy since for any probabilistic
machine M with zero error, when viewed as a nondeterministic machine N, accepts the same language with the
same space bound. We check that the same construction applied to probabilistic one-sided error machines in place
of nondeterministic machines show PrSPACE1(s) ⊆ PrSPACE 0(s), and hence they are equal. Q.E.D.

This result can be generalized to log-space alternating machines, but we now have two-sided error [28].
The simulation in the above proofs can be modified so that the simulating machine N halts with probability 1.

However, N is no longer zero-error. The technique will be introduced in section 6.
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Probabilistic Simulating of Alternation. Consider how a probabilistic machine can simulate an alternating
machine M . We want our probabilistic machine to have bounded error. Suppose C is a configuration of M and
C ` (A, B). Let TC , TA, TC denote the subtree at these nodes.

f

f

∧
C0

A′ B′

C

A B

5/16

C1

repeat

repeat

Figure 8.5: Simulating a ∧-configuration C.

Inductively, assume that our recursive construction gives us probabilistic computation trees TA′ and TB′ (rooted
at A′ and B′) which emulates TA and TB (respectively) with error gap

g0 = [1/4, 3/4].

This means that if A accepts, then the value of A′ is at least 3/4 and if A rejects, the value of A′ is at most 1/4.
Similarly for B and B′. Let us see how to carry the induction through.

CASE: C is a ∧-configuration. Let C0 be a f-configuration such that C0 ` (A′, B′) (see figure 8.5). Then the
value at C0 has an error gap of

[5/8, 3/4].

This is because, if at least one of A′ or B′ rejects, then value of C0 is at most (1/4) f1 = 5/8. And if both A′ and
B′ accepts, the value is at least 3/4. Then, we ‘shift’ the gap so that it is centered, by averaging it with the value
5/16. This gives us a new gap (of half the size!)

g0 = [15/32, 17/32].

We now use majority voting to boost this gap back to at least [1/4, 3/4]. We need to take the majority of 2k + 1
votes, where k is a constant that can be computed.

CASE: C is a ∨-configuration. In this case, C0 has error gap of

[1/4, 3/8].

Now we shift this gap by averaging it with 11/16, yielding the gap g0 above. We again boost it back to [1/4, 3/4].
Note that if the original tree has height h and this procedure produces a tree of height τ(h), then

τ(h) = k(τ(h− 1) + 2) ≤ (2k)h.

Of course, we need to make this recursive transformation something that can be carried out by a suitable proba-
bilistic machine. This is left as an exercise. We have thus shown:

Theorem 18

ATIME (t) ⊆ PrTIME b(2O(t)).

Exercise
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Exercise 8.4.1: Let t(n) be time-constructible. Determine the smallest function t′(n) as a function of t(n) such
that

co-NTIME (t(n)) ⊆ PrTIME b(t′(n)).

Hint: Simulate each step of a universal machine, but at each step, ensure bounded-error by using majority
votes.

Exercise 8.4.2: Let M be a probabilistic machine that runs in time t(n) and which uses ≤ log t(n) coin tosses
along each computation path. Give an upper bound for the function t′(n) such that L(M) ∈ PrTIME b(t′(n)).

End Exercise

8.5 Interactive Proofs

This section introduces interactive proofs [13] and Arthur-Merlin games [2]. The class of languages recognized in
polynomial time by such machines is denoted IP . We show that IP contains two languages NONISO and #SAT.
This gives some indication of the power of IP because NONISO is not known to be in NP , and #SAT is complete
for PP . The main result is IP = PSPACE , which provides yet another characterizaiton of PSPACE .

Graph Non-Isomorphism. A motivating example is the graph isomorphism problem: given a pair 〈G0, G1〉 of
graphs, decide if they are isomorphic,

G0 ∼ G1. (7)

We could use digraphs or bigraphs in the following. To be specific assume bigraphs (undirected graphs). Let Gn

denote the set of bigraphs on the vertex set {1, 2, . . . , n}. Formally define the languages

ISO = {〈G0, G1〉 ∈ G2
n : n ≥ 1, G0 ∼ G1},

NONISO = {〈G0, G1〉 ∈ G2 : n ≥ 1, G0 6∼ G1}.
These are basically complementary languages. Let Sn denote the set of n-permutation (i.e., permutations of
{1, . . . , n}). For π ∈ Sn, let π(G0) denote the graph G0 when its vertices are renamed according to π: (i, j) is an
edge of G0 iff (π(i), π(j)) is an edge of π(G0). Then (7) holds iff there exists π such that π(G0) = G1. Call π a
certificate for 〈G0, G1〉 in this case. Thus 〈G0, G1〉 ∈ ISO iff 〈G0, G1〉 has a certificate. This concept of certificate
has two important properties:
• (Succinctness) The certicate π has size polynomial in n.
• (Verifiability) There is a deterministic polynomial-time algorithm V to decide if a given π is a certificate for
〈G0, G1〉.

These two properties characterize languages in NP . Hence, ISO ∈ NP . We can next try to improve our upper
bound on ISO (is it in P ?) or prove a lower bound (is it NP-hard?). Both of these questions are open. Another
related upper bound question (is it in co-NP) is also open.

It easily follows NONISO ∈ co-NP . Unfortunately, co-NP does not have a characterization by certificates.
Although certificates are not necessarily easy to find, they are easy to verify. In this sense, they have practical
utility. We next introduce a generalization of certificates verifiability, and eventually show that NONISO is verifiable
in this more general sense.

Concept of Interactive Proofs. We generalize certificate verifiability in two ways: first, we allows the verifying
algorithm V to be probabilistic, and second, we allow interaction between the verifying algorithm with another
algorithm called the “prover”, denoted P . Thus there are two communicating processes (sometimes called protocols),
an interactive prover P and an interactive verifier V which are Turing machines that send each other messages,

m0, m1, m2, . . . .

Message mi is written by V if i is even, and by P if i is odd, and these are written on a common worktape. We
assume some convention for each process to indicate that it is done writing its message (say, by entering a special
state) and for some external agent to prompt the other process to continue. The computation ends when V answers
YES or NO. The input is originally on V ’s input tape. We place complexity bounds on V alone. Thus the time
and space in a (V, P )-computation refer solely to the time and space incurred by V alone. We place no restriction



20 CHAPTER 8. STOCHASTIC CHOICES

on P (which need not even have to be computable), except that P must respond to each message of V in finite
time. For instance, suppose if we say that V accepts in polynomial time, and P turns out to write exponentially
long messages, then V will not be able to read the long messages of P . Intuitively, V is sceptical about what
the process P is communicating to it, and needs to be “convinced” (with high probability). For any input w, let
Pr(V, P, w) be the probability that V accept. We will assume that V halt on every computation path, thus avoiding
any discussion of probability intervals. Languages will be defined with respect to V alone: writing

Pr(V, w) := sup
P

Pr(V, P, w),

then the language accepted by V is
L(V ) :={w : Pr(V, w) > 1/2}.

Say V has bounded-error if, in addition to the preceding requirements, we have Pr(V, w) ≥ 2/3 or Pr(V, w) ≤ 1/3
for all input w, The class IP comprises those languages that are accepted by bounded-error polynomial-time verifiers.

Interactive Verifier for Graph Non-Isomorphism. We want to describe an interactive verifer V such that
L(V ) = NONISO. Here is a well-known V0 from the literature:

Input: string w
1. Reject unless w = 〈G0, G1〉 ∈ G2

n, n ≥ 1.
2. Randomly generate an n-permutation π and a binary bit b.
3. Let H ← π(Gb).
4. Send message m0 = 〈H, G0, G1〉. This message

asks P whether H ∼ G0 or H ∼ G1.
5. (Pause for P to reply with message m1)
6. If b = m1 answer YES, else answer NO.

Note that V0 concludes in two message rounds (sends and receives a message). Assume w = 〈G0, G1〉. There are
two cases to consider.
• w ∈ NONISO: We claim Pr(V0, w) = 1. To see this, suppose P0 is the prover who sends the message m1 = c

such that H ∼ Gc. Since c is unique, V0 always answer YES, so Pr(V0, P0, w) = 1.
• w 6∈ NONISO: We wish to claim Pr(V0, w) = 1/2. Intuitively, an “honest prover” P0 cannot distinguish

whether the answer should be H ∼ G0 or H ∼ G1. It is reasonable for P0 to flip a coin and answer m1 = 0
and m1 = 1 with equal probability. This will establish our claim. But suppose we have a “dishonest prover”
P1 whose goal is to mislead V0 into accepting w. P1 knows something about about π and b it may be able
to mislead V0. For instance, if P1 knows the value of b, then it will always fool V0. How can we be sure that
such information has not leaked in our definition of message m0? This justification is non-trivial (see [20,
p. 175]) and may be based on the so-called Principle of Deferred Decisions.

This example points out that informal descriptions of interactive proofs (with suggestive language such as “V
is convinced”, “P knows”, etc) can be tricky to formalize. For this reason, we prefer to view interactive proofs as
choice computations. The idea is this: we can combine V and P into one choice machine denoted, loosely,

M = “V + P”,

where the states of M is the disjoint union of the states of V and P (so each state of M may be classified as a
P -state or a V -state). We will let the choice function at each V -state q be γ(q) = f. But what about P? We need
to simulate all possible behavior for P (recall that we define Pr(V, w) as the maximization of Pr(V, P, w)). This is
not hard (we can essentially make all possible choices for the message). Furthermore, we let the choice function at
each P -state q be γ(q) = ∨. Thus M is a { f,∨}-machine. Unfortunately, there are two issues.

One issue is that, although P is powerful, it seems that we do not want it to know about the coin tosses of
V . Such a verifier is said to use “private coins”. The formulation “M = V + P” apparently use “public coins”.
As noted, the use of public coins in V0 above would be disastrous for the NONISO protocol above. Verifiers with
private coins seems more powerful. It turns out, for polynomial-time computations, a verifier with private coins
can be simulated by one with public coins, at the cost of of two extra rounds [14]:

IP [k] ⊆ AM [k + 2]. (8)

The parameters k and k + 2 bound the number of message rounds; the full explanation for this notation is given
below,
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The second issue is this: the 0/1-message m1 returned by the prover is not easily modeled by f- and ∨-choices
alone. The ability to pass a 0/1-message from P to V seems more powerful than simply allowing V to ask P
question and receiving a YES/NO answer. For instance, V upon receipt of the Boolean message m1, can trivially
compute the negation of m1. But a { f,∨}-computation cannot trivially negate the value at a node. Thus it seems
we need a { f,∨,¬}-machine (equivalently, a { f,∨,∧}-machine) to efficiently simulate an interactive proof. But
this would make the interactive prover for NONISO uninteresting (NONISO is trivially accepted by a ∧-machine
in polynomial-time.) It turns out ¬ can be avoided, but this is a non-trivial result. We can avoid all these
complications of interactive proofs by using the Arthur-Merlin formulation of Babai and Moran. The advantage,
besides its simplicity, is the direct connection to choice computation.

Arthur-Merlin Games. Let M be an { f,∨}-machine, and π = (C0, C1, . . . , Cm) be a computation path of M.
A computation sequence

π′ = (Ci, Ci+1, . . . , Cj), (1 ≤ i ≤ j ≤ m)

is called a f-round (or Arthur round) if it contains at least one f-configuration but no ∨-configurations. Notice
that π′ could contain deterministic configurations. Similarly, π′ is called a ∨-round (or Merlin round) if we
interchange fand ∨. We say π has k rounds if π can be divided into k subpaths,

π = π1; π2; · · · ; πk (k ≥ 1)

where “;’ denotes concatenation of subpaths such that πi is an Arthur round iff πi+1 is a Merlin round. Note that
k is uniquely determined by π. The definition generalizes in a natural way to k = 0 and k = ∞. We say M is a
k-round Arthur-Merlin game if

• M has bounded error and runs in polynomial time

• every computation path of M has at most k rounds in which the first round (if any) is an Arthur round

A k-round Merlin-Arthur game is similarly defined, with the roles of Arthur and Merlin interchanged. Let

AM [k] = {L(M) : M is an Arthur-Merlin game with at most k rounds}
The class MA[k] is similarly defined using Merlin-Arthur games instead. Of course, we can generalize this to
AM [t(n)] and MA[t(n)] where t(n) is a complexity function.

We can identify4 Arthur with the verifier V , and Merlin with the prover P , of interactive proofs. We can similar
define the classes IP [k] and IP [t(n)] accepted by interactive proofs in k or t(n) rounds. This is the notation used
in (8).

So it turns out that the apparent gap between interactive provers (V, P ) and choice machines is non-existent.
But this result is non-trivial since the pair (V, P ) can communicate as in true parallelism. As discussed in Chapter
1, the choice mechanism is, in general, weaker than true parallelism.

8.5.1 Arthur-Merlin Game for Graph Non-Isomorphism.

The new idea for checking non-isomorphism is as follows. Let G0, G1 ∈ Gn. Consider the set

ALIKE1(G0, G1) = {H : H ∼ G0 or H ∼ G1}.
Intuitively, |ALIKE1(G0, G1)| is either n! or 2(n!), depending on whether G0 ∼ G1 or not. Unfortunately, this is not
always true and relates to the notion of an automorphism: we call π ∈ Sn an automorphism of G if π(G) = G.
Of course, the identity 1 permutation is always an automorphism, but this is the trivial case. We initially assume
that Gi (i = 0, 1) has only the trivial automorphism, so that |ALIKE1(G0, G1)| = n! or 2(n!),

Example: Let n = 3 and G0 has the single edge (1, 2) and G1 has the single edge (2, 3). Thus the transposition
(1, 2) is an automorphism of G0. We see that the set ALIKE1(G0, G1) = {G0, G1, G2} where G2 has the single edge
(1, 3). So |ALIKE1(G0, G1)| = 3 < 3!. Thus, our assumption that the Gi’s have only the trivial automorphism is
essential.

Continuing, suppose we randomly pick H ∈ Gn, then there is some constant c such that Pr{H ∈ ALIKE1(G0, G1)}
is c or 2c, depending on whether G0 ∼ G1 or not. This probabilistic gap is the basis for recognizing NONISO.
However, the constant c is exponentially small in n since |Gn| = 2(n

2) n!. We need to modify this gap by a hashing
trick: the idea is to map Gn into a smaller set of size Θ(n!).

4As in the legend of King Arthur, the magician Merlin is more powerful than Arthur. Merlin, as the ∨-player, can use existential
guesses (which is magically correct). Arthur, all too human, can only roll his dice and take his chances.
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Let us understand the problem more generally: we have a set C whose size is either n! or 2(n!). You want to
computationally determine whether it is n! or 2(n!). We cannot count explicitly since n! is too large. Without loss
of generality, let C ⊆ Bm (bit strings of length m). Here B = {0, 1} is the Boolean field of two elements. If n! is
comparable to |Bm| = 2m, say 3(n!) < 2m < 4(n!), then we can randomly sample elements x ∈ Bm and test if x ∈ C
(we assume testing membership in C is easy). If |C| = 2(n!), probability that x ∈ C is greater than 1/2. If |C| = n!,
then the probability is less than 1/3. This gap implies that our problem is in BPP . In our application, n! is not
comparable to 2m but exponentially smaller. So we define a hash function h : Bm → Bk where n! is comparable to
|Bk| = 2k. If h is 1−1 when restricted to C, then the previous BPP -algorithm will work. Unfortunately, we do not
know how to find such an h efficiently. The next lemma say that if h is a random hash function, we can achieve
much the same result.

Lemma 19 (Boppana) Let B be a k ×m Boolean matrix, and let

hB : Bm → Bk

be defined by hB(x) = B ·x where all arithmetic is in B. Fix C ⊆ Bm and write hB(C) = {hB(x) : x ∈ C}. Assume
c = |C|/2k and k ≥ 2. If z ∈ Bk and B ∈ Bm×k are both random then

Pr{z ∈ hB(C)} > c− c2

2
= c

(
1− c

2

)
.

Proof. We will show that for all x 6= y,
(a) Pr{z = hB(x)} = 1/2k, and
(b) Pr{z = hB(x) = hB(y)} ≤ 1/4k.
The lemma then follows by the inclusion-exclusion principle,

Pr{z ∈ hB(C)} ≥
∑
x∈C

Pr{z = hB(x)} −
∑

{x,y}∈(C
2)

Pr{z = hB(x) = hB(y)}.

(a) There are two cases for showing Pr{z = hB(x)} = 1/2k: fix x = (x1, . . . , xm). If x = 0m (an m-vector of 0’s)
then Pr{z = hB(x)} = Pr{z = 0k} = 1/2k. Otherwise, we may assume x1 6= 0. Let Bi denote the ith column of
B. First fix z′ ∈ Bk; then for any choices of B2, . . . , Bm there is a unique choice of B1 such that Bx = z′. Thus

Pr{Bx = z′} =
∑

B2,...,Bm

2−mk = 2(m−1)k2−mk = 2−k. (9)

If z is also random, then Pr{Bx = z} =
∑

z′ 2−k Pr{Bx = z′} = 2−k. This proves (a).
(b) There are also two cases in showing Pr{z = Bx = By} ≤ 1/4k. First, suppose x = 0m. Then

Pr{z = Bx = By} = Pr{z = 0k, By = 0k}
= Pr{z = 0k}Pr{By = 0k}
= 2−k2−k,

where the last equality uses part (a). Next suppose x 6= 0m and, by symmetry, y 6= 0m. In this case, since x 6= y,
there is some 1 ≤ i < j ≤ m such that

M =
[

xi yi

xj yj

]
is non-singular. To see this, without loss of generality, assume i = 1, j = 2 and xi = 1, yi = 0. Then we can choose
y2 = 1, and it does not matter what x2 is. For any fixed z′ ∈ Bk and any choice of columns B3, . . . , Bm, there is a
constant k × 2 matrix C such that the equation z′ = Bx = By can be rewritten as

[B1|B2]M = C.

