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7.1 Computing with Choice

The choice-mode of computation comes in two main flavors. The first is based on probability and briefly discussed
in Chapter 1 (Section 6.2). The second is a generalization of nondeterministism called alternation. Let us briefly
see what an alternating computation looks like. Let δ be the usual Turing transition table that has choice and
let C0(w) denote the initial configuration of δ on input w. For this illustration, assume that every computation
path is finite; in particular, this implies that no configuration is repeated in a computation path. The computation
tree T (w) = Tδ(w) is defined in the obvious way: the nodes of T (w) are configurations, with C0(w) as the root; if
configuration C is a node of T (w) and C ` C′ then C′ is a child of C in T (w). Thus the leaves of T (w) are terminal
configurations. The description of an alternating machine M amounts to specifying a transition table δ together
with an assignment γ of a Boolean function γ(q) ∈ {∧,∨¬} to each state q in δ. This induces a Boolean value on
each node of T (w) as follows: the leaves are assigned 1 or 0 depending on whether the configuration is accepting
or not. If C is not a leaf, and q is the state in C, then we require that the number of children of C is equal to the
arity of γ(q). For instance, if C has two children whose assigned values are x and y then C is assigend the value
γ(q)(x, y). Finally we say M accepts w if the root C0(w) is assigned value 1.

The reader will see that nondeterministic computation corresponds to the case where γ(q) = ∨ for all q. Since
the introduction of alternating machines by Chandra, Kozen and Stockmeyer[3] in 1978, the concept has proven to
be an extremely useful tool in Complexity Theory.

The model of probabilistic machines we study was introduced by Gill[7]. Let us rephrase the description of
probabilistic computation in Chapter 1 in terms of assigning values to nodes of a computation tree. A probabilistic
machine is formally a transition table δ where each configuration spawns either zero or two children. For any
input w, we again have the usual computation tree T (w). The leaves of T (w) are given a value of 0 or 1 as in the
alternating case. However, an internal node u of T (w) is assigned the average (x + y)/2 of the values x, y of the
two children of u. The input w is accepted if the root is assigned a value greater than 1/2. (The reader should be
verify that this description is equivalent to the one given in Chapter 1.) The function f(x, y) = (x + y)/2 is called
the toss function because in probabilistic computations, making choices is interpreted as branching according to
the outcomes of tossing a fair coin.

Hence, a common feature of probabilistic and alternating modes is their systematic bottom-up method of
assigning values to nodes of computation trees. One difference is that, whereas probabilistic nodes are given
(rational) values between 0 and 1, the alternating nodes are assigned Boolean values. We modify this view of
alternating machines by regarding the Boolean values as the real numbers 0 and 1, and generalizing the Boolean
functions ∧, ∨ and ¬ to the real functions min, max and f(x) = 1 − x (respectively).

With this shift of perspective, we have almost accomplished the transition to a new syncretistic model that we
call probabilistic-alternating machines. This model was first studied in [23]. A probabilistic-alternating machine M
is specified by giving a transition table δ and each state is associated with one of the four real functions

min(x, y), max(x, y), 1 − x,
x + y

2
. (1)

We require c onfiguration in state q to spawn m children where m is the arity of the function associated with
q. This can be enforced by synthetic restrictions on the transition table δ. Given an input w, we construct the tree
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T (w) and assign values to its nodes in the usual bottom-up fashion (again, assuming T (w) is a finite tree). We say
M accepts the input w if the value at the root of T (w) is > 1/2.

Probabilistic and alternating machines in the literature are usually studied independently. In combining these
two modes, we extend results known for only one of the modes, or unify distinct results for the separate modes.
More importantly, it paves the way towards a general class of machines that we call choice machines. Computations
by choice machines are characterized by the systematic assignment of ‘values’ to nodes of computation trees, relative
to the functions γ(q) which the machine associates to each state q. These functions are similar to those in (1),
although an immediate question is what properties should these functions satisfy? This will be answered when the
theory is developed. We call any assignment of “values” to the nodes of a computation tree a valuation.1 Intuitively,
these values represent probabilities and lies in the unit interval [0, 1]. But because of infinite computation trees, we
are forced to take as “values” any subinterval [a, b] of the unit interval [0, 1]. Such intervals represent uncertainty
ranges in the probabilities. This leads to the use of a simple interval algebra. The present chapter develops the
valuation mechanism needed for our theory of choice machines. We will specifically focus on alternation machines,
leaving stochastic machines to the next chapter.

Other choice modes. Other authors independently proposed a variety of computational modes that turn out to
be special cases of our probabilistic-alternating mode: interactive proof systems (Goldwasser, Micali and Rackoff
[8]), Arthur-Merlin games (Babai [2]), stochastic Turing machines (Papadimitriou [16]), probabilistic-
nondeterministic machines (Goldwasser and Sipser [9]). In general, communication protocols and game playing
models can be translated as choice machines. In particular, this holds for the probabilistic game automata
(Condon and Ladner [4]) which generalize interactive proof systems and stochastic machines2. Alternating machines
are generalized to logical type machines (Hong [11]) where machine states can now be associated with any of the
16 Boolean functions on two variables. Some modes bearing little resemblance to choice machines can nevertheless be
viewed as choice machines: for example, in Chapter 9 we describe a choice mode that generalizes nondeterminism
in a different direction than alternation. (This gives rise to the so-called Boolean Hierarchy.) These examples
suggests that the theory of valuation gives a proper foundation for choice modes of computation. The literature
can avoid our systematic development only by restrictions such as requiring constructible time-bounds.

7.2 Interval Algebra

The above introduction to probabilistic-alternating machines explicitly avoided infinite computation trees T (x).
Infinite trees cannot be avoided in general; such is the case with space-bounded computations or with probabilistic
choices. In particular, a computation using finite amount of space may have infinite computation paths. To see
why infinite trees are problematic, recall that we want to systematically assign a value in [0, 1] to each node of
T (x), in a bottom-up fashion. But if a node u of T (x) lies on an infinite path, it is not obvious what value to assign
to u.

Our solution [23] lies in assigning to u the smallest ‘confidence’ interval I(u) ⊆ [0, 1] guaranteed to contain the
‘true’ value of u. This leads us to the following development of an interval algebra3.

In the following, u, v, x, y, etc., denote real numbers in the unit interval [0, 1]. Let

INT :={[u, v] : 0 ≤ u ≤ v ≤ 1}

denote the set of closed subintervals of [0, 1]. An interval [u, v] is exact if u = v, and we identify the exact interval
[u, u] with the real number u. We call u and v (respectively) the upper and lower bounds of the interval [u, v]. The
unit interval [0, 1] is also called bottom and denoted ⊥.

By an interval function we mean a function f : INTn → INT, where n ≥ 0 denotes the arity of the function.
We are interested in six interval functions. The first is the unary function of negation (¬), defined as follows:

¬[x, y] = [1 − y, 1 − x].

The remaining five are binary functions:

1The term ‘valuation’ in algebra refers to a real function on a ring that satisfies certain axioms. Despite some concern, we will
expropriate this terminology, seeing little danger of a context in which both senses of the term might be gainfully employed.

2This game model incorporates ‘partially-hidden information’. It will be clear that we could add partially-hidden information to
choice machines too.

3Interval arithmetic, a subject in numerical analysis, is related to our algebra but serves a rather different purpose. We refer the
reader to, for example, Moore [15].
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minimum (∧), maximum (∨),
toss ( f),
probabilistic-and (⊗), probabilistic-or (⊕).

It is convenient to first define them as real functions. The real functions of minimum and maximum are obvious.
The toss function is defined by

x fy :=
x + y

2
.

We saw in our introduction how this function arises from probabilistic (coin-tossing) algorithms. The last two
functions are defined as follows:

x ⊗ y := xy

x ⊕ y := x + y − xy

Thus ⊗ is ordinary multiplication of numbers but we give it a new name to signify the interpretation of the numbers
as probabilities. If E is the event that both E1 and E2 occur, then the probability Pr(E) of E occurring is given by

Pr(E) = Pr(E1) ⊗ Pr(E2).

We assume that E1, E2 are independent events. Similarly ⊕ has a probabilistic interpretation: if E is the event
that either E1 or E2 occurs, then

Pr(E) = Pr(E1) ⊕ Pr(E2).

To see this, simply note that x ⊕ y can also be expressed as 1 − (1 − x)(1 − y). For brevity, we suggest reading ⊗
and ⊕ as ‘prand’ and ‘pror’, respectively.

We note that these 5 real functions can also be regarded as functions on [0, 1] (i.e., if their arguments are in
[0, 1] then their values remain in [0, 1]). We may then extend them to the subintervals INT of the unit interval as
follows. If ◦ is any of these 5 functions, then we define

[x, y] ◦ [u, v] :=[(x ◦ u), (y ◦ v)].

For instance, [x, y] ⊗ [u, v] = [xu, yv] and [x, y] ∧ [u, v] = [min(x, u), min(y, v)]. Alternatively, for any continuous
function f : [0, 1] → [0, 1], we extend the range and domain of f from [0, 1] to INT by the definition f(I) = {f(x) :
x ∈ I}. If f is also monotonic, this is equivalent to the above.

One easily verifies:

Lemma 1 All five binary functions are commutative. With the exception of f, they are also associative.

The set INT forms a lattice with ∧ and ∨ as the join and meet functions, respectively4. It is well-known that
we can define a partial order ≤ in any lattice by:

[x, y] ≤ [u, v] ⇐⇒ ([x, y] ∧ [u, v]) = [x, y]. (2)

Note that (2) is equivalent to:
[x, y] ≤ [u, v] ⇐⇒ x ≤ u and y ≤ v.

When we restrict this partial ordering to exact intervals, we get the usual ordering of real numbers. For reference,
we will call ≤ the lattice-theoretic ordering on INT.

The negation function is not a complementation function (in the sense of Boolean algebra [5]) since neither
I∧¬I = 0 nor5 I∨¬I = 1 holds for all I ∈ INT. However it is idempotent, ¬¬I = I. Probabilistic-and and
probabilistic-or can be recovered from each other in the presence of negation. For example,

I ⊗ J = ¬(¬I ⊕ ¬J).

It easy to verify the following forms of de Morgan’s law:
4A lattice X has two binary functions, join and meet, satisfying certain axioms (essentially all the properties we expect from max

and min). Lattice-theoretic notations can be found, for instance, in [5]. The lattice-theoretic properties are not essential for the
development of our results.

5We assume that ¬ has higher precedence than the binary operators so we may omit parenthesis when convenient.
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Lemma 2

¬(I ∧ J) = ¬I ∨ ¬J

¬(I ∨ J) = ¬I ∧ ¬J

¬(I f J) = ¬I f ¬J

¬(I ⊗ J) = ¬I ⊕ ¬J

¬(I ⊕ J) = ¬I ⊗ ¬J

where I, J ∈ INT.

In view of these laws, we say that the functions ∧ and ∨ are duals of each other (with respect to negation);
similarly for the pair ⊗ and ⊕. However, f is self-dual.

We verify the distributivity of ∧ and ∨ with respect to each other:

I ∨ (J1 ∧ J2) = (I ∨ J1) ∧ (I ∨ J2)
I ∧ (J1 ∨ J2) = (I ∧ J1) ∨ (I ∧ J2).

Furthermore, f, ⊗ and ⊕ each distributes over both ∧ and ∨:

I f(J1 ∧ J2) = (I f J1) ∧ (I f J2), I f(J1 ∨ J2) = (I f J1) ∨ (I f J2)
I ⊗ (J1 ∧ J2) = (I ⊗ J1) ∧ (I ⊗ J2), I ⊗ (J1 ∨ J2) = (I ⊗ J1) ∨ (I ⊗ J2)
I ⊕ (J1 ∧ J2) = (I ⊕ J1) ∧ (I ⊕ J2), I ⊕ (J1 ∨ J2) = (I ⊕ J1) ∨ (I ⊕ J2)

However ⊗ and ⊕ do not distribute with respect to each other (we only have x ⊗ (y ⊕ z) ≤ (x ⊗ y) ⊕ (x ⊗ z)).
And neither ∧ nor ∨ distributes over f, ⊗ or ⊕.

Another Partial Order. For our applications, it turns out that a more useful partial order on INT is v ,
defined by:

[x, y] v [u, v] ⇐⇒ x ≤ u and v ≤ y.

Clearly v is the reverse of the set inclusion relation between intervals: I v J ⇐⇒ J ⊇ I as sets. With respect
to the v -ordering, all exact intervals are maximal and pairwise incomparable6. In view of our interpretation of
intervals as ‘intervals of confidence’, if I v J then we say J has ‘at least as much information’ as I. For this
reason, we call v the information-ordering. In contrast to the lattice-theoretic ≤-ordering, v only gives rise to
a lower semi-lattice with the meet function u defined by

[x, y] u [u, v] = [min(x, u), max(y, v)].

(The following suggestion for defining the join t fails: [x, y] t [u, v] = [max(x, u), min(y, v)].) Note that bottom ⊥
is the least element (“no information”) in the information-ordering.

Example 1 The strong 3-valued algebra described7 by Chandra, Kozen and Stockmeyer [3] is a subalgebra of our
interval algebra, obtained by restricting values to {0, 1,⊥}. See figure 7.1 for its operation tables. They only

∧ 0 1 ⊥

0

1

⊥

0

0

0

0

1

⊥

0

⊥

⊥

∨ 0 1 ⊥

0

1

⊥

0

1

⊥

1

1

1

⊥

1

⊥

Figure 7.1: The strong 3-valued algebra.

6I and J are v -comparable if I v J or J v I, otherwise they are v -incomparable.
7Attributed to Kleene.
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were interested in the functions ∧, ∨, ¬. Thus our interval algebra gives a model (interpretation) for this 3-valued
algebra.

The contrast between ≤ and v is best exemplified by the respective partial orders restricted to this 3-valued
algebra, put graphically:
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This information ordering gives rise to some important properties of interval functions. Given a sequence of
v -increasing intervals

I1 v I2 v · · · ,
we define its limit in the natural way: limj≥1 Ij is just ∩j≥1 = Ij .

Definition 1
(i) An n-ary function

f : INTn → INT

is monotonic if for all intervals J1, . . . , Jn, J ′
1, . . . , J

′
n:

J1 v J ′
1, . . . , Jn v J ′

n ⇒ f(J1, . . . , Jn) v f(J ′
1, . . . , J

′
n).

(ii) f is continuous if it is monotonic and for all non-decreasing sequences

J
(1)
i v J

(2)
i v J

(3)
i v · · ·

(i = 1, . . . , n), we have that

f(lim
j
{J (j)

1 }, . . . , lim
j
{J (j)

n }) = lim
j

f(J (j)
1 , . . . , J(j)

n ). (3)

Note that a continuous function is assumed monotonic. This ensures that the limit on the right-hand side of
(3) is meaningful because monotonicity of f implies

f(J (1)
1 , . . . , J(1)

n ) v f(J (2)
1 , . . . , J(2)

n ) v f(J (3)
1 , . . . , J(3)

n ) v · · · .
Lemma 3 The six functions ∧, ∨, f, ⊗, ⊕ and ¬ are continuous.

We leave the proof as an exercise. Continuity of these functions comes from continuity of their real counterpart.

Example 2 The cut-off function δ 1
2
(x) is defined to be 1 if x > 1

2 and 0 otherwise. We extend this function to
intervals in the natural way: δ 1

2
([u, v]) = [δ 1

2
(u), δ 1

2
(v)]. This function is monotonic but not continuous. To see

this, let Ii = [0, 1
2 + 1

i ]. Then limi Ii = [0, 1
2 ] but

0 = δ 1
2
([0,

1
2
]) 6= lim

i
δ 1

2
(Ii) = ⊥.

The following simple observation is useful for obtaining monotonic and continuous functions.

Lemma 4
(i) Any composition of monotonic functions is monotonic.
(ii) Any composition of continuous functions is continuous.
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7.3 Theory of Valuations

To give a precise definition for the choice mode of computation, and its associated complexity measures, we
introduced the theory of valuations. We also signal a new emphasis through a terminology change:

• Global Decisions. In Chapter 0, a non-accepting computation is classified as either rejecting or looping.
Now, the disposition of an acceptor with respect to any input is one of the following: acceptance, rejection
or indecision. These three dispositions are called “global decisions” because they are based on the entire
computation tree. We will define them using valuations. Intuitively, looping has been replaced by indecision
but the two concepts are not identical.