Since M is invertible, this uniquely determines B1, B2. There are 2(m−2)k choices for B3, . . . , Bm and hence
Pr{z′ = Bx = By} = 4−k. Again, when z is randomly chosen, this leads to Pr{z = Bx = By} = 4−k. This proves
(b). Q.E.D.

The next idea is to get rid of the assumption that Gi has only the trivial automorphism. We use elementary
facts of group theory. For any digraph G, let aut(G) denote the automorphism group of G. It is standard to look
at the cosets of aut(G): these are sets of the form

π ◦ aut(G) = {π ◦ σ : σ ∈ aut(G)}
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for each π ∈ Sn. These cosets form a partition of Sn. Here is the standard argument: (1) It is clear that Sn is
the union of these cosets since 1 ∈ aut(G). (2) π ◦ aut(G) and π′ ◦ aut(G) are either disjoint or equal: for, if
π◦σ = π′ ◦σ′ for some σ, σ′ ∈ aut(G), then π = π′ ◦σ′ ◦σ−1 so that π ∈ π′ ◦aut(G). Then π◦aut(G) ⊆ π′◦aut(G);
reversing the argument implies π ◦ aut(G) = π′ ◦ aut(G).

We also note that each coset C has size |aut(G)| since π−1C = aut(G) for some π. It follows that the number
d of distinct cosets must divide |Sn| = n!. In fact, d = n!/|aut(G)|. If the distinct cosets are Ci (i = 1, . . . , d),
choose a representative πi ∈ Sn for each i such that πiaut(G) = Ci. Now consider the

iso(G) = {πi(G) : i = 1, . . . , d}
It is clear that iso(G) is a complete list of all the graphs isomorphic to G. Moreover, it is not hard to check that
aut(πi(G)) = πiaut(G)π−1

i [pf: σ(πi(G)) = πi(G) iff π−1
i σπi(G) = G].

It follows that the set
|iso(G)× aut(G)| = n! (10)

So if we count each graph H ∈ iso(G) with multiplicity equal to |aut(G)|, the size of the multiset iso(G)
would be n!. Equivalently, we “tag” each H with one of its automorphisms π, and count the corresponding set
iso(G)× aut(G) set instead of iso(G). This tagging idea will provide a suitable replacement for ALIKE1(G0, G1):
define ALIKE(G0, G1) to be

ALIKE(G0, G1) :={〈H, π〉 : π(H) = H and H ∼ G0 or H ∼ G1}.
Lemma 20

|ALIKE(G0, G1)| =
{

n! if G0 ∼ G1,
2 · n! if G0 6∼ G1.

(11)

Proof. If G0 ∼ G1, then this is just a restatement of (10). If G0 6∼ G1, then the ALIKE(G0, G1) is the disjoint union
of iso(G0)× aut(G0) and iso(G1)× aut(G1). Q.E.D.

We are ready to prove that NONISO belongs to AM .

Theorem 21 NONISO ∈ AM [2].

Proof. Assume each element of Gn is given by a string in B(n
2). Hence each element of ALIKE(G0, G1) can be

represented by a string in Bm where m =
(
n
2

)
+dn lg ne. Choose k = dlg(n!)e+2. As in Boppana’s lemma, let z ∈ Bk

and B ∈ Bm×k be randomly chosen. Let us define c := 2(n!)/2k. Note that if G0 ∼ G1, then |ALIKE(G0, G1)| ≤ n!
and

Pr{z ∈ hB(ALIKE(G0, G1))} ≤ n!
2k

= c/2.

On the other hand, if G0 6∼ G1 and applying lemma 19 with C = ALIKE(G0, G1) yields

Pr{z ∈ hB(ALIKE(G0, G1))} ≥ c
(
1− c

2

)
where |C|/2k = c. Since c ≤ 1

2 , we have

Pr{z ∈ hB(ALIKE(G0, G1))} ≥ 3c/4.

This gives rise to the following { f,∨}-machine M0:

Input: 〈G0, G1〉 ∈ G2
n.

1. Randomly choose B and z, as above.
2. Existentially choose a bit b, H ∈ Gn and two n-permutations π, σ.
3. Answer YES if π(H) = H and σ(H) = Gb and z = hB(H); else Answer NO.

This machine has probability gap (c/2, 3c/4). It does not accept NONISO yet because the gap is not an error gap
(which would contain 1

2 ). We need to “shift” this gap by modifying M0 as follows: begin by tossing a coin to spawn
2 branches. On one branch, perform the computations of M0. On the other, perform a probabilistic computation
whose valuation is exactly 1−(5c/8). Let us see how the second branch can be accomplished. First, we can compute
the binary representation of c in polynomial time in a straightforward manner (in fact, O(n3 log2 n) time suffices).
Next, compute the binary representation of 1− (5c/8). Once this is available, we can make a series of coin tosses
to achieve a valuation of exactly p = 1− (5c/8). In general, let the binary representation of a fraction 0 ≤ p ≤ 1 is
0.p1p2 . . . pk for some k. Note that 1 − (5c/8) is of this form. Then following randomized algorithm accepts with
probability exactly equal to p:
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L0 : for i=1 to k
Randomly choose labels L0 or L1

L1 : if pi = 1 then Answer YES else Answer NO.

Note that the modified machine M1 has the error gap(
c

2
,
3c

4

) f[1− 5c

8
, 1− 5c

8

]
=
(

1
2
− c

16
,
1
2

+
c

16

)
.

In fact, c/16 ≥ 2−6. Thus M1 is an AM [2]-game. Q.E.D.

Note that using (8) and the original interactive verifier V0, we only infer NONISO ∈ AM [4]. Hence this direct
proof yields a sharper result.

8.5.2 Arithmetization of Quantified Boolean Formulas

The next two subsections uses a technique called “arithmetization” of quantified Boolean formulas. We recall the
notion of a quantified Boolen formula F : In the base case, F is a Boolean variable x or the constants 0 or 1.
Inductively, if F1, F2 are quantified Boolean formulas, then F has the form in the left column of the following table,

F |F |
x, 0, 1 1
¬F1 1 + |F1|
(F1 ∨ F2) |F1 + |F2||
(F1 ∧ F2) |F1|+ |F2|
(∃x)[F1] 1 + |F1|
(∀x)[F1] 1 + |F1|

F1, F2 are quantified Boolean formulas. The length |F | of F is given in the right column of the preceding table.
In the following, we simply say “formulas” for quantified Boolean formulas. Parenthesis or brackets may be

dropped from formulas if this does not lead to ambiguity. Any occurence of the variable x in F1 is said to be bound
in (∃x)F1 and (∀x)F1. An occurence of the variable x is free if it is not bound. When we write F = F (x1, . . . , xn),
this means that any variable that occurs free in F is among x1, . . . , xn (but it does not mean that each xi actually
occurs free in F ). In this case, when we write F (a1, . . . , an), it means we replace each free occurence of xi in F
by ai. When F has no free variables, it is called a quantified Boolean sentence (or simply, “sentence”). We
assume that the reader knows what it means for sentence to be true. If F (x1, . . . , xn), then F is valid if for every
choice of Boolean values ai ∈ B, F (a1, . . . , an) (which is a sentence) is true. A formula is quantifier-free when it
does not have any quantifiers (∀ or ∃). We say F is in prenex form if it has the form

(Q1x1)(Q2x2) · · · (Qmxm)[φ]

where Qi ∈ {∀, ∃} and φ is quantifier-free.

Arithmetization. Suppose F = F (x1, . . . , xn) is a formula. Its “arithmetization” is an integer polynomial
F̃ (x1, . . . , xn) ∈ Z[x1, . . . , xn] defined as follows:

• (Base Case) If F ∈ {0, 1, x1, . . . , xn}, then F̃ = F .

• (Induction) If F1, F2 be quantified Boolean formulas, and F (x1, . . . , xn) has the form in the left column, then
F̃ has the form on the right column:

F F̃

¬F1 1− F̃1

(F1 ∧ F2) F̃1 ⊗ F̃2 = F̃1F̃2

(F1 ∨ F2) F̃1 ⊕ F̃2 = 1− (1− F̃1)(1− F̃2)
(∀x)[F1] F̃1(x1, . . . , xn−1, 0)⊗ F̃1(x1, . . . , xn−1, 1)
(∃x)[F1] F̃1(x1, . . . , xn−1, 0)⊕ F̃1(x1, . . . , xn−1, 1)
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For example, if F = (¬x)(x ∨ y) then

F̃ = (1 − x)(x ⊕ y) = x + y − x2 − 2xy + x2y. (12)

Here we use a common convention where x1, x2, x3 are synonymous with x, y, z. Recall that B = {0, 1}. Our
polynomials have two simple properties:
(i) If each ai ⊆ B value then F̃ (a1, . . . , an) ∈ B.
(ii) F̃ (a1, . . . , an) = 1 iff the sentence F (a1, . . . , an) is true.

Define Pn to be the set of polynomials P̃ that arise from formulas F over the variables x1, . . . , xn. Alternatively,
Pn is the smallest set of integer polynomials such that (1) {0, 1, x1, . . . , xn} ⊆ Pn, and (2) if p, q ∈ Pn then
1− p ∈ Pn and pq ∈ Pn. Viewing a polynomial p as a sum of terms (or monomials) where each term has the form
t = c

∏n
i=1 xei

i (c 6= 0). Let e = (e1, . . . , en) and |e| :=∑n
i=1 ei. Then we call e = (e1, . . . , en) the exponent, |e| the

degree, c ∈ Z is the coefficient and
∏n

i=1 xei

i (ei ≥ 0) is a power product of the term t. We also write xe for
the power product xe1

1 xe2
2 · · ·xen

n . The degree of p, denoted deg(p), is defined as the maximum of the degrees of
its terms.

Let degi(p) be the largest exponent d ≥ 0 such that xd
i divides a term in p Then the maximum degree of p

is the vector
MaxDeg(p) = (e1, . . . , en)

where ei = degi(p) for each i. We say p is principal when xMaxDeg(p) occurs in p; then the coefficient of xdeg(p)

in p is called the leading coefficient of p. Define5

M(e) :=
|e|!
e!

where e! := e1!e2! · · · en! and |e| = ∑n
i=1 ei as above. For instance if e = (0, 2, 1, 2) then M(e) = 5!

0!2!1!2! = 30. We
note a basic identity of multinomials:

Lemma 22 Let g ∈ Nn and |g| = a + b (a, b ∈ N). Let I = I(g, a, b) be the set of all pairs of the form (e, f) such
that e, f ∈ Nk, |e| = a, |f | = b and e + f = g.

M(g) =
∑

(e,f)∈I

M(e)M(f). (13)

Proof. This proof exploits a counting interpretation of M(g): M(g) is the number of ways to color a set of |g|
elements with k colors. Let A, B be disjoint sets of a and b elements, respectively. The number of ways to color
A ∪B with k colors is therefore M(g). But for each (e, f) ∈ I, there are M(e) ways to k-color A and M(f) ways
to k-color B. Combining them, this gives rise to M(e)M(f) ways to k-color A ∪B. Let C(e, f) be the k-colorings
of A ∪B that is associated in this way with (e, f). Note that C(e, f) ∩C(e′, f ′) = ∅ for (e, f) 6= (e′, f ′), and hence

M(g) ≥
∑

(e,f)∈I

M(e)M(f).

It is also easy to see that every k-coloring of A ∪B is a member of C(e, f) for some (e, f). Hence the inequality is
in fact an equality. Q.E.D.

A homogeneous polynomial is one in which every term has the same degree. For any polynomial p which
does not involve x0, id d = deg(p), we define its homogeneous version p̂ to be the result of replacing each term
cex

e in p by the term cex
ex

d−|e|
0 . For instance, if p(x, y) = p(x1, x2) is the polynomial in (12), then

p̃ = (x0 − x1)(x0x1 + x0x2 − x1x2) = x2
0x1 + x2

0x2 − x0x
2
1 − 2x0x1x2 + x2

1x2.

If e = (e1, . . . , en) and |e| ≤ d, define

Md(e) =
d!

(d− |e|)!e1! · · · en!

For each term with exponent e in a polynomial p of degree d, the corresponding term in p̃ has exponent e′ =
(d− |e|, e1, . . . , en). Then Md(e) is just M(e′). It is easy to see that

M(e) ≤Md(e). (14)

5M(e) is also known as a multinomial, but this is terminology should be distinguished from the “monomial” terminology.
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Lemma 23 Let p ∈ Pn.
(i) p is principal.
(ii) The leading coefficient of p is ±1, and its constant term is either 0 or 1.
(iii) If cex

e is a term in p, then |ce| ≤Md(e) where d = deg(p).
(iv) For any formula F , the coefficients of F̃ has bit size O(|F | log |F |).

Proof. (i) and (ii) are immediate.
(iii) (Basis) If |e| = 0, then Md(e) = 1, and so the result holds when p = 0 or p = 1. If |e| = 1, then Md(e) ≥ 1, and
thus it holds when p = xi or p = 1− xi. (Induction) Suppose p, q ∈ Pn. By induction, the result is true for 1− p,
and we want to verify the result for pq. Consider their homogeneous versions p̂, q̂. For e = (e0, . . . , en) ∈ Nn+1 let
Xe = xe0

0 xe1
1 , . . . , xen

n and αe be the coefficient of Xe in p̂q. Similarly, let βe and γe be the coefficients of Xe in p̂
and in q, respectively. Then for any e ∈ Nn+1,

αe =
∑

f+g=e

βfγg,

|αe| ≤
∑

(f,g)∈I

|βf | · |γg|

≤
∑

(f,g)∈I

M(f)M(g)

= M(e),

by the previous lemma. But if e = (e0, e1, . . . , en) and e′ = (e1, . . . , en) then M(e) is just Md(e′), as desired.
(iv) Let F be a formula and d ≤ deg(F̃ ). If e ∈ Nn then from (iii), the coefficient of xe in F̃ has bit size at most
log Md(e) ≤ log(d!). The lemma follows since d = O(|F |). Q.E.D.

8.5.3 IP contains PP .

In order to prove PP ⊆ IP , it is enough to show that a PP -complete problem (under many-one polynomial-time
reducibility, say) is in IP . The same approach is used in the next section to show that PSPACE ⊆ IP , so this
proof serves as warm-up. Our main result here is.

Theorem 24 #SATis in IP.

Let F be a quantifier-free formua over x1, . . . , xn. From the definition of #F as the number of satisfying
assignments to the formula F , we see that

#F =
1∑

a1=0

1∑
a2=0

· · ·
1∑

an=0

F̃ (a1, . . . , an).

We define the following polynomials for i = 0, . . . , n:

Fi(x1, . . . , xi) :=
∑

ai+1∈B

∑
ai+2∈B

· · ·
∑

an∈B

F̃ (x1, . . . , xi, ai+1, ai+2, . . . , an). (15)

Notice that

• Fn(x1, . . . , xn) = F̃ (x1, . . . , xn).

• For i = 1, 2, . . . , n, Fi−1(x1, . . . , xi−1) = Fi(x1, . . . , xi−1, 0) + Fi(x1, . . . , xi−1, 1).

• F0 = #F .

Clearly, each Fi ∈ PPn and deg(Fi) ≤ deg Fn. In particular, the coefficients of Fi has bit size O(|F | log |F |). The
idea of the algorithm is to reduce the search for Fi to Fi+1, and hence reducing the search for #F = F0 to Fn

(which we know). Moreover, since Fi is a i-variate polynomial, by random substitution for i− 1 of these variables,
we can reduce the checking to a univariate problem.
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An IP-Algorithm for #SAT. Let the input for #SAT be 〈F, k〉 where F is a Boolean formula. The following
algorithm is to accept iff #F ≥ k. Assume the polynomial F̃ has n variables and degree ≤ d = |F |.

1. Construct the polynomial
Fn = F̃ (x1, . . . , xn) ∈ Z[x1, . . . , xn].

We represent Fn as an expression using the inductive rules in the definition of F̃ . Note that we do not expand
Fn into an explicit sum of terms, which would be prohibitive. In the following, we refer to Fi(x1, . . . , xi)
(i = 0, . . . , n− 1), defined as in (15). Note that these Fi’s will are never computed.

Let S ⊆ Z be any finite set of size at least 8dn. For instance, we may let S = {0, 1, . . . , 2dlg(8dn)e − 1}. In the
following, whenever we choose a random number r, it will be taken from S.

2. Stage 0: Existentially guess some k0 where k ≤ k0 ≤ 2n. Our main task is to verify F0 = k0 (recall
F0 = #F ). How can we do this, seeing that we do not have F0? We this indirectly, by guessing the
coefficients of a polynomial G1(x) ∈ Z[x] of degree ≤ d = |F |. We intend6 G1(x) to be equal to F1(x).
Unlike the multivariate Fn, we can afford to represent the univariate G1 as a sum of its terms. We then
check if G1(0) + G1(1) = k0. If this fails, we answer NO (our guess is wrong). If our guess were correct, then
G1(0) + G1(1) = F0 and our main task is next reduced to to verifying G1(x) = F1(x), which is addressed in
stage 1.