• Local Answers. Each computation path leads to a “local answer”. If the path is finite, the local answer
resides in the terminal configuration C of the path. Previously, the local answers are either accept or not-
accept. We now have three local answers from C: YES, NO or YO. If the path is infinite, the local answer
is YO. These answers are analogues of the three global decisions. In particular “YO” is neither Yes or No,
i.e., indecision.

To implement the local answers, we introduce two distinguished states,

qY , qN ∈ Q∞.

called the YES-state and NO-state, respectively, These are replacements for our previous accept and reject states
(qa and qr). We can further arrange transition tables so configurations with these states are terminal. A terminal
configuration C is called a YES-configuration, NO-configuration or a YO-configuration, depending on whether its
state is qY , qN or some other state. A computation path is called a YES-path, NO-path or YO-path, depending on
whether it terminates in a YES, NO or otherwise. Thus a YO-path either terminates in a YO-configuration or is
non-terminating.

Naturally, the global decision is some generalized average of the local answers. This global/local terminology
anticipates the quantitative study of errors in a computation (see chapter 8). For now, it suffices to say that all
error concepts are based on the discrepancies between global decisions and local answers. The seemingly innocuous
introduction of YO-answers8 is actually critical in our treatment of errors.

Let f be a function on INT, i.e., there is an n ≥ 0 (n is the arity of f) such that

f : INTn → INT.

The 0-ary functions are necessarily constant functions, and the identity function ι(I) = I has arity 1.

Definition 2 A set B of functions on INT is called a basis set if the functions in B are continuous and B contains
the identity function ι.

For any basis set B, a B-acceptor is a triple M = (δ, γ,
M
<) where δ is a Turing transition table whose state set

QM is ordered by a total ordering
M
<, and γ associates a basis function γ(q) to each state q ∈ QM ,

γ : Q → B.

Moreover, δ has the property that if C is a configuration of δ in state q and γ(q) has arity n, then C either is a
terminal configuration or has exactly n immediate successors C1, . . . , Cn such that the Ci’s have distinct states.

We will see that, without loss of generality, the 0-ary functions 0, 1 and ⊥ can also be assumed to be in B. We
simply call M a choice acceptor (or machine) if B is understood.

Explanation. We describe how choice machines operate. If the immediate successors of a configuration C are

C1, . . . , Cn such that the state of Ci is less than the state of Ci+1 (under the ordering
M
<) for each i = 1, . . . , n− 1,

then we indicate this by writing9

C ` (C1, . . . , Cn).

If q is the state of C, we also write γ(C) or γC instead of γ(q). We require that C1, . . . , Cn be distinct states
because the value of the node (labeled by) C in the computation tree is given by γC(v1, . . . , vn) where vi is the

8We owe the YO-terminology to the unknown street comedian in Washington Square Park whose response to an ongoing public
campaign called “Just say NO to drugs” was: “we say YO to drugs”. Needless to say, this local answer is in grave error.

9This notation could cause some confusion because we do not want to abandon the original meaning of “C ` C′”, that C′ is a
successor of C. Hence “C ` C′” does not mean that C has only one successor; to indicate this, we need to write “C ` (C′)”.
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Name Basis B Mode Symbol
deterministic ∅ D
nondeterministic {∨} N
probabilistic { f} Pr
alternating {∧,∨,¬} A
interactive proofs { f,∨} Ip
probabilistic-alternating { f,∧,∨,¬} PrA
stochastic { f,⊗,⊕,¬} St
stochastic-alternating { f,⊗,⊕,∧,∨,¬} StA

Figure 7.2: Some Choice Modes and their Symbols.

value of the node (labeled by) Ci. Without an ordering such as
M
< on the children of C, we have no definite way to

assign the vi’s as arguments to the function γC . But for basis sets that we study, the functions are symmetric in

their arguments and so we will not bother to mention the ordering
M
<.

The table in Figure 7.3 collects some common classes of B-choice machines. Since every basis set contains the
identity function ι, it is omitted when writing out B.

Each basis set B gives rise to a new computational mode. The symbols for these modes are in the third column of
this table. We shall say a B-machine makes B-choices. Thus, nondeterministic machines makes nondeterministic
choices and alternating machines makes alternating choices. MIN- and MAX-choices are also called universal
choices and existential choices; Coin-tossing choices are also called random choices or probabilistic choices.

From Figure 7.3, it is evident that we differentiate between the words ‘probabilistic’ and ‘stochastic’: the
adjective ‘probabilistic’ applies only to coin-tossing concepts – a usage that conforms to the literature. The adjective
‘stochastic’ is more general and includes coin-tossing concepts. We abbreviate a probabilistic-alternating machine
to ‘PAM’, and a stochastic-alternating machine to ‘SAM’.

If γ(q) = ∧ (respectively, ∨, f,⊗,⊕,¬) then q is called an MIN-state (respectively, MAX-, TOSS-, PrAND-,
PrOR-, NOT-state). If the state of C is an MIN-state (MAX-state, etc.), then C is an MIN-configuration (MAX-
configuration, etc.).

Example 3 This is an instructive exercise if you want to have some understanding of alternating machines. Recall
the palindrome language

Lpal = {w : w ∈ {0, 1}∗, w = wR}
. We will show that an alternating machine M can accept Lpal in linear time, using only logarithmic space.

To understand what this tells us about the power of alternation, recall from Chapter 2,

Lpal ∈ D-TIME-SPACE(O(n), O(n))

and
Lpal ∈ D-TIME-SPACE (O(n2), log n).

Furthermore, if
Lpal ∈ N-TIME-SPACE (t(n), s(n))

then s(n) · t(n) = Ω(n2). Hence this example shows that the alternating mode is strictly more powerful than the
fundamental mode. Of course, the formal definition of what it means for a choice machine to accept a word, and
the notion of space and time complexity is yet to come. But if our machine halts on all paths, then these concepts
are intuitively obvious: we rely on such intuitions for the reader to understand the example. The idea of the
construction is that M accepts an input w provided for all i = 1, . . . , n, w[i] = w[n + 1 − i], provided |w| = n.

In phase 1, the machine M on input w of length n marks out some m ≥ 0 cells using existential choice. It is not
hard to show that the simple procedure P that repeatedly increments a binary counter from 0 to 2m, taking O(2m)
steps overall. In phase 2, M deterministically checks if 2m−1 < n ≤ 2m using this procedure P , answering NO
otherwise. Hence phases 1 and 2 take linear time. In phase 3, M universally guesses a bit for each of the marked
cells. This takes O(log n) steps. At the end of phase 3, M is armed with a binary number i between 0 and 2m+1.
Then it deterministically tests if w[i] = w[n − i]. If i > n then this test, by definition, passes. In any case this test
takes a linear number of steps, again using procedure P . This completes our description of M. It is clear that M
accepts Lpal and uses O(log n) space.
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We now want to define acceptance by choice machines. Basically we need to assign intervals [u, v] ∈ INT to
nodes in computation trees. The technical tool we employ is the concept of a ‘valuation’.

Definition 3 Let M= (δ, γ) be a choice machine. The set of configurations of δ is denoted ∆(M). A valuation of
M is a function

V : ∆(M) → INT.

A partial ordering on valuations is induced from the v -ordering on INT as follows: for valuations V1 and V2,
define V1 v V2 if

V1(C) v V2(C)

for all C ∈ ∆(M). The bottom valuation, denoted V⊥, is the valuation that always yield ⊥. Clearly V⊥ v V for
any valuation V .

Definition 4 Let ∆ ⊆ ∆(M). We define the following operator τ∆ on valuations. If V is a valuation, then τ∆(V )
is the valuation V ′ defined by:

V ′(C) =


⊥ if C 6∈ ∆ or C is YO-configuration,
1 else if C is a YES-configuration,
0 else if C is a NO-configuration,
γC(V (C1), . . . , V (Cn)) else if C ` (C1, . . . , Cn).

For instance, we may choose ∆ to be the set of all configurations of M that uses at most space h (for some h).

Lemma 5 (Monotonicity) ∆1 ⊆ ∆2 and V1 v V2 implies τ∆1(V1) v τ∆2(V2).

Proof. We must show τ∆1(V1)(C) v τ∆2(V2)(C) for all C ∈ ∆(M). If C 6∈ ∆1, then this is true since the left-hand
side is equal to ⊥. So assume C ∈ ∆1. If C is terminal, then τ∆1(V1)(C) = τ∆2(V2)(C) (= 0, 1 or ⊥). Otherwise,
C ` (C1, . . . , Cn) where n is the arity of γC . Then

τ∆1(V1)(C) = γC(V1(C1), . . . , V1(Cn))
v γC(V2(C1), . . . , V2(Cn))
= τ∆2(V2)(C).

where the v follows from the monotonicity of γC . Q.E.D.

For any ∆ ⊆ ∆(M) and i ≥ 0, let τ i
∆ denote operator obtained by the i-fold application of τ∆, i.e.,

τ0
∆(V ) = V, τ i+1

∆ (V ) = τ∆(τ i
∆(V )).

As corollary, we get
τ i
∆(V⊥) v τ i+1

∆ (V⊥)

for all i ≥ 0. To see this, use induction on i and the monotonicity lemma.

Definition 5 From the compactness of the interval [0, 1], we see that there exists a unique least upper bound Val∆
defined by

Val∆(C) = lim{τ i
∆(V⊥)(C) : i ≥ 0},

for all C ∈ ∆. If ∆ = ∆(M), then we denote the operator τ∆ by τM , and the valuation Val∆ by ValM .

A simple consequence of the monotonicity lemma is the following:

∆1 ⊆ ∆2 ⇒ Val∆1 v Val∆2 .

To see this, it is enough to note that for all i ≥ 0, τ i
∆1

(V⊥) v τ i
∆2

(V⊥).
For any operator τ and valuation V , we say V is a fixed point of τ if τ(V ) = V .

Lemma 6 Val∆ is the least fixed point of τ∆, i.e.,

(i) It is a fixed point: τ∆(Val∆) = Val∆
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(ii) It is the least such: for all valuations V , if τ∆(V ) = V then Val∆ v V .

Proof.

(i) If C is terminal then it is easy to see that τ∆(Val∆)(C) = Val∆(C). For non-terminal C, if C ` (C1, . . . , Cn)
then

τ∆(Val∆)(C) = γC(Val∆(C1), . . . ,Val∆(Cn))
= γC(lim

i
{τ i

∆(V⊥)(C1)}, . . . , lim
i
{τ i

∆(V⊥)(Cn)})
= lim

i
{γC(τ i

∆(V⊥)(C1), . . . , τ i
∆(V⊥)(Cn))} (by continuity)

= lim
i
{τ i+1

∆ (V⊥)(C)}
= Val∆(C).

(ii) V⊥ v V , so τ i
∆(V⊥) v τ i

∆(V ) = V for all i ≥ 0. Hence Val∆ v V .

Q.E.D.

Example 4 To see that a fixed point of τ∆ need not be unique, consider a binary computation tree in which all
paths, with a single exception, terminate at accepting configurations. The exception is the infinite path π that
always branches to the right. We could make sure that each node in this tree has a distinct configuration. Assuming
that all nodes are MIN-configurations, a fixed point valuation V1 of the computation tree is where all nodes have
value 1. Another fixed point valuation V2 assigns each nodes in π to 0 but the rest has value 1. But the least fixed
point valuation V0 assigns to the value ⊥ to each node on the path π and the value 1 to the rest.

Definition 6 An interval I ⊆ [0, 1] is a accepting if I ⊆ (1
2 , 1]. It is rejecting if I ⊆ [0, 1

2 ); it is undecided if it is
neither accepting nor rejecting.

Note that I is accepting/rejecting iff each v ∈ I is greater/less than 1
2 . Similarly I is undecided iff 1

2 ∈ I.

Definition 7 (Acceptance rule for choice machines)
(i) Let w be a word in the input alphabet of a choice acceptor M , and ∆ a set of configurations of M . The ∆-value
of w, denoted Val∆(w), refers to Val∆(C0(w)) where C0(w) is the initial configuration of M on w. If ∆ = ∆(M),
the set of all configurations of M , we write ValM (w) instead of Val∆(M)(w).
(ii) We say M accepts, rejects or is undecided on w according as ValM (w) is accepting, rejecting or undecided.
(iii) A machine is said to be decisive if every input word is either accepted or rejected; otherwise it is indecisive
(iv) The language accepted by M is denoted L(M). The language rejected by M is denote L(M). Thus, M is
decisive iff L(M) = co-L(M).

Convention. In the course of this section, we will introduce other types of fixed point valuations. It is helpful
to realize that we use ‘Val ’ (with various subscripts) only to denote valuations that are least fixed points of the
appropriate operators.

7.3.1 Tree Valuations and Complexity

To discuss complexity in general, we need an alternative approach to valuations, called ‘tree valuations’. To
emphasize the difference, the previous notion is also called ‘configuration valuations’.

Configuration valuations allows us to define the notion of acceptance or rejection. They can also define space
complexity: thus, we say that M accepts input w in space h if Val∆(w) is accepting with ∆ comprising all
those configurations of M that uses space ≤ h, Unfortunately, configuration valuations are not suited for time
complexity. To see why, note that they are unable to distinguish between different occurrences of the same
configuration C in computation trees. Suppose C occurs at two nodes (say, u1 and u2) of a computation tree.
Assume the depth of u1 is less than the depth of u2. In a time-limited computation, we are interested in
computation trees with bounded depths. and want “valuations” V of such trees which may distinguish between
u1 and u2. For instance, if u2 is a descendent of u1 then u1 typically have “more information” than u2, and we
want V (u2) v V (u1).
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The following treatment is abbreviated since it imitates the preceding development.

Definition 8 Fix a choice machine M and any input w.
(i) The complete computation tree TM (w) of M on w is an ordered tree whose nodes are labeled by configurations
from ∆M such that the root is labeled with the initial configuration C0(w), and whenever a node u is labeled by
some C and C ` (C1, . . . , Cn) then u has n children u1, . . . , un which are ordered so that ui is labeled by Ci. We
write u ` (u1, . . . , un) in this case. By abuse of terminology, we sometimes identify a node u with its label C.
(ii) A tree T ′ is a prefix of another tree T if T ′ is obtained from T by pruning10 some subset of nodes of T . In
particular, if T ′ is non-empty then the root of T ′ is the root of T . If T is labeled, then T ′ has the induced labeling.
(iii) A computation tree T of w is a prefix of the complete computation tree TM (w); also, TM (w) is the completion
of T .
(iv) A (tree) valuation on a computation tree T is a function V that assigns a value V (u) ∈ INT for each node u in
the completion TM (w) of T , with the property that nodes not in T are assigned ⊥. We also call V a tree valuation
of w. If V, V ′ are valuations of w then we define

V v V ′

if V (u) v V ′(u) for all u ∈ TM (w).
(v) The bottom valuation, denoted V⊥, assigns each node of TM (w) to ⊥. Clearly V⊥ is the v -minimum tree
valuation, for any given w.
(vi) The operator τT transforms a valuation V on T to a new valuation τT (V ) on T as follows: for each node
u ∈ TM (w),

τT (V )(u) =


⊥ if u is a YO-node, or u 6∈ T,
1 else if u is a YES-node,
0 else if u is a NO-node,
γu(V (u1), . . . , V (un)) else if u ` (u1, . . . , un).

Let the least fixed point of τT be denoted by ValT . In fact, τ i
T (V⊥) v τ i+1

T (V⊥) for all i ≥ 0 and we have

ValT = lim{τ i
T (V⊥) : i ≥ 0}.

(vii) A computation tree T is accepting/rejecting/undecided if ValT (u0) is accepting/rejecting/undecided where u0

is the root of T .

We claim that ValT is the least fixed point without proof because it is proved exactly as for configuration
valuations; furthermore, the next section gives another approach.

Let us say a word w is accepted or rejected by M in the ‘new sense’ if there is an accepting/rejecting tree for
w. We next show the new sense is the same as the old. First we introduce a notation: if ∆ ⊆ ∆(M) then let

T∆(w)

denote the largest computation tree T of w all of whose nodes are labeled by elements of ∆. It is not hard to see that
this tree is uniquely defined, and is non-empty if and only if the initial configuration C0(w) is in ∆. Equivalence of
the two senses of acceptance amounts to the following.

Lemma 7 Fix M and input w.
(a) If T is an accepting/rejecting computation tree of w then Val∆(w) is also accepting/rejecting, where ∆ is the
set of labels in T .
(b) Conversely, for any ∆ ⊆ ∆(M), if Val∆(w) is accepting/rejecting then T∆(w) is also accepting/rejecting.

Its proof is left as an exercise. It follows that a word cannot be both accepted and rejected in the tree sense.
For, if T is accepting/rejecting tree for w, and ∆ are the labels of T , then Val∆(w) is accepting/rejecting. Hence
ValM (w) is accepting/rejecting.

Definition 9 (Acceptance Complexity) Let r be any extended real number.
(i) We say that M accepts x in time r if there is an accepting tree T on input x whose nodes are at level at most r
(the root is level 0).
(ii) We say M accepts x in space r if there is an accepting tree T on input x whose nodes each uses space at most

10To prune a node u from T means to remove from T the node u and all the descendents of u. Thus, if we prune the root of T , we
an empty tree.
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r.
(iii) We say M accepts x in reversal r if there is an accepting tree T on input x such that each path in the tree
makes at most r reversals.
(iv) A computation path C1`C2` · · · `Cm makes (at least) r alternations if there are k = brc + 1 configurations

Ci(1), Ci(2), . . . , Ci(k)

1 ≤ i(1) < i(2) < · · · < i(k) ≤ m such that each Ci(j) (j = 1, . . . , k) is either a MIN- or a MAX-configuration,
and if k(j) < i(j) is the largest index such that Ck(j) is either a MIN- or MAX-configuration then Ck(j) and Ci(j)

makes different choices (one makes a MIN- and the other a MAX-choice) if and only if there is an even number of
NOT-configurations between them along the path. We say M accepts x in r alternations if there is an accepting
tree T on input x such that no path in the tree makes 1 + r alternations.
(v) Let r1, r2, r3 be extended real numbers. We say M accepts x in simultaneous time-space-reversal (r1, r2, r3) if
there is an accepting tree T that satisfies the requirements associated with each of the bounds ri (i = 1, . . . , 3) for
the respective resources.
(vi) For complexity functions f1, f2, f3, we say that M accepts in simultaneous time-space-reversal (f1, f2, f3) if for
each x ∈ L(M), M accepts x in simultaneous time-space-reversal (f1(|x|), f2(|x|), f3(|x|)). This definition extends
to other simultaneous bounds.

We have just introduced a new resource ‘alternation’. Unlike time, space and reversals, this resource is mode-
dependent. For example, the machine in the palindrome example above has one alternation and nondeterministic
machines has no alternations. We have a similar monotonicity property for tree valuations: if T is a prefix of T ′

then
ValT v ValT ′ .

In consequence, we have:

Corollary 8 If M accepts an input in time r then it accepts the same input in time r′ for any r′ > r. Similarly
for the other resources.

Our definition of accepting in time r is phrased so that the accepting tree T need not include all nodes at levels
up to brc. Because of monotonicity, it may be more convenient to include all nodes up to level brc. But when other
resource bounds are also being considered, we may no longer be free to do this.

The following result is fundamental:

Theorem 9 (Compactness) If a choice machine M accepts a word x then it has a finite accepting tree on input
x. Similarly, if M rejects a word, then there is a finite rejecting tree.

The proof will be deferred to the next section. Thus, if an input is accepted, then it is accepted in finite amounts
of time, space, etc. This result implies that the complexity measures such as time, space, reversals or alternation
are Blum measures (chapter 6, section 8).

On rejection and running complexity. The above definitions of complexity is concerned with accepted
inputs only, and no assumptions on the computation of M are made if w 6∈ L(M). In other words, we have been
discussing acceptance complexity. We now introduce running complexity whose general idea is that complexity
bounds apply to rejected as well as accepted words. Should running complexity allow indecision on any input? Our
definition disallows this.

Definition 10 (Running time complexity) Fix a choice machine M .
(i) We say M rejects an input w in k steps if there is a rejecting tree of M on w whose nodes have level at most k.
(ii) For any complexity function t(n), we say M rejects in time t(n) if for all rejected inputs w, M rejects w in time
t(|w|).
(iii) M runs in time (t, t′) if each input of length n is either accepted in time t(n) or rejected in time t′(n). If t = t′,
we simply say M runs in time t.

This definition extends naturally to other resources. Note that if M has a running time that is finite, i.e.,
t(n) < ∞ for all n, then it is decisive. Thus, we can alternatively say that M is halting if it is decisive.

Complexity classes. We are ready to define complexity classes for choice modes. Our previous convention
for naming complexity classes extends in a natural way: First note that our notation for complexity classes such
as NTIME (F ) or D-TIME-REVERSAL(F, F ′) has the general format

Mode-Resources ( Bounds )
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where Mode is either N or D, Resources is a sublist of time, space, reversal and Bounds is a list of (families
of) complexity functions. The complexity class defined by choice machines can be named using the same format:
we only have to add symbols for the new modes and resources. The new mode symbols (see the last column of
Figure 7.3) are

Pr, A, Ip, PrA, St, StA

denoting (respectively) the probabilistic, alternating, interactive proof, probabilistic-alternating, stochastic, stochastic-
alternating modes. We have one new resource, with symbols11

ALTERNATION or ALT .

Example 5
(i) Thus PrTIME (nO(1)) denotes the class of languages accepted in polynomial time by probabilistic machines.
This class is usually denoted PP .
(ii) The class IpTIME (nO(1)) contains the class usually denoted IP in the literature. If we introduce (see next
chapter) the notion of bounded-error decision, indicated by the subscript ‘b’, then we have

IP = IpTIME b(n
O(1)).

(iii) If F, F ′ are families of complexity functions, PrA-TIME-SPACE (F, F ′) denotes the class of languages that
can be accepted by PAMs in simultaneous time-space (t, s) for some t ∈ F, s ∈ F ′.
(iv) We will write A-TIME -ALT(nO(1), O(1)) for the class of languages accepted by alternating machines in poly-
nomial time in some arbitrary but constant number of alternations. This class is denoted PH and contains precisely
the languages in the polynomial-time hierarchy (chapter 9).

Example 6 Note that {⊗}-machines (respectively, {⊕}-machines) are equivalent to {∧}-machines ({∨}-machines).
A more interesting observation is that the probabilistic mode is at least as powerful as nondeterministic mode:

N-TIME-SPACE-REVERSAL(t, s, r) ⊆ Pr-TIME-SPACE-REVERSAL(t + 1, s, r)

for any complexity functions t, s, r. To see this, let N be any nondeterministic machine that accepts in time-space
(t, s). Let M be the following probabilistic machine: on input w, first toss a coin. If tail, answer YES; otherwise
simulate N and answer YES iff N answers YES. The jargon ‘toss a coin and if tail then do X, else do Y’ formally
means that the machine enters a TOSS-state from which there are two next configurations: in one configuration
it does X and in the other choice it does Y. The reader may verify that M accepts L(N) in time-space-reversal
(t + 1, s, r).

7.4 Basic Results

In the last section, the least fixed point tree valuation ValT for a computation tree T is obtained by repeated
application of the operator τT to the bottom valuation Val⊥. We now obtain ValT in an alternative, top-down
way.

For each integer m ≥ 0, let Tm denote the prefix of T obtained by pruning away all nodes at level m + 1. Thus
T0 consists of just the root of T . By monotonicity,

ValTm v ValTm+1 .

Lemma 10
(i) For any finite computation tree T , the fixed point of τT is unique (and, a fortiori, equal to the least fixed point
ValT ). Moreover, this fixed point is easily computed ‘bottom-up’ (e.g., by a postorder traversal of T ).
(ii) For any computation tree T (finite or not), the valuation

V ∗
T := lim{ValTm : m ≥ 0}

is a fixed point of τT .
(iii) V ∗

T is equal to the least fixed point, ValT .
(iv) A computation tree T is accepting/rejecting if and only if it has a finite prefix that is accepting/rejecting.

11Since “alternation” is the name of a mode as well as of a resource, awkward notations such as A-ALT(f(n)) arise.
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Proof. (i) This is seen by a bottom-up examination of the fixed point values at each node.
(ii) If u is a leaf then clearly τT (V ∗

T )(u) = V ∗
T (u). Otherwise, let u ` (u1, . . . , un).

τT (V ∗
T )(u) = γu(V ∗

T (u1), . . . , V ∗
T (un))

= γu( lim
m≥0

{ValTm(u1)}, . . . , lim
m≥0

{ValTm(un)})
= lim

m≥0
{γu(ValTm(u1), . . . ,ValTm(un))}

= lim
m≥0

{ValTm(u)}
= V ∗

T (u)

This proves that V ∗
T is a fixed point of τT .

(iii) Since ValT is the least fixed point, it suffices to show that V ∗
T v ValT . This easily follows from the fact that

VTm v ValT .
(iv) If a prefix of T is accepting/rejecting then by monotonicity, T is accepting/rejecting. Conversely, suppose
T is accepting/rejecting. Then the lower bound of ValT (u0) is greater/less than 1

2 , where u0 is the root of T .
By the characterization of ValT in part (iii), we know that the lower/upper bound of ValTm(u0) is monotonically
non-decreasing/non-increasing and is greater/less than 1

2 in the limit as m goes to infinity. Then there must be a
first value of m when this lower/upper bound is greater/less than 1

2 . This m gives us the desired finite prefix Tm

of T . Q.E.D.

This lemma has a two-fold significance: First, part (iv) proves the compactness theorem in the last section.
Second, part (iii) shows us an constructive way to compute ValT , by approximating it from below by ValTm with
increasing m. This method is constructive (in contrast to the τm

T (V⊥) approximation) because Tm is finite for each
m, and the proof of part (i) tells us how to compute ValTm .

The following lemma is useful for stochastic-alternating computations:

Lemma 11 Let T be a computation tree of a choice machine M on w, and i ≥ 0.
(i) If M is a probabilistic-alternating machine then τ i+1

T (V⊥)(u) = [x, y] implies 2ix and 2iy are integers.
(ii) If M is a stochastic-alternating machine then 22i

x and 22i

y are integers.

We leave the proof as an exercise.
We now have the machinery to show that the language accepted by a B-choice machine M is recursively

enumerable provided each function in B is computable. To be precise, assume a suitable subset X of [0, 1] consisting
of all the ‘representable’ numbers, and call an interval representable if its endpoints are representable. We assume
0, 1 ∈ X . We require X to be dense in [0, 1] (for example, X ⊆ [0, 1] is the set of rational numbers or X is the
set of “binary rationals” which are rationals with finite binary expansion). We say f ∈ B is computable (relative
to the representation of X) if it returns a representable value when given representable arguments; moreover this
value is computable by some recursive transducer.

Theorem 12 Let B be a basis set each of whose functions are computable.
a) The class of languages accepted by B-machines is precisely the class RE of recursively enumerable languages.
b) The class of languages accepted by decisive B-machines is precisely the class REC.

Proof. a) Languages in RE are accepted by B-choice machines since B-choice machines are generalizations of
ordinary Turing machines. Conversely, let M be a B-choice machine and w an input word. To show that L(M) is
in RE , it is sufficient to give a deterministic procedure for checking if w ∈ L(M), where the procedure is required
to halt only if w is in L(M). The procedure computes, for successive values of m ≥ 0, the value ValTm(u0) where
Tm is the truncation of TM (w) below level m and u0 the root. If Tm is accepting for any m, the procedure answers
YES. If Tm is non-accepting for all m, the procedure loops. Lemma 10 not only justifies this procedure, but it also
shows how to carry it out: the values ValTm(u) of each node u ∈ Tm is computed in a bottom-up fashion. The
computability of the basis functions B ensures this is possible.

b) We leave this as an exercise. Q.E.D.

One can view the theorem as yet another confirmation of Church’s thesis. Our next result shows that negation ¬
can be avoided in stochastic-alternating machines at the cost of an increase in the number of states. The following
generalizes a result for alternation machines in [3].

Theorem 13 For any stochastic-alternating acceptor M, there is a stochastic-
alternating acceptor N such that N has no NOT-states, L(M) = L(N), and for all w and t, s, r, a ≥ 0: M ac-
cepts w in (time, space, reversal, alternation) (t, s, r, a) iff N accepts w in (time, space, reversal, alternation)
(t, s, r, a).
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Proof. The idea is to use de Morgan’s law to move negation to the leaves of the computation tree. Let M be any
SAM. We construct a SAM N satisfying the requirements of the theorem. For each state q of M, there are two
states q+ and q− for N. For any configuration C of M, let C+ (resp., C−) denote the corresponding configuration
of N where q+ (resp., q−) is substituted for q. In N, we regard q+

0 , q+
Y and q+

N (respectively) as the initial, YES and
NO states. However, we identify q−Y , q−N (respectively) with the NO, YES states (note the role reversal). Of course,
the technical restriction does not permit two YES- or two NO-states, so we will identify them (q+

Y = q−N , q+
N = q−Y ).

The functions γ(q+), γ(q−) assigned to the states in N are defined from γ(q) in M as follows:

γ(q+) =

{
γ(q) if γ(q) 6= ¬
ι if γ(q) = ¬

γ(q−) =



ι if γ(q) = ¬
∧ if γ(q) = ∨
∨ if γ(q) = ∧f if γ(q) = f
⊕ if γ(q) = ⊗
⊗ if γ(q) = ⊕

Hence N has no NOT-states. We now state the requirements on transitions of N (this easily translates into an
explicit description of the transition table of N). Suppose that C1`C2. If C1 is not a NOT-configuration then

C+
1 ` C+

2 and C−
1 ` C−

2 .

If C1 is a NOT-configuration then
C+

1 ` C−
2 and C−

1 ` C+
2 .

Our description of N is complete: there are no transitions besides those listed above.
Let T be an accepting computation tree of N for an input word w; it is easy to see that there is a corresponding

computation tree T̂ for N with exactly the same time, space, reversal and alternation complexity. In fact there is
a bijection between the nodes of T and T̂ such a node labeled C in T corresponds to one labeled C+ or C− in T̂ .
The fact that T and T̂ have identical alternating complexity comes from the carefully-crafted definition of N .

Our theorem is proved if we show that T̂ is accepting. Let Tm be the truncation of the tree T at levels below
m ≥ 0; T̂m is similarly defined with respect to T̂ . For h ≥ 0, let V h

m denote the valuations on Tm given by h-fold
applications of the operator τTm to ⊥:

V h
m = τh

Tm
(V⊥)

and similarly define V̂ h
m = τh

T̂m

(V⊥). We now claim that for all m, h and C ∈ Tm,

V h
m(C) =

{
V̂ h

m(C+) if C+ ∈ T̂

¬V̂ h
m(C−) if C− ∈ T̂

Here, we have abused notation by identifying the configuration C with the node of Tm that it labels. But this
should be harmless except for making the proof more transparent. If h = 0 then our claim is true

⊥ = V h
m(C) = V̂ h

m(C+) = ¬V̂ h
m(C−)

since ¬⊥ = ⊥. So assume h > 0. If C is a leaf of T , it is also easy to verify our claim. Hence assume C is not a
leaf. Suppose C− ` (C−

1 , C−
2 ) occurs in T̂ . Then

V h
m(C) = γ(C)(V h−1

m (C1), V h−1
m (C2))

= γ(C)(¬V̂ h−1
m (C−

1 ),¬V̂ h−1
m (C−

2 )) (by induction)

= ¬γ(C−)(V̂ h−1
m (C−

1 ), V̂ h−1
m (C−

2 )) (de Morgan’s law for γ(C))

= ¬V̂ h
m(C−).

Similarly, we can show V h
m(C) = V̂ h

m(C+) if C+ ` (C+
1 , C+

2 ) occurs in T̂ . We omit the demonstration in case C is
a NOT-configuration. Finally, noting that V m+1

m = ValTm and V̂ m+1
m = Val

T̂m
, we conclude that ValTm = Val

T̂m
.

It follows T̂ is accepting. Q.E.D.
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Consequence of eliminating negation. This proof also shows that negation can be eliminated in alternating
machines and in PAMs. With respect to SAMs without negation, the use of intervals in valuations can be replaced
by ordinary numbers in [0, 1] provided we restrict attention to acceptance complexity. A valuation is now a mapping
from ∆ ⊆ ∆(M) into [0, 1]. Likewise, a tree valuation assigns a real value in [0, 1] to each node in a complete
computation tree. We now let V⊥ denote the valuation that assigns the value 0 to each configuration or node, as
the case may be. The operator τ∆ or τT on valuations is defined as before. Their least fixed point is denoted Val∆
or ValT as before. The connection between the old valuation V and the new valuation V ′ is simply that V ′(C)
or V ′(u) (for any configuration C or node u) is equal to the lower bound of the interval V (C) or V (u). When we
discuss running complexity, we need to consider the upper bounds of intervals in order to reject an input; so we
are essentially back to the entire interval.