3. Stage i = 1, . . . , n− 1: Inductively assume that, at the beginning of stage i, we have a univariate polynomial
Gi(x) and a sequence of elements r1, . . . , ri−1 ∈ Z. Each rj is randomly chosen a previous stage (in fact,
stage j). The task for this stage is to verify that

Gi(x) = Fi(r1, . . . , ri−1, x). (16)

Here, Gi(x) is explicitly represented by its sequence of coefficients, but Fi(r1, . . . , ri−1, x) is implicitly repre-
sented by Fn(x1, . . . , xn) (from step 2) and the values r1, . . . , ri−1.

To verify (16), we existentially guess (the coefficients of) a polynomial Gi+1(x) ∈ Z[x] of degree ≤ d. Then we
randomly choose ri ∈ S. Notice that the modes for choosing Gi+1(x) and for choosing ri are different. Again,
Gi+1(x) is intended to be Fi+1(r1, . . . , ri, x). Since Fi(r1, . . . , ri) = Fi+1(r1, . . . , ri, 0) + Fi+1(r1, . . . , ri, 1),
instead of (16), we verify that

Gi(ri) = Gi+1(0) + Gi+1(1). (17)

If this fails, we answer NO. Otherwise, we proceed to the next stage.

4. Stage n: from stage n − 1, we have inherited Gn(x) and r1, . . . , rn−1. We now need to verify Gn(x) =
Fn(r1, . . . , rn−1, x) (cf. equation (16)). We randomly7 guess rn ∈ S, and answer YES if Gn(rn) = Fn(r1, . . . , rn−1, rn),
otherwise answer NO. This final check is possible because we can easily evaluate Fn(r1, . . . , rn−1, rn) from
our representation of Fn(x1, . . . , xn) and r1, . . . , rn.

Correctness. We prove that this procedure accepts #SAT. One direction is easy: suppose 〈F, k〉 ∈ #SAT. We
may assume that all our existential guesses are correct. In particular, k0 is correctly chosen to be #F , and at each
stage, the guessed polynomial Gi(x) is indeed equal to Fi(r1, . . . , ri−1, x). Under these assumptions, regardless of
the choice of the ri’s, we always answer YES in stage n. In fact, this shows that we accept 〈F, k〉 with no pessimistic
acceptance error. Moreover, there is a computation tree of polynomial height, since each Gi has degree at most
d = |F | and its coefficients are O(|F | log |F |) bits.

In the harder direction, where 〈F, k〉 6∈ #SAT, we have #F 6= k0 for all choices of k0 ≥ k. Fix any k0. We will
show that Pr(En) ≥ 3/4 where En be the event that we answer NO in stage n. For i = 0, . . . , n− 1, define Ei to
be the event that we enter stage i + 1 with

Gi+1(x) 6= Fi+1(r1, . . . , ri, x). (18)

For events A and B, we have Pr(A) ≥ Pr(A|B) Pr(B). Iterating this,

Pr(En) ≥ Pr(En|En−1) Pr(En−1)
≥ Pr(En|En−1) Pr(En−1|En−2) Pr(En−2)

6Mnemonic: think of the G’s as “guesses” for the F ’s.
7We could actually perform this step in deterministic polynomial time.
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≥ · · ·
≥ Pr(En|En−1) Pr(En−1|En−2) · · ·Pr(E1|E0) Pr(E0)

= Pr(E0)
n∏

i=1

Pr(Ei|Ei−1). (19)

In stage 0, the fact that G1(0) + G1(1) = k0 and #F = F1(0) + F1(1) 6= k0 implies that G1(x) 6= F1(x). Hence
Pr(E0) = 1.

In stage 1, we ∃-guessed G2(x) of degree ≤ d, and randomly choose a number r1 such that G1(r1) = G2(0) +
G2(1). Since the total degrees of G1, F1 are ≤ d, the fact that G1(x) 6= F1(x) implies follows that there are at most
d choices of r ∈ Z such that G1(r) = F1(r). This follows from a simple fact of algebra that a non-zero polynomial
p(x) ∈ Z[x] of degree d has at most d zeros. Here, p(x) = G1(x) − F1(x). Thus Pr(E1|E0) ≥ 1− (d/p).

The same argument works for stage i+1 (i = 1, . . . , n−2): assuming (18), Pr{Gi+1(ri+1) 6= Fi+1(r1, . . . , ri, ri+1)} ≤
d/p. Thus Pr(Ei+1|Ei) ≥ 1− (d/p). It is also true that Pr(En|En−1) ≥ 1− (d/p). From (19), we conclude that

Pr(En) ≥
(

1− d

p

)n

>1 (e−2d/p)n

>2 1− 2nd

p

> 3/4 (since p > 8dn).

See the Appendix for the inqualities >1 and >2. This proves the correctness of our IP-algorithm. Since #SAT is
PP -complete (say, under Karp-reducibility) and IP is clearly closed under Karp-reducibility, we have shown:

Theorem 25

PP ⊆ IP .

Neither of the inclusions NP ⊆ IP , and co-NP ⊆ IP are obvious because of the requirement of bounded error
in IP . But as 3SAT is trivially Karp-reducible to #SAT, it follows that NP ⊆ IP . Since IP is closed under
complementation, this also means that co-NP ⊆ IP .

Corollary 26

NP ∪ co-NP ⊆ IP .

Remark: In the above proof, the equality of polynomials is always taken in the abstract mathematical sense,
not in terms of their representations. Thus F (a1, . . . , an) is equal to 0 or 1 when the ai ∈ B. On the other hand, we
need to address the issue of representation when we construct explicit polynomials (e.g., Fn or the guessed Gi’s).

8.5.4 IP = PSPACE

In Chapter 7, we proved PrA-TIME (t) ⊆ ATIME (t log t). Thus,

IP ⊆ PrA-TIME (n0(1)) ⊆ ATIME (nO(1)) = PSPACE .

We now prove the converse, PSPACE ⊆ IP , a result of Shamir [30]. The algebraic technique for showing PP ⊆ IP .
in the previous section will be extended. In particular, we now show that a particular PSPACE -complete language
belongs to IP . Define the set of valid quantified Boolean formulas to be

QBF = {F : F is a valid formula}.
This can be viewed as a language, after choosing some standard encoding of formulas. We may assume F ∈ QBF
are in prenex form.

Lemma 27 QBF is PSPACE-complete.

The proof is left as an Exercise. Hence our desired result amounts to showing an IP -algorithm for QBF. We
initially try to imitate the previous proof, as this helps to locate the new difficulties. Let F be a formula. Unlike
the previous proof, F may now have quantifiers. We may assume that

F = (Q1x1Q2x2 · · ·Qnxn)[φ] (20)
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where φ = φ(x1, . . . , xn) is quantifier-free. Define formulas Fi for i = 0, . . . , n as follows:

Fn(x1, . . . , xn) = φ

Fn−1(x1, . . . , xn−1) = (Qnxn)[Fn]
...

Fi−1(x1, . . . , xi−1) = (Qixi · · ·Qnxn)[φ] = (Qixi)[Fi]
...

F1(x1, x2) = (Q3x3Q4x4 · · ·Qnxn)[φ]
F1(x1) = (Q2x2Q3x3 · · ·Qnxn)[φ]

F0() = F

If F̃i is the arithmetization of Fi, then we have

F̃i(x1, . . . , xi) =

{
F̃i+1(x1, . . . , xi, 0)⊗ F̃i+1(x1, . . . , xi, 1) if Qi = ∀
F̃i+1(x1, . . . , xi, 0)⊕ F̃i+1(x1, . . . , xi, 1) if Qi = ∃

The problem is that the degree of F̃i is double that of F̃i+1. Hence the degree of F̃ may be exponential in |F |.

A Linearization Quantifier. To solve this problem, we introduce a new kind of quantifier denote L. The class
of quantified Boolean formulas are now enlarged to include this new quantifier. In particular, for any formula
φ(x1, . . . , xn, x) and variable x, the following is also a formula,

F = Lx[φ].

Furthermore, its arithmetization is defined via

F̃ :=(1 − x)φ̃(x1, . . . , xn, 0) + xφ̃(x1, . . . , xn, 1).

Note the following properties:

• If a ∈ B, then F̃ (x1, . . . , xn, a) = φ̃(x1, . . . , xn, a).

• F̃ has the same set of free variables as φ̃ (namely, x1, . . . , xn, x).

• F̃ is linear in x.

The last two properties are quite unlike the arithmetization of the other two quantifiers. Indeed, the name of the
L-quantifier is taken from the last property. An Exercise below shows that the linearlization transformation

φ(x1, . . . , xn, x) 7→ (1 − x)φ(x1, . . . , xn, 0) + xφ(x1, . . . , xn, 1)

amounts to replacing any power of x by a plain x in every term of the polynomial φ(x1, . . . , xn, x). We now
transform the formula F in (20) to a new formula H ,

H := (Q1x1)(Lx1Q2x2)(Lx1Lx2Q3x3) · · · (Lx1Lx2 · · ·Lxn−1Qnxn)[φ]
= (Q1y1Q2y2 · · ·Qmym)[φ]

where Qi ∈ {L, ∀, ∃} and yi ∈ {x1, . . . , xn}. Here m =
(

n+1
2

)
is the number of quantifiers in H . These m quantifiers

are placed into n groups, as indicated by the matched pairs of parentheses. In each group (reading from right to
left), a normal quantifier Qi is followed by i− 1 linearization operators to ensure that the degrees of the remaining
variables are linear. As usual, let

Hm(x1, . . . , xm) = φ

Hm−1(x1, . . . , xm) = (Qmym)[Hm]
Hm−2(x1, . . . , xm) = (Qm−1ym)[Hm−1] = (Qm−1ym−1Qmym)[Hm]

· · ·
H1(x1) = (Q2y2)[H2]

H0() = (Q1y1)[H1] = H
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Note that Hi = Hi(x1, . . . , xn(i)) for some n(i). The Hi’s are formulas, but in our algorithm, we will simulate their
arithmetized8 versions H̃i. In particular, we will make ∃-guesses of Gi = Gi(x1, . . . , xn(i)) which are intended to
be equal to H̃i. The critical fact is that

deg(H̃i) ≤ |F |2.
To see this, let di = deg(H̃i). Then we have dm ≤ |F |. However, dm−1 could be as large as (dm)2. However,
the next n− 1 linearization quantifiers reduces this degree back to at most |F |. This pattern is repeated for each
group of linearization quantifiers that follows the next ∀ or ∃ quantifier (Qm−1). We now see why the linearization
quantifier is an antidote to the exponential degree of Fi’s.

Here now is the IP-algorithm for QBF. The description will be abbreviated where similarities to the previous
IP -algorithm for #SAT is clear.

1. The input is a quantified Boolean formula F . Let H be the corresponding linearized version, and the formulas
H0, . . . , Hm is defined as above. Again, we assume a finite set S of size |S| ≥???. Whenever we choose a
random number, it will be taken from S.

2. Stage 0: We guess G1(x), intended to be equal to H̃1(x). Now H = H0 = (Q1x1)[H1] and Q1 = ∀ or ∃. If
Q1 = ∀, then we check if G1(0) = G1(1) = 1. If Q1 = ∃, then we check if G1(0) = 1 or G1(1) = 1. If the
check fails, we answer NO; else we go to Stage 1.

3. Stage i (i = 1, . . . , m− 1). Inductively, we have random values r1, . . . , rn(i)−1 and Gi(x). Intuitively, Gi(x)
is meant to be Hi(r1, . . . , rn(i)−1, x). Now Hi = (Qi+1yi+1)[Hi+1(x1, . . . , xn(i+1))].

Note that if Qi+1 = L then n(i + 1) = n(i); otherwise Qi+1 = ∀ or ∃ and n(i + 1) = n(i) + 1. Existentially
guess Gi+1(x). If Qi+1 6= L then we randomly choose rn(i+1)−1 = rn(i). Regardless of Qi+1, the intention is
that Gi+1(x) is Hi(r1, . . . , rn(i+1)−1, x).

We consider three cases:
(i) If Qi = ∀, we check if Gi(rn(i)) = Gi+1(0)⊗Gi+1(1)
(ii) If Qi = ∃, we check if Gi(rn(i)) = Gi+1(0)⊕Gi+1(1)
(iii) If Qi = ∃, we check if Gi(rn(i)) = Gi+1(rn(i))

4.

Notes. Our approach to interactive proofs via choice computation is unconventional, but it provides a more
satisfactory and general foundation than the customary treatment. This allows interactive proofs to seen to be a
natural part of a wide spectrum of computational choices. A survey on interactive proofs may be found in [24]. The
place of ISO in the complexity landscape is explored in the monograph of Köbler, Schöning and Torán [17]. Another
closely related question is GRAPH AUTOMORPHISM: Given G, does it have a non-trivial automorphism?

Exercise

Exercise 8.5.1: Show that IP is closed under Karp- and Cook-reducibility.

Exercise 8.5.2: This exercise helps you gain some facility with the group theoretic ideas in the NONISO ∈ IP
proof. Let V = Vn = {1, . . . , n} and Sn be the set of permutations on Vn. The trivial permutation is denoted
1n (or simply 1). Write the composition of σ, σ′ ∈ Sn in the form of a product σσ′, instead of σ ◦ σ′.
(i) Let 2 ≤ k ≤ n. If {a1, . . . , ak} ⊆

(
V
k

)
, then (a1, . . . , ak) ∈ Sn denotes the permutation which takes each

ai to a(i+1mod k), called a cyclic permutation. Two special cases are k = 2 or k = n. Then (a1, . . . , ak) is
transpose or a Hamiltonian permutation, respectively. Two cyclic permutations (a1, . . . , ak), (b1, . . . , b`)
are disjoint if ai 6= bj for all i, j. For instance, (132)(45) = (45)(132) is a product of two disjoint cycles. The
order of writing disjoint products does not matter. Show that every non-trivial permutation is a product of
disjoint permutations.
(ii) Let G0 be the digraph shown in Figure ??. etermine iso(G0) and iso(G1). What the sizes of these two
sets?
(iii) Determine aut(G0) and aut(G1). What the sizes of these two sets?

8We really ought to write “H̃i”. But this is uglier than the “H̃i” which we will use.
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(a) G0 (a) G1
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5 2
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34

Figure 8.6: Two labeled digraphs G0, G1.

Exercise 8.5.3: If p ∈ Pn has degree d, then there is a constant C > 0 such that the magnitude of each coefficient
of p is at most

C

(
d

exp(1)

)n+(1/2)(
n + 1

d

)n+1

.

This sharpens the d! bound used in the text.

Exercise 8.5.4: Prove that QBF is PSPACE -complete. Since this proof can be found in the literature, we will
enforce some originality in your solution by asking you to use the same framework as the proof of Cook’s
theorem in Chapter 3. Hint: The additional idea you need is found in the proof of Savage’s theorem: if
C `2m C′ (i.e., there is an 2m-step path from C to C′ then C `m C′′ and C′′ `m C′ for some C′′.

Exercise 8.5.5: Show that for any polynomial φ(x1, . . . , xn, x), the linearization transformation

φ(x1, . . . , xn, x) 7→ (1− x)φ(x1 , . . . , xn, 0) + xφ(x1, . . . , xn, 1)

amounts to replacing any power of x by a plain x in every term of the polynomial φ(x1, . . . , xn, x).

Exercise 8.5.6: Are there reasons to believe that co-NP ⊆ AM , based on NONISO ⊆ AM [2]? Derive nontrivial
consequences under the assumption co-NP ⊆ AM .

Exercise 8.5.7: If L ∈ AM [k] then L is accepted by an Arthur-Merlin game in k + 1 rounds with zero-error
acceptance.

Exercise 8.5.8: How does one amplify error gaps for languages in AM [k]?

End Exercise

8.6 Markov Chains and Space-bounded Computation

We want to study computations by space-bounded probabilistic machines. The behavior of such computations
can be analyzed in terms of finite9 Markov chains. We develop the needed results on Markov chains (see also the
appendix in this chapter). For further reference on Markov chains, see [16, 10].

The main result of this section is

Theorem 28 For all s(n) ≥ log n,
PrSPACE (s) ⊆ DSPACE (s2)

Notice that this result is yet another strengthening of Savitch’s theorem! We follow the proof of Borodin,
Cook and Pippenger [6]; Jung [15] independently obtained the same result using different techniques10. This result

9i.e., discrete time, homogeneous Markov processes, with finitely many states.
10Borodin, Cook and Pippenger uses redundant arithmetic techniques while Jung uses modular arithmetic techniques. Borodin, Cook

and Pippenger states the result in a stronger form (in terms of circuit depth, see chapter 10), but it has essentially the proof to be
presented here.
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improves earlier simulations by Gill [12] (which uses exponential space) and by J. Simon [31] (which uses s(n)6

space).
A sequence of non-negative real numbers (p1, p2, . . . , pi, . . .) is stochastic if the sum

∑
i≥1 pi = 1; it is substochas-

tic if
∑

i≥1 pi ≤ 1. A matrix is stochastic (resp., substochastic) if each row is stochastic (substochatic). In general,
stochastic sequences and stochastic matrices may be denumerably infinite although we will only consider finite ma-
trices. An n-state Markov process (or Markov chain) is characterized by an n×n stochastic matrix A = (pi,j)n

i,j=1.
Call A the transition matrix. The states of A will be called Markov states, as distinguished from machine states.
We interpret this chain as an n-state finite automaton where pi,j is the probability of going from state i to state
j. For any integer k ≥ 0, the kth power Ak = (p(k)

i,j )n
i,j of A is defined inductively: A0 is the identity matrix and

Ak+1 = A · Ak. It is easy to check the product of stochastic matrices is stochastic; hence each Ak is stochastic.
Clearly p

(k)
i,j denotes the probability of a transition from state i to state j in exactly k steps.

Markov states admit a straight forward combinatorial classification. From the transition matrix A = (pi,j)n
i,j=1

of the Markov chain, construct the Boolean matrix B = (bi,j)n
i,j=1 where bi,j = 1 iff pi,j > 0. We view B as the

adjacency matrix of a directed graph GA, called the underlying graph of the matrix A. We may form the transitive
closure B∗ = (b∗i,j)

n
i,j=1 of B (see chapter 2, section 6). As usual, define states i and j to be strongly connected if

b∗i,j = b∗j,i = 1.

This is easily seen to be an equivalence relationship and the equivalence classes form the (strongly connected)
components of GA. These strongly connected components in turn are related by the reachability relation: if C and
C′ are components, we say C can reach C′ if there are states i ∈ C and j ∈ C′ such that b∗i,j = 1. It is easy to
see that this definition does not depend on the choice of i and j. Furthermore, if C can reach C′ and C′ can reach
C then C = C ′. Thus the reachability relation induces an acyclic graph F on the components where F has an
edge from C to C′ iff C can reach C′. Those components C that cannot reach any other components are called
essential components and the states in them known as essential states. The other components are called inessential
components and their members known as inessential states.11 We say state i is absorbing if pi,i = 1. Such a state is
clearly essential and forms a component by itself. A Markov chain is absorbing if all essential states are absorbing.

The above classification depends only on the underlying graph GA. Let us now classify states by their stochastic
properties. These notions properly belong to a subarea of probability theory called renewal theory. We introduce
an important concept in renewal theory: let f

(n)
i,j denote the probability that, starting from state i, we enter state

j for the first time after n steps. We call these f
(n)
i,j the first entrance probabilities. Write f

(n)
i for f

(n)
i,i . It is not

hard to see that for n = 1, 2, . . .,

f
(n)
i,j = p

(n)
i,j −

n−1∑
k=1

f
(k)
i,j p

(n−k)
j,j

or,

p
(n)
i,j =

n∑
k=0

f
(k)
i,j p

(n−k)
j,j (21)

where we conventionally take
f

(0)
i,j = 0, p

(0)
i,j = δi,j .

Here δi,j is Kronecker’s delta function that assumes a value of 1 or 0 depending on whether i = j or not. The sum

f∗
i,j =

∞∑
n=1

f
(n)
i,j

clearly denotes the probability of ever reaching state j from i. Let f∗
i abbreviate f∗

i,i. We now define a state to be
recurrent if f∗

i = 1 and nonrecurrent if f∗
i < 1.

Lemma 29 An inessential state is nonrecurrent.

Proof. By definition, if state i is inessential, there is a finite path from i to some state outside the component of i.
Then f∗

i ≤ 1− c where c > 0 is the probability of taking this path.
Q.E.D.

11The reader should be aware that the classification of Markov states are not all consistent in the literature. The essential/inessential
distinction is due to Chung [8]. His terminology is justified in the sense that every chain has at least one essential component; but it
also seems to reflect an attitude in probabilistic theory that the most interesting phenomena occur in the essential components. This
is unfortunate because we will see that the inessential components are more interesting for us!
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The converse does not hold in general (Appendix and Exercise). But in the case of finite Markov chains, essential
states are recurrent. To show this result, we proceed as follows: let g

(n)
i,j denote the probability of the event G

(n)
i,j

that starting from state i we will visit state j at least n times. Note that G
(n+1)
i,j ⊆ G

(n)
i,j and so we may define the

limit

gi,j := lim
n→∞ g

(n)
i,j = Pr(

∞⋂
n=0

G
(n)
i,j ).

It is not hard to see that gi,j is the probability that starting from state i we visit state j infinitely often. Again,
let gi,i be abbreviated to gi.

Lemma 30

(i) gi = 1 or 0 according as i is recurrent or not.
(ii) In a finite Markov chain, essential states are recurrent.

Proof. (i) Note that

g
(n+1)
i = f∗

i g
(n)
i .

Since g
(1)
i = f∗

i , we get inductively

g
(n+1)
i = (f∗

i )n.

Taking limits as n→∞, we see that gi = 1 if f∗
i = 1 and gi = 0 if f∗

i < 1.
(ii) Let E

(n)
i be the event that starting from state i, there are no returns to state i after n steps. Clearly

E
(1)
i ⊆ E

(2)
i ⊆ · · ·

and Ei :=
⋃

n≥0 E
(n)
i is the event that there are only finitely many returns. But

Pr(E(n)
i ) ≤ 1− e

where e > 0 is the minimum probability that any state in the component of i can get to state i. (To see this,

Pr(E(n)
i ) =

∑
j

p
(n)
i,j (1− f∗

j,i) ≤ (1 − e)
∑

j

p
(n)
i,j

which is at most 1 − e.) Hence Pr(Ei) ≤ 1 − e < 1. But gi = 1 − Pr(Ei). Hence gi > 0 and by part (i), gi = 1.
This means state i is recurrent. Q.E.D.

We now see that for finite Markov chains, the combinatorial classification of essential/inessential states co-
incides with the stochastic classification of recurrent/nonrecurrent states. The appendix describe some refined
classifications.

The stochastic completion of A = (pi,j)n
i,j=1 is the matrix A∗ = (p∗i,j)

n
i,j=1 where

p∗i,j =
∞∑

k=0

p
(k)
i,j

with the understanding that the sum is ∞ when it diverges. The completion operation is defined even if A is not
a stochastic matrix.12

The entries of A∗ has this natural interpretation:

Lemma 31

(i) p∗i,j is the expected number of steps that the automaton spends in state j if it started out in state i.
(ii) Furthermore, if j cannot return to itself in one or more steps then p∗i,j is the probability that the automaton
ever enters state j.

12The terminology is from in [6]. The notation p∗i,j is not to be confused with the limiting value of p
(k)
i,j as k → ∞. Unfortunately, a

stochastic completion is no longer a stochastic matrix. This is obvious from the interpretation of p∗i,j as the expected number of steps
in state j.
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Proof. Interpretation (i) follows when we note p
(n)
i,j is the expected fraction of time that the automaton spends in

state j during nth unit time period, assuming that it started out in state i. For (ii), under the stated assumptions
on state j, we see that p

(n)
i,j = f

(n)
i,j and hence p∗i,j = f∗

i,j . Q.E.D.

Let us introduce the following generating functions (see appendix) for state i:

Fi(s) :=
∞∑

n=0

f
(n)
i sn

Gi(s) :=
∞∑

n=0

p
(n)
i sn

Using the relation (21), we see that
Gi(s)− 1 = Fi(s)Gi(s)

or,

Gi(s) =
1

1− Fi(s)

Now if we take the limit as s → 1−, the left hand side approaches p∗j,j and the right hand side approaches 1
1−f∗

j
.

This proves

Lemma 32

p∗j,j <∞ ⇐⇒ f∗
j < 1.

To relate this to other values of p∗i,j , we have

Lemma 33

p∗i,j = δi,j + f∗
i,jp

∗
j,j.

Proof.

p∗i,j =
∞∑

n=0

p
(n)
i,j

= δi,j +
∞∑

n=1

n∑
k=1

f
(k)
i,j p

(n−k)
j,j

= δi,j +
∞∑

k=1

f
(k)
i,j

∞∑
n=k

p
(n−k)
j,j

= δi,j +
∞∑

k=1

f
(k)
i,j

∞∑
n=0

p
(n)
j,j

= δi,j + f∗
i,jp

∗
j,j

Q.E.D.

Corollary 34 For all i, j, if f∗
i,j > 0 then

p∗i,j <∞ ⇐⇒ p∗j,j <∞.

We need one more basic fact [16].

Lemma 35 Let A be a square matrix such that An → 0 as n→ 0, i.e., each entry of the nth power of A approaches
zero as n approaches infinity. Then the matrix I − A is nonsingular where I is the square matrix with the same
dimensions as A. Moreover the infinite sum

∞∑
n=0

An

converges, and this sum is given by

(I −A)−1 =
∞∑

n=0

An.
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Proof. We begin with the identity

(I −A)(I + A + A2 + · · ·+ An) = I −An+1.

Now the right hand side approaches I for large n. So for sufficiently large n, det(I − An+1) 6= 0. This means
det(I −A) det(I +A+ · · ·+An) 6= 0. Thus I −A is nonsingular, as asserted. So we may multiply both sides of the
identity on the left with (I −A)−1, giving a new identity

(I + A + A2 + · · ·+ An) = (I −A)−1(I −An+1).

Now as n → ∞, the left hand side approaches the infinite sum of the lemma and the right hand side approaches
(I − A)−1. Since the right hand side approaches a definite limit, so the left hand side approaches the same limit.

Q.E.D.

For any transition matrix A, let B be obtained by deleting the rows and columns of A corresponding to essential
states. Following Kemeny and Snell, we call B the fundamental part of A. Note that B is a substochastic matrix.
Then after permuting the rows and columns of A, we have

A =
(

B T
0 C

)
where ‘0’ denotes a matrix of zeroes of the appropriate dimensions. Moreover, the nth power of A is

An =
(

Bn Tn

0 Cn

)
where Bn, Cn are the nth powers of B, C (respectively) and Tn is some matrix whose form need not concern us.
Hence, the stochastic completion

A∗ =
(

B∗ T∗
0 C∗

)
where B∗, C∗ are the stochastic completions of B, C (respectively). In our applications, we only need B∗. Note
that the entries in C∗, T∗ are 0 or ∞, by what we have proved.

From the above development, the entries p
(n)
i,j in Bn satisfy the property

∑∞
n=0 p

(n)
i,j <∞. This means p

(n)
i,j → 0

as n → ∞. Hence Bn → 0 as n → ∞ and the preceding lemma shows that B∗ converges to (B − I)−1. Hence
computing B∗ is reduced to the following:

Theorem 36 Let A be the transition matrix of an absorbing chain. The stochastic completion of the fundamental
part B of A can be computed in deterministic space log2 n where B is n by n and each entry of B are rational
numbers represented by a pair of n-bit binary number.

The proof of this theorem requires several preparatory results that are interesting in their own right. Therefore
we defer it to the next section. We are now ready to prove the main result (theorem 28) of this section. Although
we only compute the fundamental part B∗, with a bit more work, one can compute all the remaining entries of the
stochastic closure in the same complexity bounds (see [6]).

Proof of main result (theorem 28). Basically the proof amounts to reducing a space-bounded probabilistic
computation to computing the stochastic closure of the fundamental part of an absorbing Markov chain.

Let M be a probabilistic machine accepting in space s(n). We analyze the probability of M accepting an input
w by considering the Markov chain whose (Markov) states correspond to those configurations of M on w using
space at most s(|w|). We introduce an extra Markov state. Number these Markov states from 1 to r, where we
may assume that Markov state 1 is the initial configuration on input w, and r is the extra Markov state (viewed
as a NO-configuration of M). The corresponding transition matrix is A = (pi,j)r

i,j=1 where

pi,j =



1
2 if configuration i non-uniquely derives configuration j

(i.e., i ` (j, k) for some k 6= j)

1 if either configuration i uniquely derives j, i.e., i ` (j, j)
or if i = j and i is terminal

0 else.
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This is not quite all: how shall we treat state i if i ` (j, k) where j and/or k uses more than s(|w|) space? Now
assign for such an i, pi,r = 1

2 or 1, depending on whether one or both of j, k use more than s(|w|) space.
We derive from A an absorbing Markov chain with transition matrix B as follows: say a Markov state in A is

useful if it is has a path to a YES-state. Clearly useful states are inessential, but some inessential states may not
be useful. In B, we retain all the useful states of A and also their transition probabilities among themselves. We
renumber the useful Markov states from 1 to some m− 1 (m < r). In addition to the m− 1 useful states inherited
from A, B has two essential states, m and m + 1. Basically, we collapse all essential YES-states into m and the
remaining states in A (essential or not) are collapsed into m + 1. States m and m + 1 are both absorbing. More
precisely, for each useful state i = 1, . . . , m− 1, if the sum of the transition probabilities into the YES-states is p
then we set the (i, m + 1)th entry [B]i,m := p. If the sum of the transition probabilities from i to the non-YES and
non-useful states is q then we make [B]i,m+1 = q. Also, we have

[B]m,m = [B]m+1,m+1 = 1

We do one more small transformation: let now C be the matrix that is identical to B except that

[C]m,m = 0, [C]m,m+1 = 1.

So state m is now a transient state. For future reference, call C the reduced transition matrix (for input w). If
D is the fundamental part of C (obtained by deleting the last row and last column of C) then by theorem 36, we
can compute the stochastic completion D∗ in O(log2 m) space. Now m is O(1)s(|w|) and hence O(log2 m) = O(s2)
space suffices.

Our ‘interpretation’ (lemma 31) of the entries of a stochastic completion suggests that the entry [D∗]1,m is the
probability that starting out in state 1 we reach m (since state m cannot return to itself in 1 or more steps, by
construction). It is instructive to carry out the proof that [D∗]1,m is indeed the least fixed point value Val∆(w)
where ∆ is the set {1, . . . , r} of configurations that uses space at most s(|w|). A valuation V on ∆ amounts to
an r-vector V = (v1, . . . , vr) where vi is the value of configuration i. (We may assume here that the values vi are
real numbers in [0, 1] rather than intervals.) The valuation operator τ∆ is the linear transformation given by the
transition matrix A, and τ∆(V ) is equal to A · V T (V T is the column vector obtained by transposing V ). Let
V0 = τ∆(V⊥) be the row vector that assigns a 1 to the YES state and a zero to the NO state. (Note that V0 is
not stochastic in general.) The valuation τn

∆(V0) is given by Vn = An · V T
0 . We conclude: Val∆(w) is the limiting

value of the first component of An ·V T
0 , as n→∞. Alternatively, if the set of YES-configurations are S ⊆ ∆, then

Val∆(w) is the limiting value of
∑

i∈S [An]1,i.
It is not hard to see that our transformation of A to B does no harm and we have a slightly simpler picture:

Val∆(w) is given by the limiting value of [Bn]1,m Exercise:.
The transformation from B to C is less obvious. Let us compare their nth powers, Bn and Cn, for each n ≥ 0.

The first m− 1 columns of both powers are seen to be identical. We claim that the first m− 1 entries in the mth
column of Bn is equal to the corresponding entry in the sum

∑n
i=1 Ci: for each j = 1, . . . , m−1, and for all n ≥ 0,

[Bn]j,m =
∑n

`=1[C
`]j,m. In proof, this is clearly true for n = 1. For n ≥ 1, we have

[Bn+1]j,m =
m∑

k=1

[Bn]j,k[B]k,m

= [Bn]j,m[B]m,m +
m−1∑
k=1

[Bn]j,k[B]k,m

= [Bn]j,m +
m−1∑
k=1

[Cn]j,k[C]k,m

= [Bn]j,m + [Cn+1]j,m

=
n+1∑
`=1

[C`]j,m

This essentially gives us the theorem.
There are several other details that we must defer to the next section: in particular we cannot afford to explicitly

store the matrices A or C. Instead, they are represented ‘procedurally’ in the sense that each entry of such matrices
can be obtained by invoking suitable subroutines. For instance, this means that our ‘application’ of theorem 36 is
really not in the form as stated. We need to show that the techniques implicit in that theorem can be modified
to accomodate the implicit representation of C. Another clarification is needed: to form matrix C, we need to
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determine the useful states in A (one efficient way to detect such states uses the the original Savitch’s theorem
technique). Modulo these details, we are done with the proof.

Exercise

Exercise 8.6.1: (1-dimensional random walk)
Analyze the 1-dimensional random walk with parameter 0 < p < 1.
(i) Show that the generating functions G(s) for the probability p

(n)
0,0 (n = 0, 1, . . .) of returning to the origin

in n steps is given by G(s) = (1 − 4pqs2)1/2 where q = 1− p.
(ii) Conclude that each Markov state is recurrent if and only if p = 1

2 .
(iii) In case p = 1

2 , show that the mean recurrence time is infinite. Hint: Use the relation that the generating
function F (s) for first re-entrance probability f

(n)
0,0 is related to G(s) by G(s) − 1 = F (s)G(s) and the mean

recurrence time is given by lims→1−1
dF (s)

ds .

Exercise 8.6.2: (Erdös, Feller, Pollard)
Let (f0, f1, . . .) be a stochastic vector with f0 = 0 and period is equal to 1. (The period is the largest d such
that fn > 0 implies d divides n.) Now define p0 = 1 and pn =

∑n
k=0 fkpn−k. Prove that limn→∞ pn = 1

µ

where µ =
∑∞

n=0 nfn. Hint: Note that the relation between pair of sequences {fn} and {pn} is identical with
the relation between the first entrance probabilities f

(n)
i and n-step transition probabilities p

(n)
i,i for a fixed

state i in section 3.

Exercise 8.6.3: Define a transition matrix A = (pi,j)i,j≥0 to be doubly stochastic if the row sums as well as column
sums are equal to 1. Show that each space-bounded computation of a reversible probabilistic Turing machine
gives rise to such a matrix. Study the properties of such machines.