Convention for this chapter. In this chapter, we only consider alternating machines, PAMs and SAMs with
no NOT-states. We are mainly interested in acceptance complexity. In this case, we may restrict valuations take
values in [0, 1] instead of in INT (we call these real values probabilities). With this convention, the acceptance rule
becomes:

M accepts a word w iff the probability ValM (w) is greater than 1
2 .

It is sometimes convenient to construct SAMs with NOT-states, knowing that they can be removed by an
application of the preceding theorem.

Suppose we generalize SAMs by allowing the k-ary versions of the alternating-stochastic functions:

Bk :={max
k

, min
k

, f
k
,⊗k,⊕k},

for each k ≥ 2. For example, f
3
(x, y, z) = (x + y + z)/3,

⊕3(x, y, z) = 1 − (1 − x)(1 − y)(1 − z).

Consider generalized SAMs whose basis set is ∪k≥2Bk. Note that even though the basis set is infinite, each
generalized SAM uses only a finite subset of these functions. It is easily seen that with this generalization for the
alternating choices (maxk, mink and ⊗k), the time complexity is reduced by at most a constant factor. It is a little
harder (Exercise) to show the same for the stochastic choices ( f

k,⊕k,⊗k).
A useful technical result is tape reduction for alternating machines. The following is from Paul, Praus and

Reischuk [18].

Theorem 14 For any k-tape alternating machine M accepting in time-alternation (t(n), a(n)), there is a simple
alternating machine N accepting the same language and time-alternation (O(t(n)), a(n)+O(1)). Here N is ‘simple’
as in ‘simple Turing machines’, with only one work-tape and no input tape.

This leads, in the usual fashion, to a hierarchy theorem for alternating time:

Theorem 15 Let t(n) be constructible and t′(n) = o(t(n)). Then

ATIME (t) − ATIME (t′) 6= ∅.
We leave both proofs as exercises.

Theorem 16 (Space compression) Let B be any basis set. Then the B-choice machines have the space com-
pression property. More precisely, if M is a B-choice machine accepting in space s(n) then there is another N
which accepts the same language in space s(n)/2. Furthermore, N has only one work-tape.

Proof. We only sketch the proof, emphasizing those aspects that are not present in the proof of original space
compression theorem in chapter 2. As before, we compress 2 symbols from each of the k work-tapes of M into one
composite symbol (with k tracks) of N . We show how N simulates one step of M : suppose M is in some configuration
C and C ` (C1, . . . , Cm). Assume that the tape head of N is positioned at the leftmost non-blank cell of its tape.
By deterministically making a rightward sweep across the non-blank part of its work-tape, N can remember in its
finite state control the two composite symbols adjacent to the currently scanned cell in each track: the cells of M
corresponding to these remembered symbols constitute the current neighborhood. In the original proof, N makes
a leftward sweep back to its starting position, updating the contents of the current neighborhood. The new twist
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is that there are now m ways to do the updating. N can use choice to ensure that each of these possibilities are
covered. More precisely, before making the return sweep, N enters a state q such that γ(q) = γ(C) and then N
branches into m different states, each corresponding to a distinct way to update the current neighborhood. Then
N can make a deterministic return sweep on each of the m branches. By making some adjustments in the finite
state of N , we may ensure that N uses space s(n)/2. Further, N is also a B-machine by construction. Q.E.D.

For any family of functions B over INT, let B∗ denote the closure of B (under function composition): B∗ is
the smallest class of functions containing B and closed under function composition.12 For example, the function
h(x, y, z) = x f(y fz) = x/2 + y/4 + z/4 is in the closure of the basis { f}. The closure of a basis set is also a
basis set (in fact, an infinite set).

Theorem 17 (Linear Speedup) Let B be an admissible family which is closed under function composition, B =
B∗. Then the B-choice machines have the linear speedup property. More precisely, if M is a B-choice machine
accepting in time t(n) > n then there is another N which accepts the same language in time n + t(n)/2.

Proof. The proof is similar to that for ordinary Turing machines in chapter 2, so we only emphasize the new
aspects. The new machine N has k + 1 work-tapes if M has k. Each tape cell of N encodes up to d > 1 (for some
d to be determined) of the original symbols. N spends the first n steps making a compressed copy of the input.
Thereafter, N uses 8 steps to simulates d steps of M . In general, suppose that M is in some configuration C and
d moves after C, there are m successor configurations C1, . . . , Cm (clearly m is bounded by a function of M and d
only). Suppose that the complete computation tree in question is T . The value ValT (C) is given by

f(ValT (C1), . . . ,ValT (Cm))

where f ∈ B since B is closed under function composition. We show how N can determine this f : first N takes
4 steps to determine the contents of the ‘current neighborhood’ (defined as in the original proof). From its finite
state constrol, N now knows f and each Ci (i = 1, . . . , m). So at the end of the fourth step, N could enters a state
q where γ(q) = f and such that q has m successors, corresponding to the Ci’s. In 4 more steps, N deterministically
updates its current neighborhood according to each Ci. It is clear that by choosing d = 16, N accepts in time
n + t(n)/2. One minor difference from the original proof: previously the updated tapes represent the configuration
at the first time some tape head leaves the current neighborhood, representing at least d steps of M . Now we
simply simulate exactly d steps and so it is possible that a tape head remain in the current neighborhood after
updating. Q.E.D.

As corollary, if we generalize alternating machines by replacing the usual basis set B = {∧,∨,¬} by its closure
B∗, then the generalized alternating time classes enjoy the time speedup property. A similar remark holds for the
other modes.

7.5 Alternating Time versus Deterministic Space

We begin the study of alternating machines. This section points out strong similarities between alternating time
and deterministic space. This motivates a variation of choice machines called the addressable-input model.

Example: Let PH denote the class of languages accepted by polynomial time alternating machines that makes a
constant number of alternations. Consider the following problem MIN-FORMULA of recognizing if a given Boolean
formula F is minimal. That is, for all F ′, if |F ′| < |F | then F ′ 6≡ F . It is not obvious that this problem is in
NP ∪ co-NP . But we can easily show that MIN-FORMULA∈ PH : on input F (x1, . . . , xn), we universally guess
another formula F ′(x1, . . . , xn) such that |F ′| < |F | and then existentially guess an assignment ai 7→ xi and accepts
if F ′(a1, . . . , an) 6= F (a1, . . . , an).

We first prove the following result of Chandra, Kozen and Stockmeyer:

Theorem 18 For all t, ATIME (t) ⊆ DSPACE (t).

Proof. Let M be an alternating machine accepting in time t. We describe a deterministic N that simulates M in
space t. Let w be the input and N computes in successive stages. In the mth stage (m = 1, 2, 3, . . .), N computes
ValTm where Tm is the truncation of the complete computation tree TM (w) at levels below m. For brevity, write
Valm for ValTm . If Tm is accepting then N accepts, otherwise it proceeds to the next stage. So if w is not in L(M)
then N will not halt.

12More precisely, if f ∈ B∗ is a function of arity k and gi (i = 1, . . . , k) are functions of arity mi in B∗ then f(g1(x̄1), . . . , gk(x̄2)) is

a function in B∗ of arity p ≤
∑k

i=1
mi where x̄i is a sequence of mi variables and p is the number of distinct variables in x̄1x̄2 · · · x̄k.
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To complete the proof, we show that the mth stage can be carried out using O(m) space. We describe a
procedure to compute the values Valm(C) of the nodes C in Tm in a post-order manner. The structure of this
search is standard. We inductively assume that the tapes of N contain three pieces of information when we visit a
configuration C:

(a) The configuration C. This requires O(m) space. In particular, the input head position can be recorded in
O(log m) space (rather than O(log |w|) space).

(b) A representation of the path π(C) from the root of Tm to C. If the path has length k, we store a sequence
of k tuples from the transition table of M where each tuple represents a transition on the path π(C). The
space for storing the k tuples is O(m) since k ≤ m. These tuples allow us to “backup” from C to any of its
predecessors C′ on the path (this simply means we reconstruct C′ from C).

(c) All previously computed values Valm(C′) where C′ is the child of some node in the path π(C). The space is
O(m), using the fact that Valm(C′) is 0 or 1.

We maintain this information at each “step”. A step (at current configuration C) either involves descending to
a child of C or backing up from C to its parent. We descending to a child of C provided C is not a leaf and at least
one child of C has not yet been visited. Maintaining (a)-(c) is easy in this case. So suppose we want to backup
from C to its parent C′. We claim that Valm(C) can be determined at this moment. This is true if C is a leaf of
Tm. Otherwise, the reason we are backing up to C′ is because we had visited both children C1, C2 of C. But this
meant we had just backed up from (say) C2 to C, and inductively by our claim, we have determined Valm(C2).
From (c), we also know Valm(C1). Thus we can determine Valm(C), as claimed. Eventually we determine the
value of Valm at the root. Q.E.D.

Discussion. (A) This theorem shows that deterministic space is at least as powerful as alternating time. This
suggests new results as follows: take a known simulation by deterministic space and ask if it can be improved to
an alternating time simulation. This methodology has proven fruitful and has resulted in a deeper understanding
of the space resource. Thus, in section 8, a known inclusion DTIME (t) ⊆ DSPACE (t/ log t) was sharped to
DTIME (t) ⊆ ATIME (t/ log t). This strengthening apparently lead to a simplification (!) of the original proof.
This paradox is explained by the fact that the control mechanism in alternating computation is “in-built”; an
alternating simulation (unlike the original space simulation) need not explicitly describe this mechanism.

(B) In fact there is evidence to suggest that alternating time and deterministic space are very similar. For
instance, we prove (§7.7) a generalization of Savitch’s result, which yields the corollary

NSPACE (s) ⊆ ATIME (s2).

This motivates another class of new results: given a known result about deterministic space, try to prove the
analogue for alternating time, or vice-versa. For instance, the last section shows a tape-reduction and a hierarchy
theorem for alternating-time; the motivation for these results is that we have similar results for deterministic space.
We now give another illustration. In chapter 2, we show that DSPACE r(s) is closed under complementation for
all s finite (i.e., s(x) < ∞ whenever defined). We ask for a corresponding result for ATIME r(t). (Note that the
subscript ‘r’ indicates running complexity.) As it turns out, this result13 is rather easy for alternating time:

Theorem 19 For all complexity function t(n),

ATIME r(t) = co-ATIME r(t).

Similarly, the following time classes are closed under complementation

PrTIME r(t),StTIME r(t),PrA-TIME r(t),StA-TIME r(t).

Proof. Recall the construction in theorem 13 of a machine N without negation from another machine M that may
have negation. Now let M be an alternating machine. Suppose that we make q−0 (instead of q+

0 ) the start state of
N but q+

Y = q−N remains the YES state. On re-examination of the proof of theorem 13, we see that this N accepts
co-L(M). The proof for the other time classes are similar. Q.E.D.

(C) Continuing our discussion: by now it should be realized that the fundamental technique for space simulation
is to ‘reuse space’. This usually amounts to cycling through an exponential number of possibilities using the same
space. In alternating time, the corresponding technique is to make exponentially many universal or existential

13Paul and Reischuk show that if t is time-constructible then ATIME(t) = co-ATIME(t).
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choices. While a deterministic space search proceeds from what is known to what is unknown, alternating time
search proceeds in reverse direction: it guesses the unknown and tries to reduce it to the known. This remark may
be clearer by the end of this chapter.

(D) We should caution that the research programs (A) and (B) have limitations: although the deterministic
space and alternating time are similar, it is unlikely that they are identical. Another fundamental difficulty is that
whereas sublinear deterministic space classes are important, it is easy to see that alternating machines do not allow
meaningful sublinear time computations. This prompted Chandra, Kozen and Stockmeyer to suggest14 a variation
of alternating machines which we now extend to choice machines:

Definition 11 (Addressable-input Machine Model) An addressable-input choice machine M is one that is equipped
with an extra address tape and two distinguished states called the READ and ERROR states. The address tape
has a binary alphabet whose content is interpreted as an integer. Whenever M enters the READ state, the input
head is instantaneously placed at the (absolute) position indicated by the address tape. If this position lies outside
the input word, the ERROR state will be entered and no input head movement occurs. In addition to this special
way of moving the input head, our machine machine can still move and use the input head in the standard fashion.

We assume the address tape is one-way (and hence is write-only). Hence for complexity purposes, space on the
address tape is not counted. We also assume that after exiting from the READ state, the contents of the address
tape is erased, in an instant.

The addressable-input model is defined so that such machines are at least as powerful as ordinary choice
machines. However, it is not excessively more powerful; for instance the preceding theorem theorem 18 holds even
with this model of alternation Exercise:. This addressable-input model now admits interesting alternating time
classes with complexity as small as log n (not log log n, unfortunately). We will be explicit whenever we use this
version of choice machines instead of the ordinary ones.

Exercise

Exercise 7.5.1: (i) Consider the language comprising (D, k) where D is the distance matrix as in the travelling
salesman problem (TSP) in Chapter 3, and k is the length of the shortest tour. Show that this language is
in PH .
(ii) Construct a “natural” language that apparently needs 4 alternations.

End Exercise

7.6 Simulations by Alternating Time

We present efficient simulations of other complexity resources by alternating time. We begin with an alternating
time simulation of deterministic space and reversals.

Theorem 20 Let t, r be complexity functions such that t(n) ≥ 1 + n. Under the addressable-input model,

D-TIME-REVERSAL(t, r) ⊆ ATIME (O(r log2 t)).

If r(n) log2 t(n) ≥ n, then this result holds under the ordinary model.

Proof. Given a deterministic M accepting in time-reversal (t, r), we show an alternating machine N accepting the
same language L(M) in time O(r log2 t).

Recall the concept of a (full) trace15 in the proof of chapter 2. On any input w, N existentially chooses some
integer r ≥ 1 and writes r full traces

τ1, τ2, . . . , τr,

on tape 1. These are intended to be the traces at the beginning of each of the r phases. On tape 2, N existentially
chooses the time ti (in binary) of each τi,

t1 < t2 < · · · < tr.

14In this suggestion, they are in good company: historically, the read-only input tape of Turing machines was invented for a similar
purpose.

15Briefly, the trace of a configuration in a computation path records its state and for each tape, the scanned symbol, the absolute
head position and the head tendencies.
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We may assume τr is the trace when the machine accepts. Note that τ1 (which we may assume correct) is simply
the trace of the initial configuration and so t1 = 0. Relative to this sequence, we say that an integer t ≥ 0 belongs
to phase j if tj ≤ t < tj+1.

Then N proceeds to verify τr. To do this, it writes on tape 3 the pairs (τr−1, tr−1) and (τr, tr) and invokes a
procedure TRACE. N accepts if and only if this invocation is successful (i.e., the procedure accepts). In general,
the arguments to TRACE are placed on tape 3, and they have the form

(σ, s0), (τ, t0)

where s0 < t0 are binary integers lying in the range

ti ≤ s0 < t0 ≤ ti+1

for some i = 1, . . . , r − 1, and σ, τ are traces such that the head tendencies in σ and in τi agree, and similarly
the head tendencies in τ and in τi agree (with the possible exception of t0 = ti+1 and τ = τi+1). Intuitively,
TRACE(σ, s0, τ, t0) accepts if σ is the trace at time s0, τ is the trace at time t0, and there is a (trace of a) path
from σ to τ . TRACE does one of two things:

(i) Suppose s0 + 1 < t0. Let t′ = b(s0 + t0)/2c. Now TRACE existentially chooses a trace τ ′ where the head
tendencies in τ ′ agree with those of σ. Then it universally chooses to recursively call TRACE(σ, s0, τ

′, t′) and
TRACE(τ ′, t′, τ, t0).

(ii) Suppose s0 + 1 = t0. TRACE verifies τ can be derived from σ in one step of M , and any head motion is
consistent with the head tendencies in σ. Of course, we allow the head tendencies to be different but only
when σ is the last trace in a phase (it is easy to determine if this is the case). Any head motion in the σ to τ
transition causes the corresponding tape cell in τ to be ‘marked’. Note that the marked cells were written in
some previous phase (unless they are blanks), and our goal is to verify their contents. Suppose that the tape
symbols and head positions in the k + 1 tapes of τ are given by

b0, . . . , bk, n0, . . . , nk.

Then TRACE universally chooses to call another procedure SYMBOL with arguments (i, bi, ni, t0) for each
cell ni in tape i that is marked. Intuitively, SYMBOL(i, bi, ni, t0) verifies that just before time t0, the tape
symbol in cell ni of tape i is bi.