End Exercise

8.7 Efficient Circuits for Ring Operations

By an algebraic structure we means a set A together with a finite set of partial functions fi (i = 1, . . . , k) of the
form

fi : Aα(i) → A

where α(i) ≥ 0 are integers called the arity of fi. We call fi a constant if α(i) = 0 and in this case, fi is identified
with an element of A. We write (A; f1, . . . , fk) for the algebraic structure. This is abbreviated to ‘A’ when the
functions fi are understood. In general, by an operation f over an algebraic structure A we mean a partial function
f : Am → A for some m ≥ 0, where m is called the arity of f .

Example 2 a) Of course, for any set A, there is the trivial algebraic structure on A which no functions at all.
b) The integers Z = {0,±1,±2, . . .} with the usual operations (+, −, × and 0, 1) is an algebraic structure. It is, in
fact, a unitary commutative ring (see below).
c) The rational numbers Q, with the operations of Z but also including the division ÷ operation, is an algebraic
structure called a commutative field. Here division is a partial function since division by zero is not defined.
d) The set of all n-square matrices with entries from Q forms a matrix ring with the usual matrix operations of +,
− and ×.
e) Consider the Boolean algebra on two elements ({0, 1};∨,∧,¬, 0, 1) where ∨,∧,¬ are interpreted as the usual
Boolean operations.
f) A class of finite rings is Zn = {0, 1, . . . , n− 1} with usual arithmetic operations modulo n. In case n is a prime,
Zn is a field, also called GF (p). The case GF (2) has special interest.

We are mainly interested in computing over various unitary commutative rings R, henceforth simply called
‘rings’13. Our goal is to show how operations in common rings can be implemented efficiently. A computational
model that is appropriate for algebraic structures is circuits.

13Commutative rings are simply algebraic structures satisfying certain axioms. The student unfamiliar with rings simply need
remember two main examples of such structures given above: the integers Z and the set of n-square matrices with rational number
entries. So a ring comes with the five total operation +,−,×, 0, 1 with the usual properties (inverse relation between plus and minus,
associativity, commutativity, distributivity, and properties of 0 and 1) are satisfied. If one writes down these properties, they would
constitute an axiomatization of unitary commutative rings (it is a good exercise to try this and compare your results with a standard
algebra book). Here ‘unitary’ serves to to warn that, in general, rings are defined without assuming the existence of element 1.
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The following definitions gather most of our notations and terminology related to circuits in one place. It will
serve as reference beyond just the immediate concern of this section.

Definition 5 Let (A; f1, . . . , fk) be an algebraic structure.

(i) Any set Ω of operations over A obtained by functional composition from f1, . . . , fk is called a basis of A. In
general Ω may have infinite cardinality.

(ii) A circuit C for A over the basis Ω a finite directed acyclic graph (called the underlying graph of C) with the
following properties: A node with indegree 0 is called an input node, and if there are n input nodes, we label
each with a distinct integer between 1 and n. The remaining nodes are called gates and are each labeled by a
basis function f ∈ Ω. If a gate is labeled by f , we say its type is f or, equivalently, it is called an f -gate. Each
f -gate u has indegree exactly equal to the arity α(f) of f . Furthermore the incoming edges to u are labeled
with distinct integers between 1 and α(f). So we may speak of the jth incoming edge of u for j = 1, . . . , α(f).

(iii) Each node u of a circuit C is said to compute the function

resC(u) : An → A

defined as follows: an input node u labeled by i computes the projection function resC(u)(x1, . . . , xn) = xi.
An f -gate u computes the function

resC(u)(x) = f(resC(u1)(x), . . . , resC(um)(x))

where x = (x1, . . . , xn) and the ith incoming edge of u leads from node uj (j = 1, . . . , m), m is the arity of f .

(iv) A circuit family (over the basis Ω) is an infinite sequence of circuits C = (Cn)∞n=0 such that each Cn is an
n-input circuit over Ω.

(v) A problem instance of size n (over A) is a set Pn of functions g : An → A (so each g ∈ Pn has arity n). An
aggregate problem P = (Pn)∞n=0 over A is an infinite sequence of problem instances Pn, each Pn of size n.
When no confusion arises, we may omit the qualification ‘aggregate’. Often, Pn = {fn} is a singleton set, in
which case we simply write P = (fn)n≥0.

(vi) Let Pn be a problem instance of size n over A. A circuit C over A is said to solve or realize Pn if if C has n
inputs and for each g ∈ Pn, there is a node u ∈ C such that resC(u) = g. A circuit family C = (Cn)∞n=0 is
said to solve a problem P = (Pn)∞n=0 if Cn solves Pn for each n.

(vii) The size of a circuit C is the number of gates in the circuit14. The size of a circuit family C = (Cn)∞n=0 is
the function SIZEC where SIZEC(n) is the size of Cn.

(viii) Two other complexity measures for circuits are as follows: the depth of C is the length of the longest path
in C. The width of C is the maximum cardinality of an edge anti-chain15 in C. As for the size-measure, we
let DEPTH C(n) and WIDTH C(n) denote the depth and width of Cn, where C = (Cn)n≥0.

(ix) For any problem instance Pn, let SIZE(Pn) denote the smallest sized circuit that realizes Pn. If P = (Pn)n≥0

is an aggregate problem, the size function SIZEP is the function given by SIZEP (n) = SIZE(Pn). Similarly
for

DEPTH (Pn),WIDTH (Pn),DEPTH P ,WIDTH P .

(x) For any complexity function f(n), let SIZE(f) denote the family of aggregate problems {P : ∀n,SIZEP (n) ≤
f(n)}. Similarly for DEPTH (f),WIDTH (f). We can extend this to simultaneous measures, for instance
SIZE −DEPTH − width(f1, f2, f3).

(xi) For any non-negative integer k, a circuit family C is said to be NC k if SIZEC(n) = nO(1) and DEPTH C(n) =
O(logk n). An aggregate problem is said to be NC k if it can be realized by an NC k circuit family.

14It is unfortunate that we have to use the word ‘size’ for problem instances as well as for circuits, both of which appear in the same
context. Since the usage is well accepted and there seems to be no better alternative, we will continue this usage. But for emphasis,
we could say ‘circuit size’ or ‘problem size’.

15An edge anti-chain in a directed acyclic graph is a set of edges such that no two edge in the set belongs to a common path. Of
course, one can define node anti-chain as well.
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Remark: We are often interested in problems for which there is really no problem instances of size n for certain
values of n (e.g., multiplying square Boolean matrices only has interesting input sizes of the form 2n2). In these
cases, we artificially create the trivial problem instance of size n, such as the identically zero function of arity n.
Also, the above definition of circuits do not allow constant values as inputs. The definition can trivially be changed
to accommodate this.

We are mainly interested in circuits for two types of algebraic structures: (a) where A is a ring and (b) where
A = {0, 1} is the Boolean algebra in the above example. We call a circuit for A an arithmetic circuit or a Boolean
circuit in cases (a) or (b), respectively.

8.7.1 The Parallel Prefix Problem.

We begin with a basic but important technique from Ladner and Fischer [19] for the so-called parallel prefix problem.
In this problem, we assume that we are given an algebraic structure (A; ◦) where the only operation ◦ is a binary
associative operation (which we will call ‘multiplication’ or ‘product’). As is usual with multiplicative notations,
when convenient, we may write xy and

∏n
i=1 xi (respectively) instead of x◦y and x1 ◦x2 ◦ · · · ◦xn. We call a circuit

over such an A a product circuit. The parallel prefix problem instance (of size n ≥ 0) amounts to computing the
set of n functions

fi(x1, . . . , xn) := x1 ◦ x2 ◦ · · · ◦ xi, for each i = 1, . . . , n.

We may call these fi’s the set ‘iterative-◦ functions’ (on n variables). We shall apply this in two cases: where ◦ is
addition and where ◦ is multiplication in a ring. Then, we call parallel prefix the iterative addition and iterative
multiplication problems, respectively.

Lemma 37 There is a recursive construction of a family of product circuits (Cn)∞n=0 of linear size and logarithmic
depth that solves the parallel prefix problem.

Proof. We may assume that n is a power of 2. C1 is trivial, consisting of just an input node for x1. So let n > 1.
The following figures shows the recursive construction of Cn from Cn/2:

· · ·

1 2 3 4 5 6 n−2 n−1 n· · ·
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· · ·

· · ·

Figure 8.1 Construction of Cn (‘•’ indicates a gate)

In this figure, the edges of the circuit are implicitly directed downwards. It is easy to see that the size s(n) of
a circuit Cn satisfies the relation s(1) = 1 and s(n) = s(n/2) + n− 1. The solution is s(n) = 2n− log n − 2. The
depth of Cn is also easily seen to be 2 log n. Q.E.D.

8.7.2 Detecting Useless Markov States.

Recall in the previous section, in the context of a Markov chain whose nodes are machine configurations, we define
a Markov state to be useless if it cannot reach a YES-configuration. To detect such useless states, we can formulate
the following general problem: given the adjacency matrix of a digraph G, we want to determine its “useless nodes”,
defined to mean that those nodes that cannot reach a distinguished node in G.



40 CHAPTER 8. STOCHASTIC CHOICES

Lemma 38 There is an NC 2 Boolean circuit family which computes, on any input n by n matrix An which rep-
resents the adjacency matrix of directed graph, the set of 0/1-functions {fi : i = 1, . . . , n} where fi(An) = 1 iff i
cannot reach node n.

Proof. This is rather straight forward: we can compute the products of Boolean matrices in NC 1. The transitive
closure of An is given by (An)m for any m ≥ n. By the usual doubling method, the transitive closure is obtained by
log n matrix multiplications, hence by NC 2 circuits. Finally a node i can reach node n if and only if A∗(i, n) = 1.

Q.E.D.

8.7.3 Computing the characteristic polynomial.

The determinant of an n× n matrix A = (ai,j) can be expanded by its ith row (for any i) in the standard fashion:

det(A) = ai,1Di,1 + ai,2Di,2 + · · ·+ ai,nDi,n

where (−1)i+jDi,j is the determinant16 of the (n− 1)-square matrix obtained by deleting the ith row and the jth
column of A. Di,j is called the (i, j)-cofactor (or (i, j)-complement) of A. Let the adjoint adj(A) of A be the n×n
matrix whose (i, j)th element [adj(A)]i,j is the (j, i)-cofactor of A (notice the transposition of subscripts i and j).
It is not hard to see that17 that the following is valid for all A:

A · adj(A) = adj(A) · A = det(A) · I
(We only have to see that the off-diagonal elements of A · adj(A) are of the form

ai,1Dj,1 + ai,2Dj,2 + · · ·+ ai,nDj,n

where i 6= j. But this sum is also seen to be zero since it is the determinant of the singular matrix obtained by
replacing the jth row of A with the ith row. On the other hand, the diagonal entries are equal to det(A), which
may be zero if A is singular.) The characteristic polynomial PA(x) of A is the determinant

PA(x) := det(xIn −A)
= xn + λ1x

n−1 + · · ·+ λn−1x + λn

where In is the n×n identity matrix. (We will omit the subscript in In when convenient.) A fundamental identity
is the Cayley-Hamilton theorem Exercise: that states that A is a root of the polynomial PA(x)

PA(A) = An + λ1A
n−1 + · · ·+ λn−1A + λnI = 0.

Our goal is to develop a space-efficient algorithm for computing the characteristic polynomial. To compute the
characteristic polynomial of A means to determine the above coefficients λ1, . . . , λn. Note that this computation
is a generalization of the problem of computing determinant since the constant term in PA is (up to sign) equal to
det(A). We present an efficient parallel implementation of Samuelson’s method18 by Berkowitz [4]. For this, we
use the notation red(A) (‘reduction’ of A) which is the (n− 1)-square matrix obtained from A by deleting the first
row and first column. Define the column (n− 1)-vector col(A) and row (n− 1)-vector row(A) so that

A =

 a1,1 row(A)

col(A) red(A)


Lemma 39 The characteristic polynomial of A is related to the matrix red(A) as follows:

PA(x) = (x− a1,1) det(xIn−1 − red(A)) − row(A) · adj(xIn−1 − red(A)) · col(A). (22)

Proof.

PA(x) = det(xIn −A)

= (x− a1,1) det(xIn−1 −A) +
n∑

j=2

a1,jD1,j

16This determinant is called the (i, j)-minor of A
17See [11] for most basic results on matrices.
18The importance of this method (as opposed to an earlier method of Csanky that has comparable complexity) is that it uses no

divisions, so it is applicable to any unitary commutative ring.
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where D1,j is the (1, j)-cofactor of xIn −A. Write

D[i1, i2, . . . ; j1, j2, . . .]

for the determinant of the square matrix obtained by deleting rows i1, i2, . . . and columns j1, j2, . . .. The lemma
follows from the following identity

n∑
j=2

a1,jD1,j =
n∑

j=2

a1,j(−1)1+jD[1; j]

=
n∑

j=2

a1,j(−1)1+j
n∑

i=2

ai,1(−1)iD[1, i; 1, j]

= −
n∑

j=2

n∑
i=2

a1,jai,1(−1)i+jD[1, i; 1, j]

= −
n∑

j=2

n∑
i=2

a1,jai,1D
′
i,j

where D′
i,j is the (i− 1, j − 1)-cofactor of red(xIn −A) = xIn−1 − red(A). Since D′

i,j is the (j − 1, i− 1)th entry
of adj(xIn−1 − red(A)), the lemma follows. Q.E.D.

The adjoint of xI −A can be expressed with the help of the the next lemma.

Lemma 40

adj(xI −A) =
n−1∑
i=0

Bix
n−1−i (23)

where
Bi = Ai + λ1A

i−1 + · · ·+ λi−1A + λiI

and λi are the coefficients of the characteristic polynomial

PA(x) = xn + λ1x
n−1 + · · ·+ λn−1x + λn.

Proof. We observe that B0 = In and for i = 1, . . . , n,

Bi = ABi−1 + λiI.

Hence

det(xI −A) · I
= [xn + λ1x

n−1 + · · ·+ λn−1x + λn] · I
= [xn−1B0](xI −A) + xn−1AB0 + [λ1x

n−1 + λ2x
n−2 + · · ·+ λn−1x + λn] · I

= [xn−1B0 + xn−2B1](xI −A) + xn−2AB1 + [λ2x
n−2 + λ3x

n−3 + · · ·+ λn] · I
= · · ·

=

[
n−1∑
i=0

xn−1−iBi

]
(xI −A) + x0ABn−1 + λnI

=

[
n−1∑
i=0

xn−1−iBi

]
(xI −A)

where the last equality follows from

x0ABn−1 + λnI = Bn = PA(A) = 0

by the Cayley-Hamilton theorem. On the other hand det(xI −A) · I can also be expressed as

det(xI −A) · I = adj(xI −A) · (xI −A).
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Since xI − A is nonsingular (x is a indeterminate), we can cancel xI − A as a factor from the two expressions for
det(xI −A) · I, giving the desired equality for the lemma. Q.E.D.

The last two lemmas show that the characteristic polynomial PA(x) of A can be computed from the characteristic
polynomial Pred(A)(x) of red(A) and the matrix products red(A)i (for i = 1, . . . , n−1). Let us derive this precisely.
Let the coefficients of Pred(A)(x) be given by µi (i = 0, . . . , n− 1) where Pred(A)(x) =

∑n−1
i=0 µn−1−ix

i. Then we
see that

PA(x) = (x− a1,1)Pred(A)(x) − row(A) ·
(

n−1∑
i=0

Bix
n−1−i

)
· col(A)

= (x− a1,1)
n−1∑
i=0

µix
n−1−i +

n−1∑
i=0

xn−1−irow(A) ·
 i∑

j=0

(red(A))jµi−j

 · col(A)

=
n−1∑
i=0

µix
n−i +

n−1∑
i=0

xn−1−i

−a1,1µi +
i∑

j=0

βjµi−j


(where βj = row · (A)(red(A))j · col(A))

=
n∑

j=0

λn−jx
j

where

λj =


µ0 if j = 0

µj − a1,1µj−1 +
∑j−1

k=0 βkµj−1−k if j = 1, . . . , n− 1

−a1,1µn−1 +
∑n−1

k=0 βkµn−1−k if j = n

We can write this in matrix form. Let C0 be the following (n + 1)× n matrix:

C0 :=



1
β0 − a1,1 1

β1 β0 − a1,1 1
β2 β1 β0 − a1,1

...
. . .

βn−2 · · · β0 − a1,1 1
βn−1 βn−2 · · · β0 − a1,1 1

0 βn−1 βn−2 · · · β1 β0 − a1,1


Then we have

(λ0, . . . , λn−1, λn)T = C0 · (µ0, . . . , µn−1)T

where (· · ·)T indicates matrix transpose. We repeat this procedure to express the µi’s in terms of the characteristic
polynomial of red(red(A)) = red2(A), etc. In general, let Ci be the (n + 1 − i) × (n − i) matrix that reduces
the characteristic polynomial of redi(A) to that of redi+1(A). The entries19 of Ci consists of 0, 1, the diagonal
elements ai+1,i+1 of the matrix A, and elements that can be constructed from

row(redi(A)) · redi+1(A) · col(redi(A)).

Putting these together, we get
(λ0, . . . , λn)T = C0C1 · · ·Cn−1

Lemma 41 Given an n× n matrix A we can construct in deterministic log-space an arithmetic circuit C of depth
O(log2 n) and size nO(1) such that C computes (the coefficients of) PA(x).

Proof. We proceed as follows:
19In fact Ci has the property that each (j, k)th entry is equal to the (j +1, k +1)th entry provided, of course, that the (j +1, k +1)th

entry is defined. This property is the defining characteristic of Toeplitz matrices and it is known that the multiplication of Toeplitz
matrices can be done more efficiently than we care to exploit here Exercise:.
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1. We first construct a circuit to compute the set of polynomials

{(redi(A))j : i = 1, . . . , n− 1 and j = 1, . . . , i}.

Note that to compute a matrix means to compute each of its entries and to compute a polynomial means to
compute each of its coefficients. It suffices to show that for each i, we can compute {(redi(A))j : j = 1, . . . , i}
with a circuit of polynomial size and depth O(log2 n). But this amounts to the parallel prefix computation
on i copies of the matrix redi(A). Parallel prefix, we saw, uses an O(log n) depth product circuit. Each gate
of the product circuit is replaced by an arithmetic circuit of depth O(log n) since we can multiply two n× n
matrices in this depth (straightforward). Hence the overall depth is O(log2 n).

2. Next, we compute the elements

{row(redi−1(A) · (redi(A))j · col(redi−1(A) : i = 1, . . . , n− 1 and j = 1, . . . , i}.

This takes O(log n) depth. We have now essentially computed the entries of the matrices C0, . . . , Cn−1.

3. We can compute the product
∏n−1

i=0 Ci using a balanced binary tree of depth O(log n) to organize the com-
putation. Each level of this binary tree corresponds to the multiplication (in parallel) of pairs of matrices.
Since each matrix can be multiplied in O(log n) depth, the overall circuit depth is O(log2 n).

One can easily verify that the circuit is polynomial in size. Q.E.D.

8.7.4 Computing the Matrix Inverse

We want to compute the inverse of a matrix A. As before, let

PA(x) = xn + λ1x
n−1 + · · ·+ λn−1x + λn

be the characteristic polynomial. Since PA(x) = det(xI −A) we see that

λn = PA(0) = det(−A) = (−1)n det(A).

Next, by lemma 40, we have that

adj(−A) = Bn−1

= An−1 + λ1A
n−2 + · · ·+ λn−2A + λn−1.

Note that adj(−A) = (−1)n−1adj(A). Putting these together, we get

A−1 =
1

det(A)
adj(A)

= − 1
λn

(An−1 + λ1A
n−2 + · · ·+ λn−2A + λn−1).

It should now be easy to deduce:

Lemma 42 We can detect if an n-square matrix A is nonsingular using an NC 2 arithmetic circuit. Moreover, in
case A is nonsingular, we can compute its inverse A−1 with another NC 2 arithmetic circuit.

8.7.5 Balanced p-ary Notations

In applying the preceding results, we will use matrices A whose entries are rational numbers. Assuming the usual
binary representation of integers, if the integers involved in the computation are k-bits long, then an O(log2 n)
depth arithmetic circuits translate into Boolean circuits of depth Ω(log2 n log k), at least (and in our applications
k = Ω(n)). To obtain a depth of O(log2 n) on Boolean circuits for computing characteristic polynomials, we need
one new idea: by a suitable choice of representing integers, we can implement the operations of addition with
constant depth (i.e., NC 0) circuits. This in turn yields an improved depth for several other problems. Circuits in
this subsection shall mean Boolean circuits unless otherwise stated.
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Definition 6
(i) A representation r of a algebraic structure A is an onto function

r : {0, 1}∗ → A.

We say u ∈ {0, 1}∗ is an r-representative of r(u).
(ii) We say an operation f : An → A is in NC k with respect to r if there is an NC k Boolean circuit family
C = (Cm)m≥0 such that for each m, Cm computes f in the sense that for all u1, . . . , un ∈ {0, 1}m,

r(Cm(u1, . . . , un)) = f(r(u1), . . . , r(un))

We usually like to ensure that each element can be represented by arbitrarily large binary strings. For instance,
as in the binary representation of numbers, we may have the property r(0u) = r(u) for all u ∈ {0, 1}∗. In other
words, we can left pad an representation by 0’s. In practice, ring elements have some natural notion of “size” and
we may insist that the representation r ‘respect’ this size function within some bounds (e.g., |r(x)| ≥ size(x)). We
shall not concern ourselves with such considerations but the interested reader may consult [6].

Our goal is to find a representation of integers so that addition and negation is in NC 0, multiplication and
iterated addition is in NC 1 and iterated multiplication is in NC 2. We resort to the balanced p-ary representation
of integers of Avizienis [1]. Here p ≥ 2 is an integer and a balanced p-ary number is a finite string

u1u2 · · ·un

where ui is an integer with |ui| ≤ p− 1. This string represents the integer (u1, . . . , un)p given by

(u1, . . . , un)p :=
n−1∑
i=0

ui+1p
i.

So u1 is the least significant digit. Clearly, the usual p-ary representation of a number is a balanced p-ary represen-
tation of the same number. This representation is redundant in a rather strong sense. We will implicitly assume
that strings such as u1, . . . , un are ultimately encoded as binary strings, so that they fit our formal definition of
representations.

Lemma 43 With respect to the balanced p-ary representation of integers, for any p ≥ 3:
(i) Addition and negation of integers are in NC 0.
(ii) Iterated addition and multiplication of integers are in NC 1.
(iii) Iterated multiplication is in NC 2.

Proof. (i) Suppose we want to add (u1, . . . , un)p to (v1, . . . , vn)p. Note that for each i = 1, . . . , n, we can express
the sum ui + vi as

ui + vi = pxi + yi

with |xi| ≤ 1 and |yi| ≤ p − 2. To see this, note that |ui + vi| ≤ 2p − 2 and if |ui + vi| ≤ p − 2 or |ui + vi| ≥ p
then it is clear that the desired xi, yi can be found. The remaining possibility is |ui + vi| = p− 1. In that case we
could let xi = 1 and yi = ±1, but note that this is possible only because p ≥ 3 (we would violate the constraint
|yi| ≤ p− 2 if p = 2). Now the sum of the two numbers is given by (w1, . . . , wnwn+1)p where

wi = xi−1 + yi

for i = 1, . . . , n + 1 (taking x0 = yn+1 = 0). Clearly this can be implemented by an NC 0 circuit.
(ii) To show iterated addition is in NC 1 we simply use part (i) and the technique for parallel prefix.

Now consider multiplication of integers. Suppose we want to form the product of the numbers (u1, . . . , un)p

and (v1, . . . , vn)p. For each i, j = 1, . . . , n, we form the product uivj and we can express this in the form

uivj = pxi,j + yi,j

where |xi,j | ≤ p− 1 and |yi,j | ≤ p− 1 (since |uivj | ≤ (p− 1)2 ≤ p(p− 1) + (p− 1)). For each i = 1, . . . , n, form the
number

Xi = (00 · · · 00xi,1xi,2 · · ·xi,n−1xi,n)p
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where Xi has a prefix of i zeroes. Similarly, form the number

Yi = (00 · · · 00yi,1yi,2 · · · yi,n−1yi,n)p

where Yi has a prefix of i− 1 zeroes. It is then easy to see that the product is given by the sum

n∑
i=1

(Xi + Yi).

But each summand has at most 2n digits and there are 2n summands. We can form a balanced binary tree T on
2n leaves to organize this summation process: each leaf is labeled with one of these summands and each interior
node is labeled with the sum of the labels at the leaves below. Clearly the root of T has the desired product. This
tree converts into a Boolean circuit of depth O(log n). This shows multiplication is in NC 1.
(iii) We leave this as exercise. Q.E.D.

Next we extend the lemma to matrix rings. By the balanced p-ary representation of matrices with integer
entries we mean that each entry is encoded by balanced p-ary notation, and matrices are stored (to be specific) in
row-major order.

Lemma 44 With respect to the balanced p-ary representation (p ≥ 3) of integer matrices:
(i) Addition and negation are in NC 0.
(ii) Multiplication is in NC 1.
(iii) Interated multiplication is in NC 2.

Proof. It is clear addition and negation of integer matrices can be implemented efficiently by the previous lemma.
For multiplication, suppose we want to compute the product of two n×n matrices A and B, and each entry has at
most n bits. We note that each entry of AB is the sum of at most n products of pairs of entries. These individual
products can be viewed at the sum of at most 2n numbers of n bits, as revealed in the proof of the previous lemma.
So for each entry, we need to sum O(n2) numbers, each of n bits. Again, we can arrange these as a balanced binary
tree of depth O(log n). This gives us the efficient NC 1 circuit we seek.

To get an NC 2 circuit family for iterated multiplication of integer matrices we simply apply parallel prefix to
the previous part. Q.E.D.

Finally we consider matrices whose entries are rational numbers. A rational number is represented by a pair
of balanced p-ary representation, extended to matrices as before. Unfortunately, we no longer know how to do
addition of rational numbers in NC 0. Nevertheless, we have the following:

Lemma 45 With respect to the balanced p-ary (p ≥ 3) representation of matrices with rational number entries:
(i) Iterated multiplication is in NC 2.
(ii) Characteristic polynomial computation is in NC 2.

Proof. (i) Suppose we want to compute the iterated product

A1, A1A2, . . . , A1A2 · · ·An

where each Ai is a n × n matrix with rational number entries, and each entry is represented by pairs of n-bit
integers. We first convert each Ai to integer matrices Bi and compute an integer Di such that Ai = 1

Di
Bi. To do

this, first form the product Di,j of the denominators in the jth row of Ai; then multiply each entry in the jth row
of Ai by Di,j . Doing this for all rows, we get Bi; of course Di is just the product of all the Di,j ’s. It is clear that
we can obtain each of the Di,j and Di by iterated multiplication in NC 2. Notice that Di,j and Di are O(n3)-bit
integers and so we can compute Bi from Ai and Di,j ’s in NC 1.

Next, we compute the iterated integer products {D1, D1D2, . . . , D1D2 · · ·Dn} in NC 2. Similarly, we compute
the iterated matrix product {B1, B1B2, . . . , B1B2 · · ·Bn} in NC 2. It is clear that

A1A2 · · ·Ai =
1

D1D2 · · ·Di
B1B2 · · ·Bi

for each i = 1, . . . , n. This can be computed in NC 1 since each of the integer involved in polynomial in size.
(ii) We imitate the proof of lemma 41. Details are left as exercise. Q.E.D.
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One more computational problem: we need to be able to check the sign of a balanced p-ary number. (In our
application, we want to compare such a number with 1

2 , which is easily reduced to checking if a number is positive.)
But after the preceding development, the reader should have no trouble devising an NC 1 solution Exercise:.

Putting it all together. We must tidy up the loose bits in the proof of the main theorem in the last section.
In particular, we must address the issue of how to implicitly construct and represent the reduced transition matrices
C described in the last section. Let A be the transition matrix from which we derive C. Since we want to do all
this using O(s2) space, we cannot afford to write A or C explicitly. Then we must see how the techniques given
in this section can be adapted to some implicit representation. All this is tedious but it is crucial that the reader
understands how this can be done. So let us assume a given probabilistic machine M accepting in space s(n), and
w is an input. Let us begin by constructing matrix C: the proof of lemma 38 shows a transitive closure circuit
of depth O(log2 n) applied to the underlying graph GA of the transition matrix A to determine the inessential
states. But note that the transitive closure circuit is relatively systematic that we can assume some numbering of
its gates such that given any gate number g, we can determine the gates at the other end of incoming as well as
outgoing edges at g, and given g, we also know the Boolean function labeling g. The gate numbers can be stored
in O(s) space and we can determine these information also in O(s) space. It is now not hard to see that we can
determine the output of any gate in O(s) space, given that we know the input graph GA. This is not hard to do
(we basically store one Boolean value at each gate along the path from the output gate to the current position –
a similar proof using this technique is shown in chapter 10.) In this way, in O(s) space, we can determine if any
given i is inessential.

The basis of the preceding argument is the observation that the transitive closure circuit is quite systematic
and hence in space O(s) we can answer basic questions such as connections between gates, etc. Similarly for all
the other circuits in this section. The student should carefully work out some other cases. With this, we conclude.

Remark: In Chapter 10, we will study the property stated above, that all the circuits in this section are ‘sys-
tematically constructed’ so that we can essentially determine gates and their interconnections in circuits efficiently.
(These are called uniformity conditions.) For this reason we are contented with a somewhat sketchy outline here.

Exercise

Exercise 8.7.1:
(i) (Generalized Bezout’s theorem) Let

F (x) = F0x
m + F1x

m−1 + · · ·+ Fm (F0 6= 0)

be a matrix polynomial where each Fi is an n× n matrix. The right value of F (x) at an n× n matrix A is
given by

F (A) = F0A
m + F1A

m−1 + · · ·+ Fm.

(The left value F̂ (A) is similarly obtained except that A is multiplied from the left.) Show that if F (x) is
divided by xI − A from the left, the remainder is the right value F (A). Hint: the proof is a direct long
division of F (x).
(ii) Let B(x) be the adjoint of xI −A. Conclude that (xI −A)B(x) = PA(x)I.
(iii) Infer the Cayley-Hamilton theorem from the Generalized Bezout’s theorem.

Exercise 8.7.2: (Fisher-Ladner) Improve the 2 logn depth for the parallel prefix circuit Cn in the text. Hint:
consider a recursive construction of a circuit C′

n as illustrated in the following figure where, with the proper
wires added, we have

DEPTH (C′
n) = 1 + max{DEPTH (Cn/2),DEPTH (C′

n/2)}.
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Cn/2

· · ·

· · ·
1 2 n

2

C′
n/2

· · ·

· · ·
1 + n

2
2 + n

2

n

s s s

Figure 8.2 Construction of C′
n (the connections between C′

n/2 and Cn/2 not shown)

Note that the original Cn is used in this construction.
(a) Give exact expressions for the size and depth of C′

n. (Hint: the exact size of C′
n involves the Fibonacci

numbers.)
(b) Compare the fan-out degree of Cn and C′

n.

Exercise 8.7.3: (Balanced p-ary representation)
(a) Suppose we have a fixed finite state automaton M that reads an input sequence of symbols a1 · · · an in real
time. Let qi be the state of M after reading ai, starting from the start state q0. Show an NC 1 Boolean circuit
for the problem of computing {q1, . . . , qn} for any input sequence a1 · · · an. Hint: Apply parallel prefix.
(b) Apply the above to determine the sign of a balanced p-ary number in NC 1 (p ≥ 3).
(c) Show how to convert a balanced p-ary number to a p-ary number in NC 1 (assume part (b)).

Exercise 8.7.4: (General representation)
Let us fix b ≥ 1, p ≥ 0, q ≥ 1. We say a word u ∈ {−p,−p + 1, . . . , q − 1, q}? represents the integer

n∑
i=0

uib
i (24)

in the (b, p, q)-notation. Note that b-ary notations are (b, 0, b − 1)-notations; b-adic notations are simply
(b, 1, b)-notations; balanced p-ary numbers are (p,−p, p)-notations. Show that for (3, 0, 3)-notations, addition
and multiplication of natural numbers (since we cannot represent negative numbers) is in NC 0 and NC 1,
respectively. For what values of (b, p, q)-notations are these results true?

End Exercise

8.8 Complement of Probabilistic Space

This section proves that probabilistic space is closed under complementation. We begin with a useful result:

Lemma 46 Let B be the fundamental part of the transition matrix of a Markov chain. If B is m × m and the
entries of B are taken from {0, 1

2 , 1}, then the stochastic closure B∗ has the property that dB∗ is an integer matrix
for some integer d < m!2m.

Proof. We know that B∗ = (I −B)−1. Thus B∗ = 1
det(I−B)adj(I −B). Clearly each entry of 2m−1adj(I −B) is

an integer. Also, c
det(I−B) is an integer for some c ≤ m!. The result follows. Q.E.D.

Theorem 47 Let M be any probabilistic machine that accepts in space s(n) ≥ log n. Then there is a c > 0 such
that every accepted input of length n is accepted with probability more than

1
2

+ 2−cs(n)
.
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Proof. At the end of section 3, we showed that the probability of accepting any input is given by a suitable entry of
D∗, where D is the fundamental part of a reduced transition matrix C. D is m×m with m = nO(1)s(n) = O(1)s(n).
We then apply the previous lemma. Q.E.D.

Lemma 48 Let s(n) ≥ log n. For any probabilistic machine that runs in space s(n), there is a probabilistic machine
N accepting L(M) and runs in space s with error gap (0, 1

2 ]. Morever, N halts with probability 1 and has average
time 22O(s)

.

Proof. Let c = max{c1, c2} where c1 is chosen so that there are at most cs
1 configurations using space at most s,

and c2 is chosen so that (by the previous theorem) if M accepts an input w then M accepts with probability greater
than 1

2 + 2−c
s(|w|)
2 . Now N is obtained by modifying the proof of lemma 16 in the last section:

repeat forever
1. Simulate M for another cs steps. Nondeterministic choices of M

become coin-tossing choices of N.
2. If M answers YES then we answer YES.

If M answers NO, we rewind our tapes to prepare
for a restarted simulation.

3. Toss 2cs coins and answer NO if all tosses turn up heads.
end

(Notice that unlike in lemma 16, each iteration of the loop continues the simulation from where the last iteration
left off, provided the last iteration did not halt.) Now we see that N halts with probability 1. The average time t̄
is seen to satisfy the bound

t̄ ≤ 3cs + (1− 2−2cs

)t̄

which gives us t̄ = 22O(s)
as desired.

If M rejects then clearly N rejects. So assume that M acccepts. Let us call a configuration C of M live if there
is a computation path starting from C into a YES configuration. Similarly, a configuration C of N is live if there
is a computation path from C into one in which the simulated M answers YES. If a configuration is not alive, we
say it is dead.