We now implement SYMBOL(i′, b′, n′, t0). If i′ = 0 then we want to check that the input symbol at position n′

is b′. This can be done in O(log n) steps, using the input addressing ability of our alternating machines (note that
r log2 t > log n). Otherwise, suppose that t0 belongs to phase j0. We then existentially choose some j,

j = 0, . . . , j0 − 1,

some t′ and a trace σ′. Intuitively, this means that cell n′ in tape i′ was last visited by σ′ which occurs at time t′

in phase j. We want the following to hold:
(a) tj ≤ t′ < tj+1 ≤ t0.
(b) The head tendencies σ′ and in τj agree.
(c) The head i′ is in position n′ scanning symbol b′ in σ′.
(d) On each tape, the head position in σ′ lies in the range of possible cell positions for that phase j.
(e) On tape i′, cell n′ is not visited in any of phases j + 1, j + 2, . . . , j0.
Conditions (a)-(e) can be directly verified using the information on tapes 1 and 2. Armed with σ′ and t′, we then
universally choose one of two actions: either call TRACE(τj , tj , σ

′, t′) or TRACE(σ′, t′, τj+1, tj+1). If tj = t′ then
the first call is omitted.

Correctness. Let us show that TRACE and SYMBOL are correct. Suppose input w is accepted by M . Then
it is not hard to see that N accepts. To show the converse, suppose N accepts w relative to some choice of traces
τ1, . . . , τr in tape 1 and times t1, . . . , tr on tape 2. Suppose the call TRACE(σ, s0, τ, t0) is successful and t0 belongs
to phase j. Then this call generates a trace-path

(σ0, . . . , σm) (4)

from σ0 = σ to σm = τ (where m = t0 − s0) with the following properties:
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1. σi−1 derives σi for i = 1, . . . , m according to the rules of M .

2. Each pair (σi−1, σi) in turn generates at most k + 1 calls to SYMBOL, one call for each “marked” cell in σi.
Each of these calls to SYMBOL leads to acceptance. For this reason we call (4) a ‘successful’ trace-path for
this call to TRACE.

3. Some of these calls to SYMBOL in turn calls TRACE with arguments belonging some phase ` (1 ≤ ` < j).
We call any such phase ` a supporting phase of TRACE(σ, s0, τ, t0).

Notice that if phase ` is a supporting phase for some accepting call to TRACE then there must be two successful
calls of the form

TRACE(τ`, t`, σ
′, t′) and TRACE(σ′, t′, τ`+1, t`+1) (5)

for some σ′, t′. We claim:

(a) If TRACE(σ, s0, τ, t0) accepts and phase ` is a supporting phase of TRACE(σ, s0, τ, t0), then the
traces τ1, . . . , τ`+1 on tape 1 and times t1, . . . , t`+1 on tape 2 are correct (i.e., τi is the trace at the
beginning of the ith phase at time ti for i = 1, . . . , ` + 1.)
(b) If, in addition, we have that σ = τj and s0 = tj for some j = 1, . . . , r, then τ is indeed the trace of
the t0th configuration in the computation path of M on input w. (Note that (b) implies the correctness
of SYMBOL.)

We use induction on `. Case ` = 1: τ1 is always correct and t1 = 0. By (5), we see directly that there must be
two successful calls of the form TRACE(τ1, t1, σ

′, t′) and TRACE(σ′, t′, τ2, t2). One immediately checks that this
implies τ2, t2 are correct. This proves (a). Part (b) is immediate.

Case ` > 1: for part (a), again we know that there are two successful calls of the form (5). But notice that phase
` − 1 is a supporting phase for the first of these two calls: this is because in τ`, some tape head made a reversal
that this means that this head scans some symbol last visited in phase ` − 1. Hence by induction hypothesis, the
traces τ1, . . . , τ` and times t1, . . . , t` are correct. Furthermore, as in (4), we have a successful trace-path from τ` to
τ`+1. Each trace (except for τ`) in the trace-path in turn generates a successful call to SYMBOL with arguments
belonging to some phase less than `, and by induction (b), these are correct. Thus τ`+1 and t`+1 are correct. For
part (b), we simply note that j − 1 is a support phase for such a call to TRACE by the preceding arguments. So
by part (a), τj and tj are correct. Then we see that there is a trace-path starting from τj as in (4) that is correct.
Part (b) simply asserts that the last trace in (4) is correct. This completes our correctness proof.

Complexity. The guessing of the traces τi and times ti on tapes 1 and 2 takes alternating time O(r log t). If
the arguments of TRACE belongs to phase j, then TRACE may recursively call itself with arguments belonging
to phase j for O(log t) times along on a computation path of N. Then TRACE calls SYMBOL which in turn calls
TRACE but with arguments belonging to phase < j. Now each call to TRACE takes O(log t) alternating steps just
to set up its arguments (just to write down the head positions). Thus it takes O(log2 t) alternating steps between
successive calls to SYMBOL. In the complete computation tree, we make at most r calls to SYMBOL along any
path. This gives an alternating time bound of O(r log2 t). Q.E.D.

Corollary 21 DREVERSAL(r) ⊆ ATIME (r3)

We next show that alternating time is at least as powerful as probabilistic time. The proof is based on the
following idea: suppose a probabilistic machine accepts an input x in m ≥ 0 steps and T is the computation tree.
If T is finite and all its leaves happen to lie a fixed level m ≥ 0 (m = 0 is the level of the root) then it is easily seen
that T is accepting iff the number of accepting leaves is more than half of the total (i.e. more than 2m−1 out of
2m). In general, T is neither finite nor will all the leaves lie in one level. But we see that if Tm is the truncation of
T to level m, then Tm if accepting iff the sum of the “weights” of accepting leaves in Tm is more than 2m−1. Here
we define a leaf at level i (0 ≤ i ≤ m) to have a weight of 2m−i. It is now easy to simulate a probabilistic machine
M that uses time t(n) by a deterministic machine N using space t(n), by a post-order traversal of the tree Tt(n).
But we now show that instead of deterministic space t(n), alternating time t(n) suffices.

Theorem 22 For all complexity functions t, PrTIME (t) ⊆ ATIME (t).

Proof. Let M be a probabilistic machine that accepts in time t. We describe an alternating machine N that accepts
in time t. Let x be an input and Tm be the computation tree of M on x restricted to configurations at level at
most m. For any configuration C in Tm, define

VALm(C) = 2m−level(C)ValTm(C)
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where ValTm is, as usual, the least fixed point valuation of Tm. We abuse notation with the usual identification of
the nodes of Tm with the configurations labeling them. Thus if C is the root then VALm(C) = 2mVal∆(C). If C
is not a leaf, let CL and CR denote the two children of C. Observe that

VALm(C) = VALm(CL) + VALm(CR).

Regarding VALm(C) as a binary string of length m + 1, we define for i = 0, . . . , m,

BITm(C, i) := ith bit of VALm(C)
CARm(C, i) := ith carry bit of the summation VALm(CL) + VALm(CR)

where we assume that i = 0 corresponds to the lowest order bit. It is easy to see that the following pair of mutually
recursive formulas hold:

BITm(C, i) = BITm(CL, i)⊕BITm(CR, i)⊕CARm(C, i − 1)

CARm(C, i) = bBITm(CL, i)) + BITm(CR, i) + CARm(C, i − 1)
2

c

Here, ⊕ denotes16 the exclusive-or Boolean operation: b⊕b′ = 1 iff b 6= b′. If i = 0, CARm(C, i − 1) is taken to be
zero.

If C is a leaf, we need not define CARm(C, i) but

BITm(C, i) =
{

1 if i = m − level(C) and C answers YES;
0 otherwise.

To simulate M on input x, N first guesses the value m = t(|x|) in unary in tapes 1, 2 and 3. Note that M
accepts iff VALm(x) > 2m−1, iff there exists an i, 0 ≤ i < m − 1, such that

Either BITm(C0(x), m) = 1 (6)
or BITm(C0(x), m − 1) = BITm(C0(x), i) = 1. (7)

N checks for either condition (6) or (7) by an existential choice. In the latter case, N makes a universal branch
to check that BITm(C0(x), m − 1) = 1 and, for some existentially guessed unary integer 0 < i < m − 1,
BITm(C0(x), i) = 1.

It remains to describe the subroutine to verify BITm(C, i) = b for any arguments C, i, b. It is assumed that just
before calling this subroutine the following setup holds. N has the first m cells on tapes 1,2 and 3 marked out. Head
1,2 and 3 are respectively keeping track of the integers i, level(C) and i + level(C), in unary. Moreover, because
of the marked cells, it is possible to detect when these values equals 0 or m. The configuration C is represented by
the contents and head positions of tapes 4 to k + 3 (k is the number of work-tapes of M) and the input tape. This
setup is also assumed when calling the subroutine to verify CARm(C, i) = b.

With this setup, in constant time, N can decide if C is a leaf of Tm (i.e. either C is terminal or level(C) = m)
and whether i = m− level(C). Hence, in case C is a leaf, the subroutine can determine the value of BITm(C, i) in
constant time. If C is not a leaf, say C ` (CL, CR), then N guesses three bits, b1, b2 and c such that

b = b1⊕b2⊕c.

It then universally branches to verify

BITm(CL, i) = b1, BITm(CR, i) = b2, CARm(C, i − 1) = c.

It is important to see that N can set up the arguments for these recursive calls in constant time. A similar
subroutine for CARm can be obtained.

It remains to analyze the time complexity of N. Define the function tm to capture the complexity of BITm and
CARm:

tm(d, i) =


1 if d = m
1 + tm(d + 1, 0) if (d < m) ∧ (i = 0)
1 + max{tm(d + 1, i), tm(d, i − 1)} else.

16Normally, ⊕ denotes exclusive-or. We put a bar over ⊕ to distinguish it from the probabilistic-or operator.
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The last case corresponds to the recursive calls for BITm and CARm when i > 0. An examination of the recursive
equations for BITm and CARm reveals that the times to compute BITm(C, i) and CARm(C, i) are each bounded
by O(tm(d, i)) where d = level(C). On the other hand, it is easily checked that from the recursive equations that
tm satisfy

tm(d, i) = m − d + i + 1 = O(m)

since i and d lie in the range [0..m]. This proves that the time taken by N is O(m) = O(t(|x|)). Q.E.D.

This theorem, together with that in section 5, imply that deterministic space is at least as powerful as proba-
bilistic or alternating time separately:

PrTIME (t) ∪ ATIME (t) ⊆ DSPACE (t)

It is not clear if this can be improved to showing that deterministic space is at least as powerful as probabilistic-
alternating time. If this proves impossible, then the combination of probabilism and alternation is more powerful
than either one separately. This would not be surprising since probabilism and alternation seems to be rather
different computing concepts. Our current best bound on simulating probabilistic-alternating time is given next.

Theorem 23 For all complexity functions t, PrA-TIME (t) ⊆ ATIME (t log t).

Proof. We use the same notations as the proof of the previous theorem. Let M be a PAM that accepts in time t.
Fix any input x and let Tm be the complete computation tree of M on x restricted to levels at most m, and define
VALm, BITm and CARm as before. There is one interesting difference: previously, the values m and i in calls to
the subroutines to verify BITm(C, i) = b and CARm(C, i) = b were encoded in unary. We now store these values
in binary (the reader is asked to see why we no longer use unary).

Consider the verification of BITm(C, i) = b for any inputs C, i, b, using alternating time. If C is a leaf this is
easy. Suppose C is a TOSS-configuration. Then we must guess three bits b1, b2, c and verify that BITm(CL, i) = b1,
BITm(CR, i) = b1 and CARm(C, i − 1) = c. Here we use an idea from the design of logic circuits: in circuits for
adding two binary numbers, the carry-bits can be rapidly generated using what is known as the ‘carry-look-ahead’
computation. In our context, this amounts to the following condition:

CARm(C, i) = 1 ⇐⇒ if there is a j (j = 0, . . . , i) such that BITm(CL, j) =
BITm(CR, j) = 1 and for all k = j + 1, . . . , i, either
BITm(CL, k) = 1 or BITm(CL, k) = 1.

In O(log m) alternating steps, we can easily reduce these conditions to checking BITm(C′, j) = b′ for some j, b′

and C′ a child of C. (We leave this detail as exercise.)
Finally, suppose C is a MIN-configuration (a MAX-configuration is handled similarly). By definition BITm(C, i) =

BITm(CL, i) iff VALm(CL) < VALm(CR), otherwise BITm(C, i) = BITm(CR, i). Now VALm(CL) < VALm(CR)
iff there exists a j (0 ≤ j ≤ m) such that

BITm(CL, h) = BITm(CR, h), (for h = j + 1, j + 2, . . . , m),
BITm(CL, j) = 0,

BITm(CR, j) = 1.

Again, in O(log m) time, we reduce this predicate to checking bits of VALm(C′), C′ a child of C.
To complete the argument, since each call to check a bit of VALm(C) is reduced in O(log m) steps to determining

the bits of VALm(C′) where level(C′) = level(C)+1, there are at most m such calls on any computation path. To
generate a call to C′, we use O(log m) time, so that the length of each path is O(m log m). Q.E.D.

7.7 Further Generalization of Savitch’s Theorem

Savitch’s theorem says that for all s(n) ≥ log n, NSPACE (s) ⊆ DSPACE(s2). Chapter 2 gives a generalization of
Savitch’s theorem. In this section, we further improve this along three directions: (i) by using alternating time,
(ii) by allowing small space bounds s(n), i.e., s(n) < log n, and (iii) by extending the class of simulated machines
from nondeterministic to alternating machines.

Consider what happens when s(n) < log n. Savitch’s proof method gives only the uninteresting result NSPACE (s) ⊆
DSPACE (log2 n). Monien and Sudborough [14] improved this so that for s(n) < log n,

NSPACE (s) ⊆ DSPACE(s(n) log n).



7.7. FURTHER GENERALIZATION OF SAVITCH’S THEOREM 23

Using addressable-input alternating machines, Tompa [21] improved the Monien-Sudborough construction to obtain:

NSPACE (s) ⊆ ATIME (s(n)[s(n) + log n])

for all s(n). Incorporating both ideas into the generalized Savitch’s theorem of chapter 2, we get a new result:

Theorem 24 For all complexity functions t(n) > n,

N-TIME-SPACE (t, s) ⊆ ATIME (s(n) log
n · t(n)
s(n)

)

where the alternating machine here is the addressable-input variety.

Proof. Let M be a nondeterministic machine accepting in time-space (t, s). We describe a addressable-input
alternating machine N to accept L(M). Let x be any input, |x| = n. M begins by existentially guessing t = t(n)
and s = s(n) and marking out s cells on each work tape.

We number the n cells of the input tape containing x as 0, 1, . . . , n− 1 (rather than the conventional 1, . . . , n).
We will divide the cells 0, 1, . . . , n−1 of the input tape into intervals Iw (subscripted by words w ∈ {L, R}∗) defined
as follows:

i ∈ Iw ⇐⇒ the most significant |w| bits in the binary representation
of i corresponds to w

where the correspondence between words in {L, R}∗ and binary strings is given by L ↔ 0 and R ↔ 1. It is also
assumed here that the binary representation of i is expanded to exactly dlog ne bits. Clearly Iw is an interval of
consecutive integers. For example: with n = 6,

Iε = [0..5], IL = [0..3], IR = [4..5], IRR = ∅.
Observe that

Iw = IwL ∪ IwR and |IwL| ≥ |IwR| ≥ 0.

The L-end (resp., R-end) cell of a non-empty interval is the leftmost cell (resp., rightmost) cell in that interval.
A storage configuration is a configuration in which the contents as well as head position of the input tape

are omitted. Let S, S′ be storage configurations of M, d, d′ ∈ {L, R}, w ∈ {L, R}∗. Let conf (S, d, w) denote
the configuration in which the contents and head positions in the work-tapes are specified by S, with input tape
containing the fixed x and the input head scanning the d-end cell of interval Iw. In the course of computation, N
will evaluate the two predicates REACH and CROSS defined next. The predicate

REACH(S, S′, d, d′, w, m)

holds if there is a computation path π of length at most m from conf (S, d, w) to conf (S′, d′, w) where the input
head is restricted to the interval Iw throughout the computation, and the space used is at most s. Recall that s is
the guessed value of the maximum space usage s(|x|). Let L denote R and R denote L. Then the predicate

CROSS(S, S′, d, d′, w, m)

holds if there is a computation path of length at most m from conf (S, d, wd) to conf (S′, d′, wd′) where the input
head is restricted to the interval Iw throughout the computation, and the space used is at most s. Observe that
the intervals Iwd and Iwd′ used in this definition are adjacent and Iwd ∪ Iwd′ ⊆ Iw (if d = d′ then this inclusion is
proper). We assume in this definition IwR is non-empty; this automatically implies IwL is non-empty. For instance:
CROSS(S, S′, L, R, RLR, m) holds means there is a path from conf (S, R, RLRL) to conf (S′, L, RLRR) of length
at most m, as illustrated in the following figure.
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Figure 7.1 The input head positions implied by CROSS(S, S′, L, R, RLR, m)
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We may assume that when M halts, its input head returns to cell 0. The simulation of M amounts to the
evaluation of REACH(S0, Sf , L, L, ε, t) where S0 is the (trivial) initial storage configuration (independent of x) and
Sf is some existentially guessed accepting storage configuration that uses at most s space, λ being the empty string.

We describe the recursive evaluation of REACH(S, S′, d, d′, w, m). It is assumed that the following setup holds
at the time of calling the procedure: S and S′ are represented by the contents and head positions on designated
tapes of N (if M has k work-tapes, N uses 2k tapes for S and S′). The argument w is on the address tape of the
N. The value m is written in binary on another tape. One of the following three cases hold:

(i) |w| = dlog ne: this condition can be checked in constant time (for instance, by keeping a tally of the length
of w) provided that before the simulation begins, the unary representation of dlog ne is guessed and verified
once and for all. In this case |Iw | = 1 and N enters the read state to read the input symbol x[w] indexed by
w. From the definition of REACH, from now on N can ignore its input tape and call the predicate

REACHABLE(conf (S, d, w), conf (S′, d′, w), m)

where REACHABLE is the predicate in the original proof of the generalized Savitch’s theorem (chapter 2,
section 7). Recall that the predicate REACHABLE(C, C′, m) holds if there is a computation path from
configuration C to configuration C′ of at most m steps using at most s space. The original simulation in
chapter 2 uses O(s log m

s ) = O(s log t
s) space, but this is easily modified to give us alternating time O(s log t

s )
Exercise:. Another slight modification is to make REACHABLEreject at once if input head ever moves at
any time during the simulation.

(ii) |IwR| = 0: then call REACH(S, S′, d, d′, wL, m). Note that |IwR| = 0 iff the binary number corresponding to
wR is greater than n − 1. This is easily checked, for instance, by entering the READ state and seeing if we
next enter the ERROR state.

(iii) |IwR| ≥ 1 (so |w| < dlog ne): N existentially guesses whether there is a computation path π from conf (S, d, w)
to conf (S′, d′, w) with the input head restricted to Iwd. If it guesses ‘no’ (and it will not make this guess
unless d = d′) then it next calls

REACH(S, S′, d, d, wd, m)

If it guesses ‘yes’ (it could make this guess even if d = d′) then it chooses existentially two storage configura-
tions S′′, S′′′ in the computation path π and then chooses universally to check one of the following:

REACH(S, S′′, d, d, wd, m),
CROSS(S′′, S′′′, d, d′, w, m),
REACH(S′′′, S′, d′, d′, wd′, m).

N existentially guesses one of the cases (i)-(iii), and then universally checks that its guess is correct as well as
performs the respective actions described under (i)-(iii). This completes the description of REACH.

The subroutine for CROSS(S, S′, d, d′, w, m) has two cases:

(i)’ m ≤ s: in this case, N can check the truth of the predicate in time s (since a nondeterministic machine is
just a special case of alternation).

(ii)’ m > s: N guesses two storage configurations S′′, S′′′ and a value d′′ ∈ {L, R} and universally branches to
check

CROSS(S, S′′, d, d′′, w, m/2),
REACH(S′′, S′′′, d′′, d′′, wd′′, m)and
CROSS(S′′′, S′, d′′, d′, w, m/2).

We should explain this choice of S′′, S′′′, d′′: if there is a computation path from conf (S, d, wd) to conf (S′, d′, wd′)
that makes CROSS(S, S′, d, d′, w, m) true then this path can be broken up into several disjoint portions where
the input head is confined to IwL or to IwR in each portion. Consider the portion π of the path that con-
tains the configuration at time m/2: let π be confined to the interval Iwd′′ for some d′′, and let the storage
configurations at the beginning and end of π be S′′ and S′′′, respectively. With this choice of d′′, S′′, S′′′, it
is clear that the recursion above is correct.
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Note that it is unnecessary to check for m ≤ s in REACH (since REACH does not reduce m in making recursive
calls); likewise it is unnecessary to check for |Iw | = 1 in CROSS (since it is called by REACH only with |Iw| ≥ 2).
Observe that every two successive calls to REACH or CROSS result in either |w| increasing by at least one or m
decreasing to at most m/2. Hence in 2(dlog ne + log(t/s)) = O(log(nt/s)) recursive calls, we reduce the input to
the ‘basis’ cases where either m ≤ s or |Iw| = 1. Each recursive call of REACH or CROSS requires us to guess the
intermediate storage configurations S′′, S′′′ in time O(s). Hence in O(s log(nt/s)]) steps we reach the basis cases.
In these basis cases, the time used is either O(s) time or that to compute REACHABLE(C, C′, m). The latter is
O(s log(t/s)) as noted before. The total time is the sum of the time to reache the basis cases plus the time for basis
cases. This is O(s log(nt/s)]). Q.E.D.

The structure of the preceding proof involves dividing at least one of two quantities in half until the basis case.
An immediate consequence of the above results is this:

Corollary 25
(i) NSPACE (s) ⊆ ATIME (s2).
(ii) PrTIME (nO(1)) ⊆ ATIME (nO(1)) = PrA-TIME(nO(1)) = PSPACE.

Borodin [3] observed that Savitch’s theorem is capable of generalization in another direction. Incorporating
Borodin’s idea to the previous theorem yields the following “super” Savitch’s theorem. Recall the definition of
alternating complexity in section 3.

Theorem 26 Let t(n) > n, s(n) and a(n) be any complexity functions. Then

A-TIME-SPACE-ALTERNATION (t, s, a) ⊆ ATIME (s(n)[a(n) + log
n · t(n)
s(n)

])

where alternating machines are the addressable-input variety.

Proof. Suppose an alternating machine M accepts in time, space and alternating complexity of t(n), s(n) and a(n).
On input x, the machine N begins by guessing the values t0 = t(|x|) and s0 = s(|x|). Let T (x) = Tt0,s0(x) be the
computation tree on x restricted to nodes at level ≤ t0 and using space ≤ s0. There are two procedures involved:
The main procedure evaluates a predicate ACCEPT (C) that (for any configuration C as argument) evaluates to
true if C ∈ T (x) and the least fixed point value ValT (C) of C is equal to 1. The other procedure we need is a
variation of the predicate REACH(S, S′, d, d′, w, m) in the proof of theorem 24. Define the new predicate

REACH′(S, S′, v, v′, w, m)

where S, S′ are storage configurations, v, v′, w ∈ {L, R}∗ and m ≥ 1 such that |wv| = |wv′| = dlog ne. Let
conf (S, w) where |w| = dlog ne denote the configuration whose storage configuration is S and input tape contains
x and the input head is at position indicated by w. The predicate REACH′ evaluates to true provided there is a
computation path π of length ≤ m from conf (S, wv) to conf (S′, wv′) such that all the intermediate configurations
C use space ≤ s and has input head restricted to the interval Iw. We further require that

(a) C and conf (S, wv) have opposite types, i.e., C is a MIN-configuration if and only if conf (S, wv) is a MAX-
configuration. Note that we assume M has no NOT-configurations.

(b) The computation path π we seek must have only configurations of the same type as C with the sole exception
of its last configuration (which is equal to conf (S, wv), naturally).

It is clear that we can compute REACH′ in alternating time O(s log t/s) as in the case of REACH.
The procedure ACCEPT (C) proceeds as follows: suppose C is an MAX-configuration (resp., MIN-configuration).

Then the algorithm existentially (resp., universally) chooses in time O(s) a configuration C′ with opposite type
than C. Let C = conf (S, v) and C′ = conf (S′, v′). Regardless of the type of C, the algorithm existentially chooses
to call the following subroutines:

(1) ACCEPT (C′)

(2) ¬REACH′(S, S′, v, v′, ε, t0) where the values S, S′, v, v′ are related to C, C′ as above. Of course, by ¬REACH′

we mean that the procedure first enters a NOT-state and then calls REACH′. (Here is an occasion where it
is convenient to re-introduce NOT-states.) The reader should easily see that the procedure is correct.
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We now analyze the complexity of the procedure ACCEPT. For any configuration C let TC be the subtree of
configurations reachable from C. Define depth(C) to be the minimum k such that there is prefix T ′ of TC such
that T ′ is accepting and each path in T ′ has at most k alternation. In particular, observe that if x is accepted by
M then depth(C0(x)) is at most a(|x|), with C0(x) the initial configuration. Let W (k) be the (alternating) time
required by the procedure for ACCEPT (C) on input C with depth k. Then we have

W (k) = O(s) + max{s log
t

s
, W (k − 1)}.

To see this, suppose C is an MAX- (resp., MIN-) configuration. Then O(s) is the time to existentially (resp.,
universally) choose the configurations C′ reachable from C; s log t/s is the time to decide the predicate REACH′;
and W (k − 1) is the time to recursively call ACCEPT (C′). It is easy to deduce that W (k) has solution given by:

W (k) = O(s · [k + log t/s]).

The theorem follows immediately. Q.E.D.

This is still not the last word on extensions of Savitch’s theorem! We return to this in the next chapter.

7.8 Alternating Time versus Deterministic Time

The main result of this section is the following theorem:

Theorem 27 For all t, DTIME (t) ⊆ ATIME ( t
log t ).

Tompa and Dymond [6] obtained this result by adapting the result of Hopcroft, Paul and Valiant [12] showing
DTIME (t) ⊆ DSPACE (t/ log t). Adleman and Loui [1] gave an interesting alternative proof of the Hopcroft-Paul-
Valiant result. The Hopcroft, Paul and Valiant achievement showed for the first time that space is a more powerful
resource than time in a general model of computation (namely, multitape Turing machines). For restricted models
of computation, Paterson [17] already established that space is more powerful than time for simple Turing machines.
Theorem 27 is also an improvement of the result of Paul and Reischuk who simulated deterministic time t using
alternating time O(t log log t/ log t). In the following, we shall assume the addressable-input model of alternation
in case t/ log t = o(n) in the theorem, but otherwise, the regular model suffices.

As an interesting corollary, in conjunction with the alternating time hierarchy theorem at the end of section 4,
is that there are languages in DLBA that cannot be accepted in deterministic linear time.

7.8.1 Reduction of Simulation to a Game on Graphs.

First consider the simpler problem of simulating a deterministic Turing machine using as little deterministic space as
possible. A key step is the reduction of this problem to a combinatorial question on graphs. Suppose a deterministic
k-tape machine M accepts an input in t > 0 steps. Our goal is to describe a deterministic machine N that simulates
M using as little space as possible.

Let B = B(t) > 0 be the blocking factor, left unspecified for now. For i = 0, 1, . . . , dt/Be, let

ti := iB

be time samples, and let the cells of each work-tape be grouped into blocks consisting of B consecutive cells. For
each block b, let neighborhood (b) denote the set of 3 blocks consisting of b and the two adjacent blocks on either
side of b. We construct a directed acyclic graph G = (V, E) with node set

V = {0, 1, . . . , dt/Be}
and labels for each node. The label for a node i consists of the following two pieces of information:

(i) positions h0, . . . , hk of the k + 1 tape heads and

(ii) a state q.

We say that this label of node i is correct if at time sample ti, the machine is in state q and the heads are at
positions given by h0, . . . , hk. We may say that block b is visited in time sample tj if the label of node j says that
there is a tape head somewhere in b. Note that this definition is relative to the labeling, regardless of its correctness.
Once the labels are given, we can define an edge set E as follows. The edges in E are those (i, j) satisfying one of
two requirements:
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(a) There is a tape block b visited at time sample tj , another tape block b′ visited time sample ti such that
neighborhood (b)∩neighborhood (b′) is non-empty and, previous to sample time tj , b′ is last visited in time sample
ti.
(b) There is a tape block b visited in time sample tj such that neighborhood (b) contains a block that has never
been visited in time samples before tj , and i = 0.

If (i, j) ∈ E then necessarily i < j, and if the labeling is correct then (i, i + 1) must be in E. Let neighborhood (j)
denote the union of the blocks in neighborhood (b) where b range over all blocks visited in time sample tj . Clearly
neighborhood (j) has exactly 3k blocks. Let b be visited in time sample tj . Then there ≤ 5 blocks b′ such that
neighborhood (b′) ∩ neighborhood (b) is non-empty. Each such b′ contributes an edge of the form (i, j) ∈ E for some
i. This implies that the indegree of each node in G is ≤ 5k. The outdegree of G (with the exception of node 0) is
similarly bounded by 5k.

A description of G together with its labels can be written down using at most

t log t

B

space. This space is less than t if B is larger than log t. We attempt to find such a graph G by testing successively
larger values of t, and for each t, cycling through all ways of assigning labels. It remains to show how to verify a
proposed labelling. The idea is that each node in G can be ‘expanded’ in the following sense: the expansion of a
node i ∈ G consists of the contents of the blocks in neighborhood (i) in time sample ti. Note that the expansion of
i can be encoded using O(B) space. The edges of G define a predecessor-successor relationship: (i, j) is an edge
mean that i is a predecessor of j, and j the successor of i. Next we make an important but elementary observation:

(*) If we already have the expansions of all the predecessors of node i ≥ 1 then we may expand node i simply
by simulating the machine starting from the moment ti−1 = (i − 1)B.

To do this, we first reconstruct the contents of blocks in neighborhood (i − 1) ∪ neighborhood (i), using the
expansions of the predecessors of i. (There could be overlap among the predecessor expansions, but it is easy to
only use the contents of the most recent version of a block.) Now simulate M starting from time sample ti−1 to
time sample ti. At the end of the simulation, we may assume that the expansion of node i is now available, in
addition to the previous expansions. Details can be filled in by the reader. Let us say that a node i is verified if
we confirm that its label (i.e., head positions and state) is correct.

(**) If the predecessors of node i are expanded and verified then we can also expand and verify node i.

This is because we can compare the state and head positions in the expansion of i with the labels of node i.
Now we can give a nondeterministic procedure to verify G: nondeterministically expand nodes, one at a time.

At any moment, the tapes of the simulator contain some number of expanded nodes. Those nodes whose only
predecessor is node 0 can be expanded at any moment; for any other node i, we can only expanded i if all its
predecessors are expanded. At the end of expanding node i, we verify the label of i. We may nondeterministically
contract any previous expansion if we wish; contraction is just the inverse of expansion. Of course we may contract a
node only to re-expand it later. The space used by this procedure is O(B) times the maximum number of expanded
nodes at any moment. So to minimize space usage, we should contract nodes “at suitable moments”. The graph
G is said to be verified if its final node dt/Be is verified in this process; we might as well assume that the label of
dt/Be always contains the accept state.

It is not hard to see that M accepts its input x iff there is a graph G that is verified by this procedure. We can
make this procedure deterministic by cycling through all nondeterministic choices used in the expansion/contraction
above. For a space-efficient method of verifying G, Hopcroft, Paul and Valiant showed a general strategy that
never store more than t

B log t expanded nodes at any moment during the verification process. This means that the
strategy never use more than t

log t space since each expanded node uses O(B) space. This proves that DTIME (t) ⊆
DSPACE (t/ log t). The details of this will not be explicitly described since it is essentially subsumed in the Tompa-
Dymond alternating time implementation of the strategy, shown next.

7.8.2 A Pebble Game.

Now we transcribe the previous expansion and contraction process for verifying G into a combinatorial game on
graphs. We are given a directed acyclic graph G = (V, E) together with a goal node i0 ∈ V . There is only one player
in this game. There is an infinite supply of indistinguishable pebbles and each node of G can hold a single pebble.
A node is said to be pebbled if there is a pebble in it; it is empty otherwise. Initially, all the nodes are empty. A
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pebbling step consists of placing a pebble on an empty node u, provided all predecessors of u are already pebbled.
In particular, we can always pebble an empty source node (i.e., a node with no predecessors). An unpebbling step
consists of removing a pebble from a pebbled node. A play is simply a sequence of pebbling or unpebbling steps,
with the last step being the pebbling of the goal node i0. At any moment during the play, there is some number
of pebbles on the graph, and our aim (as the player) is to choose the steps in a play in order to minimize the
maximum number k of pebbled nodes at any time during the play. This number k is called the pebble cost of the
play.

The reader will have no difficulty making the connection between this pebble game and the simulation described
earlier: pebbling (unpebbling) a node corresponds to expansion (contraction) of nodes.