For k ≥ 1, define the following events for the probabilistic spaces ΩN
w and ΩM

w :

RN

k = {N answers NO in the kth iteration}
DN

k = {N became dead during the kth iteration}
DM

k = {M became dead between the (k − 1)csth and the kcsth step}
AN

k = {N is alive at the end of the kth iteration}
AM

k = {M is alive at the end of the kcs step}
Then the rejection event of N corresponds to

⋃
k≥1

{RN

k} =
⋃
k≥1

{RN

k , AN

k} ∪
k⋃

j=1

{RN

k , DN

j }


= (
⋃
k≥1

{RN

k , AN

k}) ∪ (
⋃
j≥1

⋃
k≥j

{RN

k , DN

j })

Clearly the probability that M remains alive after cs steps is at most 1− e where

e := 2−cs

.

Since the probability of getting 2cs heads in a row is e2, the probability that N remains alive through one iteration
is at most (1 − e)(1− e2). We claim that

Pr{RN

k , AN

k} = (1 − e)k(1 − e2)k−1e2.
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(In this proof, it is instructive to set up the connection between the probabilistic spaces ΩN
w and ΩM

w for input w.)
Hence

Pr(
⋃
k≥1

{RN

k , AN

k}) =
∑
k≥1

Pr{RN

k , AN

k}

≤ e2
∑
k≥1

(1− e)k(1− e2)k−1

< e2
∑
k≥1

(1− e)k−1

= e.

Next,

Pr(
⋃
j≥1

⋃
k≥j

{RN

k , DN

j }) ≤ Pr(
⋃
j≥1

{DN

j })

=
∑
j≥1

Pr{DN

j }

≤
∑
j≥1

Pr{DM
j }

= Pr{M rejects}
≤ 1

2
− e

by our choice of the constant c ≥ c2. Above we have used the inequality Pr{DN

j } ≤ Pr{DM
j } relating across two reject??

different probability spaces. Hence the probability that N rejects is less than the sum of e + (1
2 − e). We conclude

that N accepts with probability greater than 1
2 . Q.E.D.

The technique in this lemma can be viewed as using m = cs coin tosses to control a loop so that the expected
number of iterations is 2m. Since we need only log m space to control this loop, we are able to probabilistically
achieve a number of iterations that is double exponential in the space used. This technique, due to Gill, demonstrates
one of the fundamental capabilities of coin-tossing that distinguishes space-bounded probabilism from, say, space-
bounded alternating computations. The expected number of iterations is achieved in the worst case: if M is a
machine that does not halt, then N has expected time 22Ω(s(n))

.
We are ready to show that probabilistic space is closed under complementation.

Theorem 49 If s(n) ≥ log n is space-constructible then

PrSPACE (s) = co-PrSPACE (s).

This result was shown by Simon [32]; the proof here is essentially from [28]. This result is almost an immediate
consequence of lemma 48.

Proof. Given any probabilistic machine accepting in space s(n), lemma 48 gives us another probabilistic machine
accepting the same language in the same space bound with error gap (0, 1

2 ]; moreover, M halts with probability 1.
Then let N be the complement of M: i.e., N answers YES iff M answers NO. For any input w, the probability that
N accepts w plus the probability that M accepts w is equal to the probability of halting, i.e., 1. Hence, N has the
error gap [ 12 , 1). It follows that N accepts if and only if M rejects. Q.E.D.

8.9 Stochastic Time and Space

In this section, we give upper bounds on the complexity of time and space-bounded stochastic computations.
Stochastic space is especially interesting in view of the tremendous computational power that seems inherent in it.
Also, instead of Markov chains we now turn to the study of discrete time dynamical systems.

Theorem 50 For all t, StA-TIME (t) ⊆ ATIME (t3).

The basic idea for this result is the bit-counting technique that was used quite effectively for simulating proba-
bilistic alternating machines (chapter 7, section 6). It turns out that several new technical problems arises.
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Let M be a stochastic alternating machine that accepts in time t(n). We construct an alternating machine N to
simulate M. For the rest of this proof, we fix an input w that is accepted by M and let t = t(|w|). We may assume
that N has guessed t correctly and let T0 be the accepting computation tree of M on w obtained by truncating the
complete computation tree TM(w) at levels below t (as usual, root is level 0). To demonstrate the essential ideas,
we assume that M has f- and ⊗-states only. As in chapter 7 we ‘normalize’ the least fixed point values ValT0(C)
for each configuration in T0:

VAL0(C) := 22t−`

ValT0(C)

where ` = level(C). Thus T0 is accepting if and only if VAL0(C0) > 22t−1 where C0 is the root of T0. It is easy to
see that VAL0(C) is an integer between 0 and 22t

. We shall think of VAL0(C) as a 2t digit number in the balanced
4-ary notation. Although the balanced 4-ary notation is highly redundant, we will want to refer to the ‘ith digit of
VAL0(C)’ in an unambiguous manner. We will show how to uniquely choose a balanced 4-ary representation for
each VAL0(C).

Let us note that in fact VAL0(C) can be explicitly defined as follows: if ` = level(C) and C ` (CL, CR) (provided
C is not a leaf) then

VAL0(C) =


0 if C is a non-YES leaf
22t−`

if C is a YES leaf
22t−`−1−1(VAL0(CL) + VAL0(CR)) if C is an f-configuration
VAL0(CL) · VAL0(CR) if C is an ⊗-configuration

It follows that each VAL0(C) has at most 2t−` digits of significance.
The alternating simulation of N effectively constructs a tree T1 that is an ‘expansion’ of T0. To describe T1, we

need to define a certain product of trees:

Definition 7 Let T, T ′ be any two trees. For nodes i, j ∈ T , write i→ j to mean that i is the parent of j. Their
product T × T ′ consists of nodes (i, i′) where i ∈ T and i′ ∈ T ′ such that (i, i′)→ (j, j′) if and only if either
(a) i = j and i′ → j′, or
(b) i→ j, i′ is the root of T ′ and j′ is a leaf of T ′.

Clearly,
T × T ′ = T ′ × T ⇐⇒ T = T ′,

SIZE(T × T ′) = SIZE(T ′ × T ) = SIZE(T ) · SIZE(T ′),

and

DEPTH (T × T ′) = DEPTH (T ′ × T ) = DEPTH (T ) + DEPTH (T ′).

Define tree T1 to be T0 × T t where T t is defined as the binary tree in which every internal node has 2 children
and every path from the root to a leaf has length exactly t + 1. Hence T t has exactly 2t+1 leaves. Let us assume
the nodes in T t are strings s ∈ {L, R}∗ such that the root of T t is the empty string ε, and each internal node s ∈ T t

has two children, sL and sR.
We want an assignment function VAL1 on T1 in analogy to VAL0. Write VAL1(C, s) (instead of VAL1((C, s)),

which is correct but pedantic) for the value assigned to the node (C, s) ∈ T1, C ∈ T0, s ∈ T t. Instead of integers,
VAL1(C, s) is a balanced 4-ary number.

First, we need one more definition: recall that in section 5, we compute the product of two balanced p-ary
numbers u = u1 · · ·un, v = v1 · · · vn as the sum of 2n balanced p-ary numbers Xi, Yi (i = 1, . . . , n). Let us call Xi

and Yi the ith and (n + i)th summand of the product of u and v. Clearly the summands depend on the particular
representation of the numbers (u)p and (v)p. These 2n summands can be regarded as 2n digits numbers although
they each have at most 2n− 1 digits of significance.

Suppose C is a leaf in T0, level(C) = `. Then for any s ∈ T t, VAL1(C, s) is defined to be the (ordinary) 4-ary
representation of

22t−`

or 0

depending on whether C is YES or not. Next assume C ` (CL, CR). There are two cases:

(1) C is a ⊗-configuration.
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(1.1) If s is a leaf of T t. Then s is a string in {L, R}∗ of length t + 1. Then VAL1(C, s) is the sth summand of the
product of VAL1(CL, ε) and VAL1(CR, ε). Here s is interpreted as the 2-adic number (see chapter 1, section
4.2) where the symbols L, R in s are (respectively) interpreted as 1,2. Note that s ranges from 0 to 2t+1 and
by definition the 0th summand is 0.

(1.2) If s is not a leaf of T t then VAL1(C, s) = VAL1(C, sL) + VAL1(C, sR).

(2) C is a f-configuration.

(2.1) If s is a leaf of T t then let

VAL1(C, s) = 22t−`−1−1[VAL1(CL, ε) + VAL1(CR, ε)].

Note that we are multiplying by a power of 2 and this is relatively trivial in balanced 4-ary notation. Basically
we must reexpress each balanced 4-ary digit as a pair of balanced 2-ary digit, shift these to the right by
2t−`−1 − 1 positions. Then we recombine into balanced 4-ary digits.

(2.2) If s is not a leaf then VAL1(C, s) = VAL1(C, sL)(= VAL1(C, sR)).

It is not hard to show that for all C ∈ T0,

VAL0(C) = VAL1(C, ε).

We note that VAL1 is uniquely defined since the balanced p-ary representation at the leaves are uniquely specified,
and this propagates to all other nodes using the above rules.

Now it should be easy for the reader to use the technique of chapter 7 to provide an alternating machine that
guesses the tree T1 in order to determine the predicate

DIGIT(C, s, i, b)

that is true if the ith digit of VAL1(C, s) is equal to b, for |b| ≤ 3 and i = 1, . . . , 2t. To invoke this procedure, we
may assume the work tapes of N contains the following information:

1. i in binary

2. C

3. s

4. level(C) in unary

5. t− level(C) + |s| in unary

Note that each of these uses O(t) space. Moreover, from the above information, we can generate the arguments for
the recursive calls in O(t) steps. So the total work spend along any path in T1 is O(t3) since T1 has O(t2) levels.
It is now clear that DIGIT can be solved in O(t2) alternating time.

The final work to be done is to compare VAL1(C0, ε) to 1
2 where C0 is the root of T0. Basically, our goal is to

convert the balanced 4-ary number

VAL1(C0, ε) = u1u2 · · ·um (m = 2t)

to an ordinary 4-ary number
v1v2 · · · vm.

We begin with a simple remark: since each of the digits vi must be non-negative, if ui is negative, we must borrow
one unit from the next digit ui+1. Let bi = 1 or 0 depending on whether we need to borrow from ui+1 or not in
order to make vi non-negative. Of course, we must also take into account the borrow bi−1 from ui. This gives us
the equation

bi =
{

1 if ui − bi−1 < 0
0 if ui − bi−1 ≥ 0 .

We set b0 = 0. Note that this method is correct because we know that apriori that the number (u1 · · ·um)4 is
non-negative: so the most significant non-zero digit is positive. It is not hard to reduce the above to: bi = 1 iff
for some j (1 ≤ j ≤ i), uj < 0 and for all k = j + 1, . . . , i, uk = 0. Hence we can in O(t2) alternating time
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check the value of any bi for i = 1, . . . , 2t: we simply guess j and then universally check that uj < 0 and uk = 0
for k = j + 1, . . . , i. Of course, checking if uk = b is nothing but the subroutine DIGIT(C0, ε, k, b) which can be
determined in O(t2) time.

Since we can check for the value of borrow bits bi, we can check the digits vi in the 4-ary representation of
VAL1(C0, ε) via vi = ui − bi−1 + 4bi. Now it is easy to determine if VAL1(C0, ε) is greater than 22t−1.

We must address one more detail. The above construction did not consider the other basis functions of a
stochastic alternating machine: ⊕,∧,∨. However, it should be evident that since we know how to add and to
multiply, we can also compute the value

VAL0(C) = 22t−`−1−1(VAL0(CL) + VAL0(CR))−VAL0(CL)VAL0(CR)

where ` = level(C), C is a ⊕-configuration and C ` (CL, CR). The remaining MIN- and MAX-configurations are
also easy. This completes our proof of theorem 50.

Space-bounded Stochastic computation. We consider an s(n) space-bounded stochastic machine M. In
analogy with Markov chains, we set up a finite number of dynamical states, each corresponding to a configuration
of the machine M using space at most s. If the set of states is taken to be {1, . . . , n}, a valuation V can be viewed
as an n-vector

V = (v1, . . . , vn) ∈ [0, 1]n.

Let V0 denote the vector of zero elements. We have the usual operator τ = τ∆ where ∆ = {1, . . . , n}. Thus

τ(V ) = (τ1(V ), τ2(V ), . . . , τn(V ))

where τi(V ) = 0, 1 or vj ◦ vk for some j, k depending on i, ◦ ∈ { f,⊗,⊕}. In chapter 7, we showed that the limit
of the sequence

τ(V0), τ2(V0), τ3(V0), . . .

is the least fixed point of our system. Let
V ∗

τ = (v∗1 , . . . , v∗n)

denote this limit. Clearly any fixed point V = (v1, . . . , vn) of τ satisfies the following set of equations: each
i = 1, . . . , n,

vi = fi(vj(i), vk(i)) (25)

where fi(x, y) is one of the stochastic functions 0, 1, x fy, x⊗ y, x⊕ y. Let Σ(V ) denote the set of equations (25).
We can then characterize the least fixed point property V ∗

τ as follows:

LFP (V ∗
τ ) ≡ Σ(V ∗

τ ) ∧ (∀V )[Σ(V ).⇒ .V ∗
τ ≤ V ].

We are now ready to prove the following, by appeal to some results on the complexity of real closed fields.
(cf. Renegar [25, 26, 27]).

Theorem 51 For all s(n),
StSPACE(s) ⊆ DTIME (22O(s)

).

Proof. Suppose M is a stochastic machine that accepts in space s(n). We show how to decide if M accepts any
input w in space s(|w|). As usual, we can assume s = s(|w|) is known, and let there be n configurations of M that
uses space at most s. Without loss of generality, let these configurations be identified with the integers 1, 2, . . . , n
and 1 denotes the initial configuration on input w. Let τ be the operator corresponding of these configurations.
Hence we want to accept iff the least fixed point V ∗

τ of τ has the property that its first component [V ∗
τ ]1 greater

than 1
2 . This amounts to checking the validity of the following sentence:

(∃V ∗
τ )(∀V )[Σ(V ∗

τ ) ∧ [V ∗
τ ]1 >

1
2
∧ (Σ(V ).⇒ .V ∗

τ ≤ V )].

This sentence can be decided in time 2O(n4) = 22O(s)
, using the above results of Renegar. Q.E.D.



Appendix A

Probabilistic Background

The original axiomatic treatment of probability theory due to Kolmogorov [18] is still an excellent rapid introduction
to the subject. We refer to [5, 34] for more advance techniques useful for complexity applications. This appendix
is a miscellany of quick reviews and useful facts.

Basic Vocabulary. A Borel field (or sigma-field) is a set system (Ω, Σ) where Ω is a set and Σ is a collection
of subsets of Ω with three properties (i) Ω ∈ Σ, (ii) E ∈ Σ implies Ω − E ∈ Σ and (iii) {Ei}i≥0 is a countable
collection of sets in Σ then the countable union ∪i≥0Ei is in Σ. If (iii) is replaced by the weaker condition that
E1, E2 ∈ Σ imples E1 ∪E2 ∈ Σ then we get a field. For any collection S of subsets of Ω, there is a unique smallest
Borel field that contains S, called the Borel field generated by S. The most important example is the Euclidean
Borel field (R1, B1) where R1 = R is the real line and B1 is the Borel field generated by the collection of intervals
(−∞, c] for each real c, −∞ < c < +∞. Members in B1 are called Euclidean Borel sets.

A probability measure on a Borel field (Ω, Σ) is a function Pr : Σ→ [0, 1] such that (a) Pr(Ω) = 1, (b) if {Ei} is
a countable collection of pairwise disjoint sets in Σ then Pr(∪i≥0Ei) =

∑
i≥0 Pr(Ei). A probability space is a triple

(Ω, Σ, Pr) where (Ω, Σ) is a Borel field and Pr is a probability measure on (Ω, Σ).
The elements in Ω are often called elementary events or sample points. Elements of Σ are called events or

measurable sets. Thus Ω and Σ are called (respectively) the sample space and event space. Pr(E) is the probability
or measure of the event E. A simple example of probabilistic space is the case Ω = {H, T } with two elements and
Σ consists of all subsets of Ω (there are only 4 subsets), and Pr is defined by Pr({H}) = p for some 0 ≤ p ≤ 1.

A random variable (abbreviation: r.v.) X of a probability space (Ω, Σ, Pr) is a real (possibly taking on the
values ±∞) function with domain Ω such that for each real number c, the set

X−1((−∞, c]) = {ω ∈ Ω : X(ω) ≤ c}

belongs to Σ. We may simply write
{X ≤ c}

for this event. In general, we write1

{. . .X . . .}
for the event {ω : . . .X(ω) . . .}. It is also convenient to write Pr{X ∈ S} instead of Pr({X ∈ S}). The intersection
of several events is denoted by writing the defining conditions in any order, separated by commas: {X1 ∈ S1, X2 ∈
S2, . . .}. If f(x, y) is a real function and X, Y are random variables, then f(X, Y ) is a new function on Ω given by
f(X, Y )(ω) := f(X(ω), Y (ω). If f(x, y) is “nice”, then f(X, Y ) will be a new random variable. In particular, the
following are random variables:

max(X, Y ), min(X, Y ), X + Y, X − Y, XY, XY , X/Y.

The last case assumes Y is non-vanishing. Similarly, if Xi’s are random variables, then so are

inf
i

Xi, sup
i

Xi, lim inf
i

Xi, lim sup
i

Xi.