A game strategy is a rule to play the game for any graph. A trivial game strategy is to pebble the nodes in
topological order and never to unpebble any nodes. On an n node graph, the pebble cost is n with this strategy.
Can we do better in general? The key result here says: for any directed acyclic graph G on n nodes with in- and
out-degree at most d, the strategy yields a play with pebble cost Od(n/ logn).

We want an ‘alternating version’ of playing this pebbling game. As usual, alternation turns the problem inside-
out (or rather, bottom-up): instead of proceeding from the source nodes to the goal node i0, we first ask what is
required to pebble the goal node. This is viewed as a “challenge” at node i0. The challenge at a node u in turn
spawns challenges at other nodes (which must include all predecessors of u). This is roughly the idea for our key
definition:

Definition 12 A pebbling tree for a directed acyclic graph G with goal node i0 is a finite tree T satisfying the
following.17 Each vertex u of T is associated with a triple [i, X, Y ] where X and Y are subsets of nodes of G, and
i is a node of G. We called i the challenged node, X the pebbling set, Y the unpebbling set (at vertex u). At each
vertex u, define the current set C(u) of (currently) pebbled nodes at u by induction on the level of u: if u is the
root then C(u) is simply the pebbling set at u; otherwise if u is a child of u′ then C(u) = (C(u′) − Y ) ∪ X where
X (resp., Y ) is the pebbling (resp., unpebbling) set at u. We require these properties:

(i) The challenged node at the root is the goal node i0.

(ii) At each vertex u associated with [i, X, Y ], either i ∈ X or else all the predecessors of i are contained in
the current set C(u).

(iii) If the pebbling set at vertex u is X , then u has |X | children, and the set comprising the challenged nodes
at these children is precisely X .

Remarks Note that (iii) implies that the pebbling set at a leaf must be empty; (ii) further implies that the
predecessors of a challenged node at a leaf u is in C(u). The concept of “pebble” in pebbling trees is distinct
from the pebbles in the original pebbling game: in the literature, this distinction is made by giving colors (black
and white) to the different concepts of pebbles. We may call the “pebbles” in pebbling trees “challenge pebbles”,
because they are targets to be achieved in the original pebbling game.

Interpretation: This tree is an abstract description of an alternating computation tree that verifies the labels
of a graph G in the sense of the Hopcroft-Paul-Valiant simulation of a deterministic time t machine M. To make
this precise, we first describe an alternating machine N that on input a labeled graph G with goal node i0 behaves
as follows: initially, N existentially guesses some expansion of node i0 and writes this onto tape 1; tape 2 is empty.
In general, N is in the following ‘inductive stage’:

Tape 1 contains the expansion e(i′) some node i′,
Tape 2 holds some number of expansions of nodes in G.

Then N existentially deletes some expansions in tape 2 and existentially writes some (possibly zero) new expansions
in tape 3. If no expansion of node i′ is found in tapes 2 and 3 then N tries to produce one: first N checks that
all the predecessors of i′ are in tapes 2 and 3 (otherwise it rejects) and then simulate M from sample time ti′−1 to
sample time ti′ and, as usual, assume that we now have an expansion d(i′) of i′. N can now verify if the expansion
e(i′) agrees with the found or newly constructed d(i′) (if not, N rejects). To continue, either tape 3 is empty (in
which case N accepts) or else N universally chooses to copy one of the expanded nodes from tape 3 to tape 1 and
the rest onto tape 2. This completes the ‘inductive stage’.

17To avoid confusing the nodes of T with those of G, we will refer to the nodes of T as ‘vertices’.
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We claim that N accepts iff there is a pebbling tree T . Suppose T exists. To show that N accepts, we describe
an accepting computation tree T ′ of N that is modeled after T : each inductive stage of N corresponds to a vertex u
of T . If u is associated with the triple [i, X, Y ] then tape 1 contains the expansion of node i and tape 2 contains the
expansions of the set C(u) of pebbled nodes at u. Then the sets Y, X corresponds (respectively) to the expansions
that are deleted from tape 2 or existentially guessed in tape 3. If we choose T ′ in such a way that the guessed
expansions in tape 3 are always correct, then T ′ would be an accepting computation tree. Conversely, if N accepts,
then we can construct the pebbling tree by reversing the above arguments.

With this interpretation, it is easy to understand the following definition of complexity. The pebbling time at
any vertex with label [i, X, Y ] is given by 1 + |X | + |Y |. The pebbling time of a path of T is the sum of the
pebbling times of nodes along the path. The pebbling time of T is the maximum pebbling time over all paths in T .
The pebbling space of T is the maximum of |C(u)| over all vertices u. These corresponds to alternating time and
alternative space, respectively. Since we do not care about minimizing alternating space in the following proof, we
may assume each unpebbling set Y is empty. We leave the following as an exercise:

Lemma 28 Let G be any directed acyclic graph and i0 be a node in G. If there is a pebbling tree for (G, i0) with
pebbling time t, then we can pebble (G, i0) using t pebbles.

We come to the main lemma:

Lemma 29 Let G be any directed acyclic graph with m edges, and whose indegree and outdegree is at most d. For
any goal node i0 in G, there exists a pebbling tree for (G, i0) with pebbling time of Od(m/ log m)

Proof. Let G be any graph described by the lemma and i0 is any node in G, We describe a pebbling tree for (G, i0)
whose pebbling time is at most P (m), where P (m) = Od(m/ log m). We may suppose m is sufficiently large. First
partition the nodes V of G into two disjoint sets, V = Va ∪ Vb such that

(i) There are no edges from Vb (‘nodes below’) to Va (‘nodes above’). So edges of G that cross between Va and
Vb must descend from above to below. Let Ga, Gb be the induced subgraphs with nodes Va, Vb, respectively.

(ii) The number of edges mb in Vb satisfies

m

2
− m

log m
≤ mb <

m

2
− m

log m
+ d.

To see that such a partition exists, we offer a construction. Starting with Vb as the empty set, keep adding nodes
into Vb in topological order until the number of edges of Gb satisfies the above inequalities (this is possible because
additional node in Vb increases the number of edges by at most d).

Let B ⊆ Vb comprise those nodes with at least one predecessor in Va. Consider three cases.

CASE 1 Suppose the goal node i0 is in Va. Then a pebbling tree for (Ga, i0) is also a pebbling tree for (G, i0).
This tree has a pebbling time at most

P (m − mb) ≤ P (
m

2
+

m

log m
).

Assume i0 ∈ Vb in the remaining cases.

CASE 2 Suppose |B| < 2m/ logm. Then we construct the following pebbling tree T for (G, i0). The pebbling set
at the root of T is B ∪ {i0}. At each child u of the root, we consider two possibilities. If the challenged node
at u is i ∈ B, then inductively construct a pebbling tree for (Ga, i) with pebbling time P (m/2 + m/ log m).
Otherwise the challenged node is i0 and we inductively construct a pebbling tree for (Gb, i0) with pebbling
time P (m/2 − m/ logm + d). The result is a pebbling tree for (G, i0) with pebbling time at most

2m

log m
+ P (

m

2
+

m

log m
).

CASE 3 Suppose |B| ≥ 2m/ logm. Consider a pebbling tree Tb for (Gb, i0) with pebbling time ≤ P (m/2 −
m/logm + d). We convert Tb into a pebbling tree for (G, i0): let u be any leaf of Tb with challenged node i.
The predecessors of i in Gb are contained in C(u), by definition of Tb. But i may bave predecessors in G but
not in Gb: let X(i) be this set of predecessors. We make X(i) the pebbling set at u and create |X(i)| ≤ d
children for u. Each child v of u has a challenged node j ∈ Va. We can attach to v a pebbling tree Tj for
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(Ga, j). Notice Ga has at most m− mb − |B| ≤ (m/2)− (m/ logm) edges since are at least |B| ≥ 2m/ logm
edges from Va to Vb are not counted in Ga or Gb. Hence the pebbling time for Tj is at most P (m/2−m/ logm).
This completes our description of the pebbling tree for (G, i0). The pebbling time of this tree is equal to the
pebbling time of Tb plus the pebbling time of any Tj’s plus at most d. This is at most

2P (
m

2
− m

log m
) + d.

Taking the worst of these three cases, we obtain

P (m) ≤ max{P (
m

2
+

m

log m
) +

2m

log m
, 2P (

m

2
− m

log m
) + d}

We want to show that there is a constant c = c(d) ≥ 5 such that for m′, P (m′) ≤ cm′/ logm′. By making c
sufficiently large, we may assume that the truth has been established for m large enough. Inductively, we have the
the following derivation:

P (
m

2
+

m

log m
) +

2m

log m
= P (αm) +

2m

log m
(where α = 1

2 + 1
log m )

≤ cαm

log(αm)
+

2m

log m

≤ cm

log m

(
α log m

log(αm)
+

2
c

)
≤ cm

log m
.

We also have

2P (m
2 − m

log m ) + d ≤
2c

(
m
2 − m

log m

)
log

(
m
2 − m

log m

) + d

≤
cm

(
1 − 2

log m

)
log m + log

(
1
2 − 1

log m

) + d

≤
cm

(
1 − 2

log m

)
log m − 1.1

+ d

≤ cm

log m

(
log m − 2

log m − 1.1

)
+ d

≤ cm

log m
.

Q.E.D.

We may now complete the proof of the main result showing a deterministic M that accepts in time t can be
simulated in alternating time O(t/ log t). In applying the above lemma, we may recall that the graph G obtained
from a computation of M by using some blocking factor B has bounded in- and out-degrees except for node 0. To
fix this, we can simply place a pebble at node 0 and the rest of the graph is now effectively bounded degree.

(1) Reserve tapes 1, 2 and 3 for later use. First we existentially choose the time t (tape 4) and blocking factor
B (tape 5). Then we existentially choose a labeling of the graph G with nodes V = {0, . . . , t/B} (tape 6),
and an edge set E (tape 7). Since each label uses O(log t) space, all this (when choice is correct) takes time
O( t log t

B ).

(2) Universally choose to verify that E is correct relative to node labels, and to verify that the label of node t/B
is correct. It takes time O( t log t

B ) to verify E. Verification of the label at node t/B is recursive as shown next.
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(3) The verification of node dt/Be amounts to simulating a pebbling tree T for (G, dt/Be) (i.e., with dt/Be as the
goal node of G). We do this along the lines given by the “Interpretation” above. As before, each ‘inductive
stage’ of our simulation of T corresponds to a vertex u of T : if [i, X, Y ] is associated with u then an expansion
of the challenged node i is available on tape 1. The set of nodes previously expanded are available on tape
2. Since the pebbling time of T can be assumed to be t/(B log(t/B)), we may assume that tape 2 has at
most t/(B log(t/B)) nodes. Since each expansion uses O(B) space, tape 2 uses O(t/ log(t/B)) space. We
existentially choose the pebbling set X at u and also their expansions, writing down these guesses on tape 3.
(As noted before, we may assume Y is empty.) We then verify the challenged node i (it must either appear
in tapes 2 or 3 or has all its predecessors expanded so that it can be simulated directly). This non-recursive
verification of node i takes time O(t/ log(t/B)). To get to the next inductive stage, we universally choose to
transfer one of the expanded nodes on tape 3 to tape 2, which is now the challenged node.

We have seen that the non-recursive parts of step (3) takes alternating time O(t/ log(t/B)). This time must be
added to the total alternating time in the recursive parts of the computation. The recursive part of the computation,
we claim is O(B) times the pebbling time P . This is because each unit of pebbling time P can be associated with
the guessing of an expanded node. But each expansion, when correct, takes space O(B). It follows that the
recursive part of the computation takes time O(t/ log(t/B)) since the pebbling time for the optimal tree is at most
O(t/[B log(t/B)]) (by preceding lemma, with n = t/B). Finally, if B is chosen to be log2 t, we get a time bound of
O(t/ log t) for steps (1),(2) and (3). (We could choose B as large as tε for any constant ε > 0.) This concludes the
proof of our main theorem.

Finally, we note that the space bound just obtained is the best possible in the sense that Ω(t/ log t) is a lower
bound on the worst case pebbling time for the class bounded in-degree graphs [19].

Exercise

Exercise 7.8.1: In graph G, we say node v is an ancestor of node w if there is a path from v to w (so “ancestor”
is the reflexive transitive closure of the “predecessor” relation).
(i) Show that in any pebbling tree T for (G, i0), it is possible to restrict the pebbling sets at each vertex to
the ancestors of i0.
(ii) Prove lemma 28. Hint: Suppose u1, . . . , uk are the children of the root of T and xi is the challenged node
at ui. Let Tj be the subtree of T rooted at uj. Renumber the indices so that if xi is an ancestor of xj then
i < j. You strategy need to take into account this topologically sorted sequence on x1, . . . , xk. Is it true that
Tj is a pebbling tree of (G, xj)?

End Exercise

7.9 Alternating Space

We show two results from Chandra, Kozen and Stockmeyer that relate alternating space and deterministic time.
Note that for a nondeterministic machine M , if there is an accepting path then there is one in which no

configuration is repeated. The next lemma shows an analogous result for alternating machines.

Lemma 30
(a) Let M be any choice machine. If T is an accepting computation tree for an input w then there is an accepting
computation tree T ′ for w with the following properties:

• each computation path in T ′ is a (prefix of a) computation path in T

• if u, v ∈ T ′ are vertices such that u is a proper ancestor of v and both u and v are labeled by the same configuration,
then ValT ′(v) @ ValT ′(u) (strict ordering).

(b) If, in addition, M is an alternating machine then we can assume that v is a leaf of T ′.

Proof. (a) The result follows if we show another accepting computation tree T ′ with fewer vertices. Let Tv denote
the subtree of T rooted at v consisting of all descendents of v. There are two cases: if ValT (u) v ValT (v) then
we can form T ′ from T by replacing Tu with Tv. By monotonicity, T ′ is still accepting.
(b) This simply follows from part (a) since for alternating machines, ValT (v) @ ValT (u) implies that ValT (v) = ⊥.
In that case, we might as well prune away all proper descendents of v from T .

Q.E.D.
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Theorem 31 For all complexity functions s,

ASPACE (s) ⊆ DTIME (n2 log nO(1)s).

Proof. Let M be an ordinary alternating machine accepting in space s. Later we indicate how to modify the proof
if M has the addressable-input capability. We will construct a deterministic N that accepts L(M) in the indicated
time. On an arbitrary input w, N proceeds in stages: in the mth stage, N enumerates (in tape 1) the set ∆m

defined to be all the configurations C of M on input w where C uses at most m space. Note that each configuration
can be stored in m + log n space, and there are nO(1)m configurations, so we use

(m + log n)nO(1)m = n log nO(1)m

space on tape 1. Then N enumerates (in tape 2) the edges of the computation tree Tm whose nodes have labels
from ∆m and where no node u ∈ Tm repeats a configuration that lie on the path from the root to u, except when
u is a leaf. Clearly this latter property comes from the previous lemma. Using the information in tape 1, it is not
hard to do this enumeration of edges in a ‘top-down’ fashion (we leave the details to the reader). Furthermore
each edge can be produced in some constant number of scans of tape 1, using time n log nO(1)m. Thus the overall
time to produce all nO(1)m edges is n2 log nO(1)m. Now we can compute the least fixed point ValTm(u) value at
each node u ∈ Tm in a bottom-up fashion, again O(n log nO(1)m) per node for a total time of n2 log nO(1)m. This
completes our description of the mth stage.

The previous lemma shows that if M accepts w then at some mth stage, m ≤ s(|x|), Tm is accepting. Since the
time for the mth stage is n2 log nO1(1)m, the overall time over all stages is

s(n)∑
m=1

n2 log nO1(1)m = n2 log nO2(1)s(n).

It remains to consider the case where M has the addressable-input capability. We first note that we never have
to use more than O(log n) space to model the address tape (if M writes more than log n bits, we ignore the tape from
that point onwards since it will lead to error when a READ is attempted). Hence the above space bounds for storing
a configuration holds. Furthermore, the time to generate the contents of tapes 1 and 2 remains asymptotically
unchanged. Similarly for computing the least fixed point ValTm . This concludes the proof. Q.E.D.

Theorem 32 For all t(n) > n, DTIME (t) ⊆ ASPACE (log t).

Proof. Let M accept in deterministic time t. We describe an alternating machine N to accept L(M) in space log t.
For this simulation, N can be the ordinary variety of alternating machine. We may assume that M is a simple
Turing machine and M never moves its tape head to the left of its initial position throughout the computation.
(Otherwise, we first convert M into a simple Turing machine accepting in time t(n)2 with these properties. How?)
Let x be any word accepted by M . Let C0, C1, . . . , Cm, m = t(|x|), be the unique accepting computation path of
M on x. We assume that the final accepting configuration is repeated as many times as needed in this path. Let
each Ci be encoded as a string of length m + 2 over the alphabet

Γ = Σ ∪ [Q × Σ] ∪ {t}
where Σ is the tape alphabet of M , Q the state set of M , and [Q×Σ] is the usual composite alphabet. Furthermore,
we may assume the the first and last symbol of the string is the blank symbol t. Let αi,j denote the jth symbol
in configuration Ci (i = 0, . . . , m; j = 1, . . . , m + 2).

N will be calling a subroutine CHECK(i, j, b) that verifies whether αi,j = b where b ∈ Γ. N begins its overall
computation by existentially choosing the integer m, the head position h (1 ≤ h ≤ m + 2) and a symbol b′ = [qa, c]
and then it calls CHECK(m, h, b′). The subroutine is thus verifying that that M is scanning the symbol c at
position h when M enters the accept state qa. All integer arguments are in binary notation.

In general, the subroutine to verify if αi,j = b (for any i, j, b) operates as follows: if i = 0 or j = 1 or j = m,
N can directly do the checking and accept or reject accordingly. Otherwise, it existentially chooses the symbols
b−1, b0, b+1 such that whenever b−1, b0, b+1 are consecutive symbols in some configuration of M then in the next
instant, b0 becomes b. Now N universally chooses to call

CHECK(i − 1, j − 1, b−1),CHECK(i − 1, j, b0),CHECK(i − 1, j + 1, b+1).

It is important to realize that even if b does not contain the tape head (i.e., b 6∈ [Q × Σ × I]), it is possible for b−1

or b+1 to contain the tape head. The space used by N is O(log m).
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Correctness. If M accepts then it is clear that N accepts. The converse is not obvious. To illustrate
the subtlety, suppose CHECK(i, j, b) accepts because CHECK(i − 1, j − ε, bε) accepts for ε = −1, 0, 1. In turn,
CHECK(i− 1, j− 1, b−1) accepts because CHECK(i− 2, j− 1, b′) (among other calls) accepts for some b′; similarly
CHECK(i− 1, j, b0) accepts because CHECK(i− 2, j − 1, b′′) (among other calls) accepts for some b′′. But there is
no guarantee that b′ = b′′ since these two calls occur on different branches of the computation tree. Another source
of inconsistency is that the existential guessing of the bj ’s may cause more than one tape head to appear during one
configuration. Nevertheless, we have a correctness proof that goes as follows. First observe that if CHECK(i, j, b)
is correct if i = 0. Moreover, given j there is a unique b that makes CHECK(0, j, b) accept. Inductively, assume
CHECK(i, j, b) is correct for all j, b and that CHECK(i, j, b) and CHECK(i, j, b′) accept implies b = b′. Then it is
easy to see that CHECK(i+1, j, b) must be correct for all j, b; moreover, because of determinism, CHECK(i+1, j, b)
and CHECK(i + 1, j, b′) accept implies b = b′. [This is why CHECK must universally call itself three times: for
instance, if CHECK only makes two of the three calls, then the correctness of these two calls does not imply the
correctness of the parent.] So we have shown that the symbols αi,j are uniquely determined. In particular αm,h = b′

in the initial guess is correct when the machine accepts. Q.E.D.

The reader should see that this proof breaks down if we attempt to simulate nondeterministic machines instead
of deterministic ones.

Combining the two theorems yields the somewhat surprising result:

Corollary 33 For s(n) ≥ log n, ASPACE (s) = DTIME (O(1)s).

7.10 Final Remarks

This chapter introduced choice machines to provide a uniform framework for most of the choice modes of compu-
tation. It is clear that we can extend the basic framework to other value sets S (analogous to the role of INT)
provided S is equipped with a partial order v such that limits of v -monotonic chains are in S and S has a
v -least element (such an S is called a complete partial order). The reader familiar with Scott’s theory of semantics
will see many similarities. For relevant material, see [22].

We have a precise relationship between alternating space and determistic time: for s(n) ≥ log n,

ASPACE (s) = DTIME (O(1)s). (8)

What is the precise relationship between alternating time and deterministic space? Although we have tried to
emphasize that alternating time and deterministic space are intimately related, they are not identical. We know
that

ATIME (s) ⊆ DSPACE(s) ⊆ NSPACE(s) ⊆ ATIME (s2). (9)

for s(n) ≥ log n. How ‘tight’ is this sequence? It is unlikely that that the first two inclusions could be improved in
the near future.

From (8) and (9), we get find new characterizations of some classes in the canonical list:

P = ASPACE (log n)
PSPACE = ATIME (nO(1))
DEXPT = ASPACE (n)

EXPS = ATIME (O(1)n).

What is the relationship of alternating reversal with deterministic complexity? Of course, for alternating
machines, we must take care to simultaneously bound reversal with either time or space in order to get meaningful
results. Other complexity measures for alternating machines have been studied. Ruzzo [20] studied the size (i.e.,
the number of nodes) of computation trees. In particular, he shows

A-SPACE-SIZE(s(n), z(n)) ⊆ ATIME (s(n) log z(n)).

King [13] introduced other measures on computation trees: branching (i.e., the number of leaves), width (below),
visit (the maximum number of nodes at any level). Width is not so easy to motivate but in the special case of
binary trees (which is all we need for alternating machines), it is the minimum number of pebbles necessary to
pebble the root of the tree. Among the results, he shows (for s(n) ≥ log n),

A-SPACE-WIDTH(s(n), w(n)) = NSPACE (s(n)w(n)),
A-SPACE-VISIT(s(n), v(n)) ⊆ ATIME (s2(n)v(n)).
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Exercises

[7.1] Verify the identities in section 2 on interval algebra.

[7.2] Some additional properties of the lattice INT:
(a) Show that the two orderings ≤ and v are ‘complementary’ in the following sense: for all I and J ,
either I and J are ≤-comparable or they are v -comparable.
(b) Show that I and J are both ≤ -comparable and v -comparable iff I ≈ J where we write [x, y] ≈ [x, v]
if x = u or y = v.
(c) Extend ∧ and ∨ to arbitrary sets S ⊆ INT of intervals: denote the meet and join of S by ∧S and ∨S.
Show that INT forms a complete lattice with least element 0 and greatest element 1.

[7.3] Consider the 2-ary Boolean function inequivalence (also known as exclusive-or) denoted 6≡. We want to
extend this to a function on intervals in INT. One way to do this is to use the equation

x 6≡ y = (x∧¬y)∨(¬x∧y)

valid for Boolean values, but now interpreting the ∧,∨ and ¬ as functions on intervals. For instance,

[0.2, 0.5] 6≡ [0.6, 0.7] = ([0.2, 0.5]∧[0.3, 0.4])∨([0.5, 0.8]∧[0.6, 0.7])
= [0.2, 0.4]∨[0.5, 0.7] = [0.5, 0.7].

Can you find other equations for 6≡ that are valid in the Boolean case such that the extension to intervals
are not the same function?

[7.4] * (i) Consider generalized probabilistic machines in which we allow k-ary versions of the coin-tossing
function, f

k for all k ≥ 2. Show that these can be simulated by ordinary probabilistic machines with at
most a constant factor slow-down in time.
(ii) Show the same result for stochastic machines where we now allow f

k,⊕k,⊗k for all k.

[7.5] Our definition of B-machines attaches a basis function γ(q) ⊆ B to each state q. A more general definition
is to attache a basis function γ(q, a0, . . . , ak) to each combination (q, a0, . . . , ak) where ai are tape symbols
valid for tape i. Under what conditions is it possible for our (official) choice machines to simulate the
behavior of these more general choice machines.

[7.6] (Hong) Consider basis sets B that are subsets of the 16 Boolean functions on 2 variables. As usual, we
assume that the identity, 0 and 1 constant functions are not explicitly mentioned when we display B. For
two bases B, B′, say that B linearly simulates B′ if for every B′-choice machine M′, there is a B-machine
M accepting the same language such that if M′ accepts in time t(n) then M accepts in time OB,B′(t). Say
B and B′ are linearly equivalent if they can linearly simulate each other.
(a) Prove that every such basis set B is linearly equivalent to one of the following 5 bases:

B0 := ∅, B1 :={∨}, B2 :={∧}, B3 :={⊕}, B4 :={∨,∧}
where ⊕ is the exclusive-or function.
(b) By simple set inclusions, it is clear that B0 can be linearly simulated by the others and B4 can linearly
simulate B1 and B2. Show that B4 can also linearly simulate B3. Hint: Use the same idea as the proof
for elimination of negation.
(c)** Show that these 5 classes are distinct up to linear equivalence. (Note: it is known that B1 is distinct
from B0.)

[7.7] ** Let B = {∨, f,¬}. Can negation be eliminated from B-machines operating in polynomial time?

[7.8] Generalize choice machines by allowing values from any v -partially ordered set F that has a v -mimimal
element ⊥ ∈ F and such that any v -monotonic non-decreasing sequence has a least upper bound in F .
In particular, let F be the Borel sets (obtain from INT under the operation of intersection, difference and
countable unions).

[7.9] * Extend valuation theory for acceptors to transducers.

[7.10] (Paul, Praus, Reischuk) Construct a simple (i.e., one work-tape and no input tape) alternating machine
that accepts palindromes in linear time and a constant number of alternation. Hint: Guess the positions
(in binary) of about logn equally spaced-out input symbols, writing these directly under the corresponding
symbols. The positions of all the other symbols can be determined relative to these guessed positions.
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[7.11] (Paul, Praus, Reischuk) Show that if a language can be accepted by an alternating Turing machine in
time t(n) then it can be accepted by a simple alternating Turing machine in time O(t(n)). Hint: For a
computation path C1`C2`, . . . ,`Cm, let its trace be τ1, τ2, . . . , τm where τi contains the state, the symbols
scanned on each of the tapes (including the input tape) and the direction of each tape head in the transition
Ci`Ci+1. The head directions are undefined for τm. (Note: this definition of trace does not include head
positions, in contrast to a similar definition in chapter 2.) Begin by guessing the trace of the paths in an
accepting computation tree – you must use universal and existential guessing corresponding to the state
in τi. To verify correctness of the guess, the technique for the previous question is useful.

[7.12] (Paterson, Paul, Praus, Reischuk) For all t(n), if a language is accepted by a nondeterministic simple
Turing machine in time t(n) then it can be accepted by an alternating machine in time n + t1/2(n).

[7.13] Show the tight complexity relationships between the ordinary SAM’s and the addressable-input version
of SAM’s. More precisely, give efficient time/space/reversal simulations of the addressable-input machines
by ordinary machines.

[7.14] Rederive the various simulation of SAM’s in this chapter in the case where the SAMs is the addressable-
input model. In particular, show that ATIME (t) ⊆ DSPACE (t).

[7.15] Obtain a lower bound on the space-time product of alternating Turing machines which accepts the palin-
drome language Lpal.

[7.16] * Obtain the tight bound of Θ(logn) on the alternating time complexity for the multiplication problem
define as follows:

Lmult = {x#y#z# : x, y, z ∈ {0, 1}∗, x · y = z}.
Use the addressable-input model of machine.

[7.17] ** A very natural function that one would like to add to our basis sets is the cut-off function δ 1
2

defined
at the end of section 2. Note that it gives us a model of oracle calls in which the complexity of the oracle
machine is taken into account. Of course, this is not continuous: extend the theory of valuations to allow
monotonic, piece-wise continuous functions. (A functions is piece-wise continuous if it has a finite number
of discontinuities.)

[7.18] Explore the power of choice machines: suppose the basis functions are rational, linear convex combinations
of their arguments: more precisely, the valuation functions f have the form

f(x1, . . . , xn) =
n∑

i=1

aixi

where the ai’s are positive rational numbers depending on f and
∑

i ai = 1. How do these machines
compare to SAMs?

[7.19] Give a sufficient condition on a family F of complexity functions such that ATIME (F ) = PrA-TIME (F ) =
DSPACE (F ). Hint: Consider the case F = nO(1).

[7.20] * Can the alternating version of I. Simon simulation (section 6) be improved? In particular, try to improve
DREVERSAL(r) ⊆ ATIME (r3).

[7.21] In section 7, we saw a reduction of Turing machine simulation to graph pebbling, due to Hopcroft-Valiant-
Paul. An alternative definition of the edge set E is this: “define (j, i) to be an edge of G if j < i and
there is some block b visited in the ith time interval and last visited in the jth time interval.” Using this
definition of G, what modifications are needed in the proof showing DTIME (t) ⊆ DSPACE (t/ log t)?

[7.22] What is the number of alternations in the proof of DTIME (t) ⊆ ATIME (t/ log t)? Can this be improved?

[7.23] Show that if t(n) is time constructible then co-ATIME (t(n)) ⊆ ATIME (n + t(n)). HINT: why do you
need the “n+” term?
NOTE: For instance, if t(n) ≥ 2n, ATIME (n+ t(n)) = ATIME (t(n)), and so ATIME (t(n)) is closed under
complementation. This is essentially the result of Paul and Reischuk.
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[7.24] * A probabilistic-alternating finite automaton (pafa) is a PAM with no work-tape and whose input
tape is restricted so that in each step, the input head must move to the right. Moreover, the machine
must halt upon reading the first blank symbol after the input word. The special cases of alternating finite
automaton (afa) or probabilistic finite automaton (pfa) is defined analogously.
(i) (Chandra-Kozen-Stockmeyer) Prove that an afa accepts only regular languages.
(ii) (Starke) Show the following language (well-known to be non-regular) L = {0m1n : m ≥ n} can be
accepted by a pfa.

[7.25] Recall an alternating finite automaton (afa) defined in the previous question. Let us define a generalized
afa (gafa) to be an afa in which each state q has an arity k(q) ≥ 0 and is assigned a generalized Boolean
function

γ(q) : {0, 1,⊥}k(q) → {0, 1,⊥}.

(i) Let M be an alternating Turing acceptor with no work-tapes and whose input head cannot move right.
For the purposes of this question, assume that M has only ∧- and ∨-states. So M looks very similar to
an afa, except that it can make “ε-moves”: this is a terminology from automata theory: an ε-move is
one where the automaton can change state without moving its input head, and this is performed non-
deterministically. Show that such moves can be eliminated in the sense that there is a generalized afa that
accepts the same language as M.
(ii) (Open) Characterize the kinds of generalized Boolean functions that can arise in the generalized afa in
part (i).

[7.26] (Freivalds) Show a probabilistic finite automata to recognize the language {0n1n : n ≥ 1} with bounded
error. Hint: We are basically trying to check that the number of 1’s and number of 0’s are equal. Show
that the following procedure works:
a. Choose a coin with probability p << 1

2 of getting a head.
b. Toss coin for each 0 in input and each 1 in input. If we get all heads for 0’s and at least one tail for the
1’s then we say we have a 0-win. If we get at least one tail for the 0’s and all heads for the 1’s, we have a
1-win. All other outcomes result in a tie.
c. Repeat this experiment until we have at least k 0-wins or k 1-wins. We accept if and only if there is at
least one 1-win and at least one 0-win.
(For more information, see [10].)

[7.27] (Ruzzo, King) Show the following simulations among measures for alternating computation, as stated in
the concluding section: for s(n) ≥ log n,

A-SPACE-SIZE(s(n), z(n)) ⊆ ATIME (s(n) log z(n)),
A-SPACE-WIDTH(s(n), w(n)) = NSPACE(s(n)w(n)),

A-SPACE-VISIT(s(n), v(n)) ⊆ ATIME (s2(n)v(n)).

[7.28] (King) Recall the definitions of branching and width resource for alternating machines in the concluding
section. Show that the branching resource (simultaneously bounded with space) has the linear complexity
reduction property: for s(n) ≥ log n,

A-SPACE-BRANCH(s(n), b(n)) = A-SPACE-BRANCH(s(n), b(n)/2).

Show the same result for width resource: for s(n) ≥ log n,

A-SPACE-WIDTH(s(n), w(n)) = A-SPACE-WIDTH(s(n), w(n)/2).

[7.29] Show that if a graph with goal node (G, i0) has a pebbling tree with pebbling time t then it can be pebbled
with t pebbles. Is the converse true?

[7.30] (Paul, Tarjan, Celoni, Cook)
(a) A level graph is a directed acyclic graph with bounded in-degree such that the vertices can be partitioned
into ‘levels’ and edges only go from level i to level i + 1. Show that every level graph on n vertices can be
pebbled using O(

√
n) pebbles.

(b) Show an infinite family of graphs with indegree 2 that requires Ω(
√

n) pebbles to pebble certain vertices.
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