Each X induces a probability measure PrX on the Euclidean Borel field determined uniquely by the condition
PrX((−∞, c]) = Pr{X ≤ c}. We call PrX the probability measure of X . The distribution function of X is the real

1This ‘{· · ·}’ notation for events reflects the habit of probabilists to keep the event space implicit. Notice that while probability
measures are defined on Σ, random variables are defined on Ω.
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function given by FX(c) := PrX((−∞, c]). Note that FX(−∞) = 0, FX(∞) = 1, FX is non-decreasing and right
continuous. In general, any F with these properties is called a distribution function, and determines a random
variable. A set of random variables is identically distributed if all members shares a common distribution function F .
A finite set of random variables {Xi : i = 1, . . . , n} is independent if for any Euclidean Borel sets Bi (i = 1, . . . , n),

Pr(∩n
i=1{Xi ∈ Bi}) =

n∏
i=1

Pr{Xi ∈ Bi}.

An infinite set of random variables is independent if every finite subset is independent. An important setting for
probabilistic studies is a set of independent and identically distributed random variables, abbreviated as i.i.d..

Let (Ω, Σ) be a field, and we are given m : Σ→ [0, 1] such that for any countable collection of pairwise disjoint
sets {Ei ∈ Σ : i ∈ I},

E = ∪i∈IEi ∈ Σ implies m(E) =
∑
i∈I

m(Ei).

Then a standard theorem of Carathéodory says that m can be uniquely extended to a probability measure on
(Ω, Σ∗), the Borel field generated Σ.

A standard construction shows that for any countable set of probability measures {mi : i ≥ 0} on the Euclidean
Borel field, we can construct a probability space (Ω, Σ, Pr) and a collection of random variables {Xi : i ≥ 0} such
that for each i, mi is the probability measure of Xi. Sketch: We let Ω be the product of countably many copies of
the real line R1 = R, so a sample point is (w0, w1, . . .) where wi ∈ R1. A basic set of Ω is the product of countably
many Euclidean Borel sets

∏
i≥0 Ei where all but a finite number of these Ei are equal to R1. Let Σ0 consists of

finite unions of basic sets and then our desired Borel field Σ is the smallest Borel field containing Σ0. It remains to
define Pr. For each basic set, define Pr(

∏
i≥0 Ei) :=

∏
i≥0 Pr(Ei) where only a finite number of the factors Pr(Ei)

are not equal to 1. We then extend this measure to Σ0 since each member of Σ0 is a finite union of disjoint basic
sets. This measure can be shown to be a probability measure on Σ0. The said theorem of Carathéodory tells us
that it can be uniquely extended to Σ. This concludes our sketch.

A random variable is discrete if it takes on a countable set of distinct values. In this case, we may define its
expectation of X to be E[X ] :=

∑
i ai Pr{X = ai} where i range over all the distinct values ai assumed by X . Note

that E[X ] may be infinite. The variance of X is defined to be V ar[X ] :=E[(X − E[X ])2]. This is seen to give
V ar[X ] = E[X2]− (E[X ])2.

A fundamental fact is that E[X + Y ] = E[X ] + E[Y ] where X, Y are arbitrary random variables. Using
this simple fact, one often derive surprisingly consequences. In contrast, V ar[X + Y ] = V ar[X ] + V ar[Y ] and
E[XY ] = E[X ]E[Y ] are valid provided X, Y are independent random variables.

A random variable X that is 0/1-valued is called a Bernoulli random variable. The distribution function of
such an X is denoted B(1, p) if Pr{X = 1} is p. If X1, . . . , Xn is a set of i.i.d. random variables with common
distribution B(1, p) then the random variable X = X1 + · · ·+Xn has the binomial distribution denoted by B(n, p).
It is straightforward to calculate that E[X ] = np and V ar[X ] = np(1− p) if X has distribution B(n, p). Note that
Bernoulli random variables is just another way of specifying events, and when used in this manner, we call the
random variable the indicator function of the event in question. Furthermore, the probability of an event is just
the expectation of its indicator function.

Estimations. Estimating probabilities is a fine art. There are some tools and inequalities that the student
must become familiar with.
(a) One of these, Stirling’s formula in the form due to Robbins (1955), should be committed to memory:

n! =
(n

e

)n

eαn
√

2πn

where
1

12n + 1
< αn <

1
12n

.

Sometimes, the alternative bound αn > (12n)−1 − (360n3)−1 is useful [10]. Using these bounds, it is not hard to
show [21] that for 0 < p < 1 and q = 1− p,

G(p, n)e−
1

12pn− 1
12qn <

(
n

pn

)
< G(p, n) (1)

where
G(p, n) =

1√
2πpqn

p−pnq−qn.
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(b) The ‘tail of the binomial distribution’ is the following sum

n∑
i=λn

(
n

i

)
piqn−i.

We have the following upper bound [10]:

n∑
i=λn

(
n

i

)
piqn−i <

λq

λ− p

(
n

λn

)
pλnq(1−λ)n

where λ > p and q = 1− p. This specializes to

n∑
i=λn

(
n

i

)
<

λ

2λ− 1

(
n

λn

)
2−n

where λ > p = q = 1/2.
(c) A useful fact is this: for all real x,

e−x ≥ 1− x

with equality only if x = 0. If x ≥ 1 then this is trivial. Otherwise, by the usual series for the exponential function,
we have that for all real x

e−x =
∞∑

i=0

(−x)i

i!
= (1− x) +

x2

2!
(1− x

3
) +

x4

4!
(1− x

5
) + · · · .

The desired bound follows since x < 1. Similarly, we have

e−x = (1− x + x2/2)− x3

3!
(1− x

4
)− x5

5!
(1− x

6
)− · · · .

Then
e−x < 1− x + x2/2 = 1− x(1 − x/2)

provided 0 ≤ x ≥ 4. If 0 ≤ x ≤ 1 then we conclude e−x < 1 − x/2. (d) Jensen’s inequality. Let f(x) be a convex
real function. Convexity of f(x) means f(

∑
i pixi) ≤

∑
i pf(xi) where

∑
i pi = 1, pi ≥ 0 for all i, and i ranges over

a finite set. If X and f(X) are random variables then f(E[X ]) ≤ E[f(X)]. Let us prove this when X has takes on
finitely many values xi with probability pi: so E[X ] =

∑
i pixi and

f(E[X ]) = f(
∑

i

pixi) ≤
∑

i

pif(xi) = E[f(X)].

For instance, if r > 1 then E[|X |r] ≥ (E[|X |])r.
(e) Markov’s inequality. Let X be a non-negative random variable, e > 0. Then we have the trivial inequality

H(X − e) ≤ X
e where H(x) (the Heaviside function) is the 0-1 function given by H(x) = 1 if and only if x > 0.

Taking expections on both sides, we get

Pr{X > e} ≤ E[X ]
e

.

(f) Chebyshev’s inequality. Let X be a discrete random variable, Pr{X = ai} = pi for all i ≥ 1, with finite
second moment and e > 0. Then

Pr{|X | ≥ e} ≤ E[X2]
e2

.

We say this gives an upper bound on tail probability of X . In proof,

E[X2] =
∑
i≥1

pia
2
i

≥ e2
∑

|ai|≥e

pi

= e2 Pr{|X | ≥ e}
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Another form of this inequality is

Pr{|X − E[X ]| > e} ≤ V ar(X)
e2

where |X−E[X ]| measures the deviation from the mean. We could prove this as for Markov’s inequality, by taking
expectations on both sides of the inequality

H(|X − E[X ]| − e) ≤
(

X − E[X ]
e

)2

.

(g) Chernoff’s bound [7] is concerned a set of i.i.d. random variables X1, . . . , Xn. Let X = X1 + · · · + Xn and
assume E[X ] is finite. Define

M(t) :=E[etX1 ]

and
m(a) = inf

t
E[et(X1−a)] = inf

t
e−atM(t).

Then Chernoff showed that
E[X ] ≥ a⇒ Pr{X ≤ na} ≤ [m(a)]n

and
E[X ] ≤ a⇒ Pr{X ≥ na} ≤ [m(a)]n.

In particular, if X has distribution B(n, p) then it is not hard to compute that

m(a) =
(p

a

)a
(

1− p

1− a

)1−a

.

Since it is well-known that E[X ] = np, we obtain for 0 < e < 1:

Pr{X ≤ (1− e)np} ≤
(

1
1− e

)(1−e)np ( 1− p

1− (1− e)p

)n−(1+e)np

.

Markov Chains. We continue the discussion of Markov chains from section 3. The period of a state i in a
chain A is defined in a combinatorial way: it is the largest positive integer d such that every cycle in the underlying
graph GA that contains i has length divisible by d. A state is periodic or aperiodic depending on whether its period
is greater than 1 or not. It is left as an exercise to show that the period is a property of a component.

Recall that state i is recurrent if f∗
i = 1. In this case, there is certainty in returning to state i, and under this

condition, we may speak of the mean recurrence time for state i µi, defined as follows:

µi =
∞∑

n=0

nf
(n)
i

Using the mean recurrence time, we may introduce new classification of states: state i is null if µi = ∞, and
non-null otherwise.

To illustrate the classification of states, we consider the (1-dimensional) random walk with parameter p0 (0 <
p0 < 1): this is the Markov chain whose states are the integers, and the transition probability is given by pi,i+1 = p0

and pi,i−1 = 1 − p0, for all i. It is clear that every state is essential. It can be shown that each Markov state if
recurrent or transient depending on whether p0 = 1

2 or not (Exercise). So state 0 is recurrent iff p = 1
2 . Thus

p0 6= 1
2 provide examples of essential but transient states. In the recurrent situation, the mean recurrence time is

infinite (Exercise). So this illustrates recurrent but null states.
Generating functions. A (real) formal power series is an infinite expression G(s) =

∑∞
n=0 ansn in some

indeterminate s, where a0, a1, . . . are given real numbers. We say that G(s) is the (ordinary) generating function
for the seqence a0, a1, . . .. We can manipulate G(s) algebraically: we may add, multiply or (formally) differentiate
power series in the obvious way. One should think of G(s) as a convenient way to simultanueously manipulate all the
elements of a sequence; hence the terms sn are just ‘place-holders’. These operations reflect various combinatorial
operations on the original series. Using well-known identities we can deduce many properties of such series rather
transparently. Although we have emphasized that the manipulations are purely formal, we occasionally try to
sum the series for actual values of s; then one must be more careful with the analytic properties of these series.
Most elementary identities involving infinite series reduces (via the above manipulations) to the following most
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fundamental identity (1− x)−1 =
∑

i≥1 xi. For example, the student observes that all the results from sections 3
and 4 involving limits is basically an exploitation of this identity.

Rate of Convergence of Substochastic matrices. In section 3, we showed that the entries of the nth
power of the fundamental matrix of an absorbing chain approaches 0. We now give a more precise bound on the
rate of convergence. For any matrix B, let δ∗(B) and δ∗(B) denote the smallest and largest entries in B. Let
δ(B) = δ∗(B)− δ∗(B). We have the following simple lemma (cf. [16]):

Lemma 52 Let A = (ai,j) be a stochastic matrix each of whose entries are at least e for some 0 < e < 1. For any
n×m non-negative matrix B = (bi,j), we have

δ(AB) ≤ (1− 2e)δ(B).

Proof. Consider the (i, j)th entry
∑n

k=1 ai,kbk,j of AB. Without loss of generality, assume that ai,1 ≤ ai,2.
To obtain a lower bound on the (i, j)th entry, assume wlog that δ∗(B) = max{b1,j, b2,j}. Then

n∑
k=1

ai,kbk,j ≥ ai,1b1,j + ai,2b2,j + (
n∑

k=3

ai,k)δ∗(B)

≥ ai,1δ
∗(B) + ai,2δ∗(B) + (

n∑
k=3

ai,k)δ∗(B)

where the last inequality must be justified in two separate cases (in one case, we use the simple fact that a ≥ b and
a′ ≥ b′ implies aa′ + bb′ ≥ b′ + a′b). Thus

n∑
k=1

ai,kbk,j ≥ ai,1δ
∗(B) + (

n∑
k=2

ai,k)δ∗(B)

= eδ∗(B) + (
n∑

k=2

ai,k)δ∗(B) + (ai,1 − e)δ∗(B)

≥ eδ∗(B) + (1− e)δ∗(B)

To obtain an upper bound on the (i, j)th entry, Assuming wlog that δ∗(B) = min{b1,j, b2,j}, we have
n∑

k=1

ai,kbk,j ≤ ai,1b1,j + ai,2b2,j + (
n∑

k=3

ai,k)δ∗(B)

≤ ai,1δ∗(B) + ai,2δ
∗(B) + (

n∑
k=3

ai,k)δ∗(B)

≤ ai,1δ∗(B) + (
n∑

k=2

ai,k)δ∗(B)

= eδ∗(B) + (
n∑

k=2

ai,k)δ∗(B) + (ai,1 − e)δ∗(B)

≤ eδ∗(B) + (1− e)δ∗(B).

The lemma follows since the difference between the largest and smallest entry of AB is at most

(eδ∗(B) + (1− e)δ∗(B))− (eδ∗(B) + (1− e)δ∗(B)) ≤ (1 − 2e)δ(B).

Q.E.D.

In the exercises, we show how to extend this to substochastic matrix B, i.e., each row sum in B is at most 1.

Exercise

Exercise A.0.1: Show the following inequalities ((i)-(iv) from [Kazarinoff]):
(i) (1 + 1

n )n < (1 + 1
n+1 )n+1.

(ii) (1 + 1
n )n <

∑n
k=0

1
k! < (1 + 1

n )n+1.
(iii) n! < (n+1

2 )n for n = 2, 3, . . ..
(iv) (

∑n
i=1 xi)(

∑n
i=1

1
xi

) ≥ n2 where xi’s are positive. Moreover equality holds only if the xi’s are all equal.

(v) n! <
(

12n
12n−1

)
(2πn)1/2e−nnn. (Use Robbin’s form of Stirling’s formula.)
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Exercise A.0.2:
(i) (Hölder’s Inequality) If X and Y are random variables, and 1 < p <∞, 1

p + 1
q = 1 then

E[XY ] ≤ E[|XY |] ≤ E[|X |p]1/pE[|Y |q]1/q.

When p = 2, this is the Cauchy-Schwartz inequality. (In case Y ≡ 1 we have E[|X |] ≤ E[|X |p]1/p, which
implies the Liapounov inequality: E[|X |r]1/r ≤ E[|X |s]1/s for 1 < r < s <∞.)
(ii) (Minkowski’s Inequality)

E[|X + Y |p]1/p ≤ E[|X |p]1/p + E[|Y |p]1/p.

(iii) (Jensen’s inequality) If f is a convex real function, and suppose X and f(X) are integrable random
variables. Then f(E[X ]) ≤ E[f(X)]. (Note that convexity means that if

∑n
i=1 ci = 1, ci > 0, then

f(
∑

i = 1ncixi) ≤
∑n

i=1 cif(xi).)

Exercise A.0.3: Construct the probability space implicitly associated with a Markov chain.

Exercise A.0.4: For any positive integer k, construct a finite Markov chain with states 0, 1, . . . , n such that states
0 has the value k ≤ p∗0,0 < k + 1. Try to minimize n = n(k).

Exercise A.0.5: In this exercise, we do not assume the Markov chain is finite. Show that the following are
properties, though defined for individual states, are characteristics of components:
(i) Period of a Markov state.
(ii) Nullity of a Markov state.

Exercise A.0.6: Show that gi,j = f∗
i,jgj,j. (From this, conclude that gi,j > 0 if and only if gi,j = f∗

i,j .) Hint:
Write gi,j =

∑∞
n=0 Pr(AnBnCn|D) where D is the event that the state at time 0 is i, An is the event that

the states at times 1, . . . , n − 1 are not equal to j, Bn is the event that the state at time n is equal to j,
Cn is the event that the state at time s is equal to j for infinitely many s > n. Then Pr(AnBnCn|D) =
Pr(Cn|AnBnD) Pr(AnBn|D) But the Markov property implies Pr(Cn|AnBnD) = Pr(Cn|D).

Exercise A.0.7: Above, we proved a bound on the rate of convergence of stochastic matrices. Extend it to
substochastic matrices.

Exercise A.0.8:
(a) Prove equation (1) in the appendix.
(b) Say f(n) ∼ g(n) if f(n)/g(n) approaches 1 as n → ∞. Conclude that for k = 1, . . . , n/2, p = k/n and
q = 1 − p, then as k →∞ and n− k →∞:(

n
k

)
∼ 1√

2πpqn(ppqq)n

(c) Let 0 < p < 1 and q = 1 − p. Show that the probability that a Bernoulli random variable with mean p
attains k successes in n trials is (

n
k

)
pkqn−k ∼ 1√

2πpqn

Exercise A.0.9: Show
(a) (

1− p

1− δp

)1−δp

≤ eδ−1

for 0 < δ < 2.
(b) (

1
1 + e

)1+e

≤ e−e−(e2/3)

for 0 < e ≤ 1.
(c) (

1
1− e

)1−e

≤ ee−(e2/2)
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for 0 < e ≤ 1.
(d) Conclude that in the binomial case of Chernoff’s inequality (see appendix),

Pr{X ≥ (1 + e)np} ≤ e−(e2/3)np

and
Pr{X ≤ (1− e)np} ≤ e−(e2/2)np.

Exercise A.0.10: Deduce from Chernoff’s bound the following estimate on the tail of binomial distribution:

t∑
i=bt/2c

(
t

i

)
piqt−i ≤ (4pq)t/2.

End Exercise
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